1
0
mirror of https://github.com/osmarks/nanogpt-experiments.git synced 2024-11-10 20:09:58 +00:00
nanogpt-experiments/sample.py

51 lines
1.7 KiB
Python
Raw Normal View History

2022-12-28 00:58:19 +00:00
"""
Sample from a trained model
"""
import os
import torch
import tiktoken
from model import GPTConfig, GPT
2023-01-02 02:11:39 +00:00
# -----------------------------------------------------------------------------
# todo make these overridable like in train.py
out_dir = 'out'
2022-12-28 00:58:19 +00:00
device = 'cuda:2'
2023-01-02 02:11:39 +00:00
compile = False
start = "\n" # or "<|endoftext|>" or whatever you like
num_samples = 10 # number of samples to draw
max_new_tokens = 500 # number of tokens generated in each sample
temperature = 0.8 # higher temperature (up to 1) is more random, lower (down to 0) means more greedy
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
seed = 1337
# -----------------------------------------------------------------------------
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
2022-12-28 00:58:19 +00:00
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
2023-01-02 02:11:39 +00:00
# model
2022-12-28 00:58:19 +00:00
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
checkpoint = torch.load(ckpt_path, map_location=device)
gptconf = GPTConfig(**checkpoint['model_args'])
model = GPT(gptconf)
model.load_state_dict(checkpoint['model'])
model.eval()
model.to(device)
2023-01-02 02:11:39 +00:00
if compile:
model = torch.compile(model) # requires PyTorch 2.0 (optional)
2022-12-28 00:58:19 +00:00
2023-01-02 02:11:39 +00:00
# encode the beginning of the prompt
2022-12-28 00:58:19 +00:00
enc = tiktoken.get_encoding("gpt2")
2023-01-02 02:11:39 +00:00
start_ids = enc.encode(start, allowed_special={"<|endoftext|>"})
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
2022-12-28 00:58:19 +00:00
2023-01-02 02:11:39 +00:00
for k in range(num_samples):
2022-12-28 00:58:19 +00:00
with torch.no_grad():
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
2023-01-02 02:11:39 +00:00
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
2022-12-28 00:58:19 +00:00
print(enc.decode(y[0].tolist()))
print('---------------')