1
0
mirror of https://github.com/osmarks/nanogpt-experiments.git synced 2024-11-10 20:09:58 +00:00

add pytorch profiler support. not sure how to support both profiler and simple benchmarking, a bit gnarly atm hmm

This commit is contained in:
Andrej Karpathy 2022-12-29 01:49:53 +00:00
parent b760ef1358
commit 3000cf5dda

View File

@ -7,7 +7,7 @@ import time
import torch import torch
from model import GPTConfig, GPT from model import GPTConfig, GPT
device = 'cuda:3' device = 'cuda'
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.manual_seed(1337) torch.manual_seed(1337)
@ -45,23 +45,52 @@ model.to(device)
optimizer = model.configure_optimizers(weight_decay=1e-2, learning_rate=1e-4, betas=(0.9, 0.95)) optimizer = model.configure_optimizers(weight_decay=1e-2, learning_rate=1e-4, betas=(0.9, 0.95))
burn_in = 10 # number of burn in steps where we don't measure time profile = False # use pytorch profiler, or just simple benchmarking?
num_steps = 30 if profile:
for k in range(num_steps): # useful docs on pytorch profiler:
# - tutorial https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html
# - api https://pytorch.org/docs/stable/profiler.html#torch.profiler.profile
wait, warmup, active = 5, 5, 5
num_steps = wait + warmup + active
with torch.profiler.profile(
activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
schedule=torch.profiler.schedule(wait=wait, warmup=warmup, active=active, repeat=1),
on_trace_ready=torch.profiler.tensorboard_trace_handler('./bench_log'),
record_shapes=True,
profile_memory=True,
with_stack=True, # incurs an additional overhead, disable if not needed
with_flops=True,
with_modules=False, # only for torchscript models atm
) as prof:
if k == burn_in: for k in range(num_steps):
t0 = time.time() # start the timer X, Y = get_batch('train')
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
logits, loss = model(X, Y)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
lossf = loss.item()
print(f"{k}/{num_steps} loss: {lossf:.4f}")
X, Y = get_batch('train') prof.step() # notify the profiler at end of each step
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
logits, loss = model(X, Y)
optimizer.zero_grad(set_to_none=True) else:
loss.backward()
optimizer.step()
lossf = loss.item()
print(f"{k}/{num_steps} loss: {lossf:.4f}")
torch.cuda.synchronize() # simple benchmarking
t1 = time.time() torch.cuda.synchronize()
print("time in ms per iteration: %.2f" % ((t1 - t0) / (num_steps - burn_in) * 1000)) for stage, num_steps in enumerate([10, 20]): # burnin, then benchmark
t0 = time.time()
for k in range(num_steps):
X, Y = get_batch('train')
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
logits, loss = model(X, Y)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
lossf = loss.item()
print(f"{k}/{num_steps} loss: {lossf:.4f}")
torch.cuda.synchronize()
t1 = time.time()
if stage == 1:
print(f"time per iteration: {(t1-t0)/num_steps*1000:.4f}ms")