mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2025-01-18 21:22:53 +00:00
rename iter to it, because iter is a concrete Python builtin
This commit is contained in:
parent
d2705bd92a
commit
038ce89438
12
train.py
12
train.py
@ -211,15 +211,15 @@ def estimate_loss():
|
||||
return out
|
||||
|
||||
# learning rate decay scheduler (cosine with warmup)
|
||||
def get_lr(iter):
|
||||
def get_lr(it):
|
||||
# 1) linear warmup for warmup_iters steps
|
||||
if iter < warmup_iters:
|
||||
return learning_rate * iter / warmup_iters
|
||||
# 2) if iter > lr_decay_iters, return min learning rate
|
||||
if iter > lr_decay_iters:
|
||||
if it < warmup_iters:
|
||||
return learning_rate * it / warmup_iters
|
||||
# 2) if it > lr_decay_iters, return min learning rate
|
||||
if it > lr_decay_iters:
|
||||
return min_lr
|
||||
# 3) in between, use cosine decay down to min learning rate
|
||||
decay_ratio = (iter - warmup_iters) / (lr_decay_iters - warmup_iters)
|
||||
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
|
||||
assert 0 <= decay_ratio <= 1
|
||||
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
|
||||
return min_lr + coeff * (learning_rate - min_lr)
|
||||
|
Loading…
Reference in New Issue
Block a user