2022-12-28 00:58:19 +00:00
|
|
|
# saves the openwebtext dataset to a binary file for training. following was helpful:
|
|
|
|
# https://github.com/HazyResearch/flash-attention/blob/main/training/src/datamodules/language_modeling_hf.py
|
|
|
|
|
2022-12-30 22:18:20 +00:00
|
|
|
from tqdm import tqdm
|
2022-12-28 00:58:19 +00:00
|
|
|
import numpy as np
|
|
|
|
import tiktoken
|
|
|
|
from datasets import load_dataset # huggingface datasets
|
|
|
|
|
2022-12-30 22:18:20 +00:00
|
|
|
# number of workers in .map() call
|
|
|
|
# good number to use is ~order number of cpu cores // 2
|
|
|
|
num_proc = 8
|
2022-12-28 00:58:19 +00:00
|
|
|
|
|
|
|
# takes 54GB in huggingface .cache dir, about 8M documents (8,013,769)
|
|
|
|
dataset = load_dataset("openwebtext")
|
|
|
|
|
|
|
|
# owt by default only contains the 'train' split, so create a test split
|
|
|
|
split_dataset = dataset["train"].train_test_split(test_size=0.0005, seed=2357, shuffle=True)
|
|
|
|
split_dataset['val'] = split_dataset.pop('test') # rename the test split to val
|
|
|
|
|
|
|
|
# this results in:
|
|
|
|
# >>> split_dataset
|
|
|
|
# DatasetDict({
|
|
|
|
# train: Dataset({
|
|
|
|
# features: ['text'],
|
|
|
|
# num_rows: 8009762
|
|
|
|
# })
|
|
|
|
# val: Dataset({
|
|
|
|
# features: ['text'],
|
|
|
|
# num_rows: 4007
|
|
|
|
# })
|
|
|
|
# })
|
|
|
|
|
|
|
|
# we now want to tokenize the dataset. first define the encoding function (gpt2 bpe)
|
|
|
|
enc = tiktoken.get_encoding("gpt2")
|
|
|
|
def process(example):
|
|
|
|
ids = enc.encode_ordinary(example['text']) # encode_ordinary ignores any special tokens
|
|
|
|
ids.append(enc.eot_token) # add the end of text token, e.g. 50256 for gpt2 bpe
|
2023-01-01 01:29:48 +00:00
|
|
|
# note: I think eot should be prepended not appended... hmm. it's called "eot" though...
|
2022-12-28 00:58:19 +00:00
|
|
|
out = {'ids': ids, 'len': len(ids)}
|
|
|
|
return out
|
|
|
|
|
|
|
|
# tokenize the dataset
|
|
|
|
tokenized = split_dataset.map(
|
|
|
|
process,
|
|
|
|
remove_columns=['text'],
|
|
|
|
desc="tokenizing the splits",
|
|
|
|
num_proc=num_proc,
|
|
|
|
)
|
|
|
|
|
|
|
|
# concatenate all the ids in each dataset into one large file we can use for training
|
|
|
|
for split, dset in tokenized.items():
|
2022-12-30 22:18:20 +00:00
|
|
|
arr_len = np.sum(dset['len'])
|
2022-12-28 00:58:19 +00:00
|
|
|
filename = f'{split}.bin'
|
|
|
|
dtype = np.uint16 # (can do since enc.max_token_value == 50256 is < 2**16)
|
2022-12-30 22:18:20 +00:00
|
|
|
arr = np.memmap(filename, dtype=dtype, mode='w+', shape=(arr_len,))
|
2023-01-02 15:49:21 +00:00
|
|
|
total_batches = 1024
|
2022-12-28 00:58:19 +00:00
|
|
|
|
2022-12-30 22:18:20 +00:00
|
|
|
idx = 0
|
2023-01-02 15:49:21 +00:00
|
|
|
for batch_idx in tqdm(range(total_batches), desc=f'writing {filename}'):
|
|
|
|
# Batch together samples for faster write
|
|
|
|
batch = dset.shard(num_shards=total_batches, index=batch_idx, contiguous=True).with_format('numpy')
|
|
|
|
arr_batch = np.concatenate(batch['ids'])
|
|
|
|
# Write into mmap
|
|
|
|
arr[idx : idx + len(arr_batch)] = arr_batch
|
|
|
|
idx += len(arr_batch)
|
2022-12-30 22:18:20 +00:00
|
|
|
arr.flush()
|
2022-12-28 00:58:19 +00:00
|
|
|
|
|
|
|
# train.bin is ~17GB, val.bin ~8.5MB
|
|
|
|
# train has ~9B tokens (9,035,582,198)
|
|
|
|
# val has ~4M tokens (4,434,897)
|
|
|
|
|
|
|
|
# to read the bin files later, e.g. with numpy:
|
|
|
|
# m = np.memmap('train.bin', dtype=np.uint16, mode='r')
|