mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2025-01-18 21:22:53 +00:00
use the enabled arg in GradScaler
This commit is contained in:
parent
d995c22128
commit
40f4d6ff70
20
train.py
20
train.py
@ -173,11 +173,8 @@ if block_size < model.config.block_size:
|
||||
model.crop_block_size(block_size)
|
||||
model.to(device)
|
||||
|
||||
# initialize a GradScaler if data type is float16
|
||||
scaler = None
|
||||
if dtype == 'float16':
|
||||
print(f"Initializing Gradient Scaler to account for dtype: {dtype}")
|
||||
scaler = torch.cuda.amp.GradScaler()
|
||||
# initialize a GradScaler. If enabled=False scaler is a no-op
|
||||
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
|
||||
|
||||
# optimizer
|
||||
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2))
|
||||
@ -283,17 +280,14 @@ while True:
|
||||
with ctx:
|
||||
logits, loss = model(X, Y)
|
||||
# backward pass, with gradient scaling if training in fp16
|
||||
scaler.scale(loss).backward() if scaler else loss.backward()
|
||||
scaler.scale(loss).backward()
|
||||
# clip the gradient
|
||||
if grad_clip != 0.0:
|
||||
scaler.unscale_(optimizer) if scaler else None
|
||||
scaler.unscale_(optimizer)
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
|
||||
# step the optimizer
|
||||
if scaler:
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
else:
|
||||
optimizer.step()
|
||||
# step the optimizer and scaler if training in fp16
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
# flush the gradients as soon as we can, no need for this memory anymore
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user