1
0
mirror of https://github.com/osmarks/nanogpt-experiments.git synced 2024-12-18 14:10:28 +00:00

use the enabled arg in GradScaler

This commit is contained in:
Yassine Yousfi 2023-01-31 21:12:49 -08:00
parent d995c22128
commit 40f4d6ff70

View File

@ -173,11 +173,8 @@ if block_size < model.config.block_size:
model.crop_block_size(block_size)
model.to(device)
# initialize a GradScaler if data type is float16
scaler = None
if dtype == 'float16':
print(f"Initializing Gradient Scaler to account for dtype: {dtype}")
scaler = torch.cuda.amp.GradScaler()
# initialize a GradScaler. If enabled=False scaler is a no-op
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
# optimizer
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2))
@ -283,17 +280,14 @@ while True:
with ctx:
logits, loss = model(X, Y)
# backward pass, with gradient scaling if training in fp16
scaler.scale(loss).backward() if scaler else loss.backward()
scaler.scale(loss).backward()
# clip the gradient
if grad_clip != 0.0:
scaler.unscale_(optimizer) if scaler else None
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
# step the optimizer
if scaler:
# step the optimizer and scaler if training in fp16
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
# flush the gradients as soon as we can, no need for this memory anymore
optimizer.zero_grad(set_to_none=True)