1
0
mirror of https://github.com/osmarks/nanogpt-experiments.git synced 2025-09-03 03:17:58 +00:00

candidate changes to apis, have to think through more

This commit is contained in:
Andrej Karpathy
2023-01-01 01:29:48 +00:00
parent 7c6ea8409e
commit 2febf4463c
8 changed files with 111 additions and 19 deletions

View File

@@ -35,6 +35,7 @@ enc = tiktoken.get_encoding("gpt2")
def process(example):
ids = enc.encode_ordinary(example['text']) # encode_ordinary ignores any special tokens
ids.append(enc.eot_token) # add the end of text token, e.g. 50256 for gpt2 bpe
# note: I think eot should be prepended not appended... hmm. it's called "eot" though...
out = {'ids': ids, 'len': len(ids)}
return out

View File

@@ -0,0 +1,32 @@
import os
import requests
import tiktoken
import numpy as np
# download the tiny shakespeare dataset
if not os.path.exists('input.txt'):
data_url = 'https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt'
with open('input.txt', 'w') as f:
f.write(requests.get(data_url).text)
with open('input.txt', 'r') as f:
data = f.read()
n = len(data)
train_data = data[:int(n*0.9)]
val_data = data[int(n*0.9):]
# encode with tiktoken gpt2 bpe
enc = tiktoken.get_encoding("gpt2")
train_ids = enc.encode_ordinary(train_data)
val_ids = enc.encode_ordinary(val_data)
print(f"train has {len(train_ids)} tokens")
print(f"val has {len(val_ids)} tokens")
# export to bin files
train_ids = np.array(train_ids, dtype=np.uint16)
val_ids = np.array(val_ids, dtype=np.uint16)
train_ids.tofile('train.bin')
val_ids.tofile('val.bin')
# train.bin has 301,966 tokens
# val.bin has 36,059 tokens

View File

@@ -0,0 +1,9 @@
# tiny shakespeare
Tiny shakespeare, of the good old char-rnn fame :)
After running `prepare.py`:
- train.bin has 301,966 tokens
- val.bin has 36,059 tokens