1
0
mirror of https://github.com/osmarks/meme-search-engine.git synced 2025-02-22 14:00:09 +00:00
meme-search-engine/diskann/aopq_train.py
2025-01-14 07:46:09 +00:00

96 lines
3.6 KiB
Python

import numpy as np
import msgpack
import math
import torch
from torch import autograd
import faiss
import tqdm
n_dims = 1152
output_code_size = 64
output_code_bits = 8
output_codebook_size = 2**output_code_bits
n_dims_per_code = n_dims // output_code_size
dataset = np.random.permutation(np.fromfile("embeddings.bin", dtype=np.float16).reshape(-1, n_dims)).astype(np.float32)
queryset = np.random.permutation(np.fromfile("query.bin", dtype=np.float16).reshape(-1, n_dims))[:100000].astype(np.float32)
device = "cuda"
def pq_assign(centroids, batch):
quantized = torch.zeros_like(batch)
# Assign to nearest centroid in each subspace
for dmin in range(0, n_dims, n_dims_per_code):
dmax = dmin + n_dims_per_code
similarities = torch.matmul(batch[:, dmin:dmax], centroids[:, dmin:dmax].T)
assignments = similarities.argmax(dim=1)
quantized[:, dmin:dmax] = centroids[assignments, dmin:dmax]
return quantized
# OOD-DiskANN (https://arxiv.org/abs/2211.12850) uses a more complicated scheme because it uses L2 norm
# We only care about inner product so our quantization error (wrt a query) is just abs(dot(query, centroid - vector))
# Directly optimize for this (wrt top queries; it might actually be better to use a random sample instead?)
def partition(vectors, centroids, projection, opt, queries, k, max_iter=100, batch_size=4096, query_batch_size=2048):
n_vectors = len(vectors)
#perm = torch.randperm(n_vectors, device=device)
t = tqdm.trange(max_iter)
for iter in t:
total_loss = 0
opt.zero_grad(set_to_none=True)
# randomly sample queries (with replacement, probably fine)
queries_for_iteration = queries[torch.randint(0, len(queries), (query_batch_size,), device=device)]
for i in range(0, n_vectors, batch_size):
loss = torch.tensor(0.0, device=device)
batch = vectors[i:i+batch_size] @ projection
quantized = pq_assign(centroids, batch)
residuals = batch - quantized
batch_error = queries_for_iteration @ residuals.T
loss += torch.mean(torch.pow(batch_error, 2))
total_loss += loss.detach().item()
loss.backward()
opt.step()
t.set_description(f"loss: {total_loss:.4f}")
def random_ortho(dim):
h = torch.randn(dim, dim, device=device)
q, r = torch.linalg.qr(h)
return q
# non-parametric OPQ algorithm (roughly)
# https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/opq_tr.pdf
projection = random_ortho(n_dims)
vectors = torch.tensor(dataset, device=device)
queries = torch.tensor(queryset, device=device)
perm = torch.randperm(len(vectors), device=device)
centroids = vectors[perm[:output_codebook_size]]
centroids.requires_grad = True
opt = torch.optim.Adam([centroids], lr=0.0005)
for i in range(30):
# update centroids to minimize query-aware quantization loss
partition(vectors, centroids, projection, opt, queries, output_codebook_size, max_iter=300)
# compute new projection as R = VU^T from XY^T = USV^T (SVD)
# where X is dataset vectors, Y is quantized dataset vectors
with torch.no_grad():
y = pq_assign(centroids, vectors)
# paper uses D*N and not N*D in its descriptions for whatever reason (so we transpose when they don't)
u, s, vt = torch.linalg.svd(vectors.T @ y)
projection = vt.T @ u.T
with open("opq.msgpack", "wb") as f:
msgpack.pack({
"centroids": centroids.detach().cpu().numpy().flatten().tolist(),
"transform": projection.cpu().numpy().flatten().tolist(),
"n_dims_per_code": n_dims_per_code,
"n_dims": n_dims
}, f)
print("done")