1
0
mirror of https://github.com/osmarks/nanogpt-experiments.git synced 2025-04-26 20:53:10 +00:00

nanoGPT

The cleanest, fastest repository for training/finetuning medium-sized GPTs.

This repo currently requires reading the code, but it's not that bad. work ongoing...

Getting started:

We need a few dependencies:

  • pytorch, of course
  • numpy
  • pip install datasets for huggingface datasets
  • pip install tiktoken for OpenAI's fast bpe code
  • pip install wandb for optional logging

Then we want to render the detaset:

$ cd data/openwebtext
$ python prepare.py

To download and tokenize the openwebtext dataset. It will create a train.bin and val.bin which holds the GPT2 BPE token ids in a massive sequence. Then we're ready to kick off training. The training script currently tries to reproduce the smallest GPT-2 released by OpenAI, i.e. the 124M version of GPT-2. We can run it like so:

$ python train.py

Once some checkpoints are written to the output directory out, we're ready to sample from the model:

$ python sample.py

Training on 1 GPU overnight currently gets loss ~3.74. Random chance at init is -ln(1/50257) = 10.82. Which brings us to baselines.

baselines

OpenAI GPT-2 checkpoints allow us to get some baselines in place for openwebtext. We can get the numbers as follows:

$ python train.py eval_gpt2
$ python train.py eval_gpt2_medium
$ python train.py eval_gpt2_large
$ python train.py eval_gpt2_xl

and observe the following losses on train and val:

model params train loss val loss
gpt2 124M 3.11 3.12
gpt2-medium 350M 2.85 2.84
gpt2-large 774M 2.66 2.67
gpt2-xl 1558M 2.56 2.54

I briefly tried finetuning gpt2 a bit more on our OWT and didn't notice dramatic improvements, suggesting that OWT is not much much different from WT in terms of the data distribution, but this needs a bit more thorough attempt once the code is in a better place.

benchmarking

For model benchmarking bench.py might be useful. It's identical what happens in the meat of the training loop of train.py, but omits much of the other complexities.

Description
Testing various LLM-related things.
Readme MIT 2.4 MiB
Languages
Python 100%