1
0
mirror of https://github.com/osmarks/meme-search-engine.git synced 2025-04-09 04:06:39 +00:00

release WIP DiskANN index orchestration code

This commit is contained in:
osmarks 2025-01-01 14:40:24 +00:00
parent 35df1201e2
commit f1283137d6
6 changed files with 792 additions and 136 deletions

View File

@ -94,3 +94,76 @@ pub fn decode_fp16_buffer(buf: &[u8]) -> Vec<f32> {
.map(|chunk| half::f16::from_le_bytes([chunk[0], chunk[1]]).to_f32())
.collect()
}
pub fn chunk_fp16_buffer(buf: &[u8]) -> Vec<half::f16> {
buf.chunks_exact(2)
.map(|chunk| half::f16::from_le_bytes([chunk[0], chunk[1]]))
.collect()
}
#[derive(Clone, Deserialize, Serialize, Debug, PartialEq)]
pub struct OriginalImageMetadata {
pub mime_type: String,
pub original_file_size: usize,
pub dimension: (u32, u32),
pub final_url: String
}
#[derive(Clone, Deserialize, Serialize, Debug)]
pub struct ProcessedEntry {
pub url: String,
pub id: String,
pub title: String,
pub subreddit: String,
pub author: String,
pub timestamp: u64,
#[serde(with="serde_bytes")]
pub embedding: Vec<u8>,
pub metadata: OriginalImageMetadata
}
#[derive(Clone, Deserialize, Serialize, Debug)]
pub struct ShardInputHeader {
pub id: u32,
pub centroid: Vec<f32>,
pub max_query_id: usize
}
#[derive(Clone, Deserialize, Serialize, Debug)]
pub struct ShardedRecord {
pub id: u32,
#[serde(with="serde_bytes")]
pub vector: Vec<u8>, // FP16
pub query_knns: Vec<u32>
}
#[derive(Clone, Deserialize, Serialize, Debug)]
pub struct ShardHeader {
pub id: u32,
pub max: u32,
pub centroid: Vec<f32>,
pub medioid: u32,
pub offsets: Vec<u64>,
pub mapping: Vec<u32>
}
#[derive(Clone, Debug, bitcode::Encode, bitcode::Decode)]
pub struct PackedIndexEntry {
pub vector: Vec<u16>, // FP16 values cast to u16 for storage
pub vertices: Vec<u32>,
pub id: u32,
pub timestamp: u64,
pub dimensions: (u32, u32),
pub score: f32,
pub url: String,
pub shards: Vec<u32>
}
#[derive(Clone, Deserialize, Serialize, Debug)]
pub struct IndexHeader {
pub shards: Vec<(Vec<f32>, u32)>,
pub count: u32,
pub dead_count: u32,
pub record_pad_size: usize,
pub quantizer: diskann::vector::ProductQuantizer
}

View File

@ -1,42 +1,30 @@
use anyhow::{Result, Context};
use anyhow::{bail, Context, Result};
use serde::{Serialize, Deserialize};
use std::io::{BufReader, Write};
use std::io::{BufReader, Read, Seek, SeekFrom, Write, BufWriter};
use std::path::PathBuf;
use rmp_serde::decode::Error as DecodeError;
use std::fs;
use base64::Engine;
use argh::FromArgs;
use chrono::{TimeZone, Utc, DateTime};
use std::collections::{VecDeque, HashSet};
use std::collections::VecDeque;
use faiss::Index;
use std::sync::mpsc::{sync_channel, SyncSender};
use itertools::Itertools;
use simsimd::SpatialSimilarity;
use std::hash::Hasher;
use foldhash::{HashSet, HashSetExt};
use diskann::vector::{scale_dot_result_f64, ProductQuantizer};
mod common;
// TODO refactor
#[derive(Clone, Deserialize, Serialize, Debug, PartialEq)]
struct OriginalImageMetadata {
mime_type: String,
original_file_size: usize,
dimension: (u32, u32),
final_url: String
}
#[derive(Clone, Deserialize, Serialize, Debug)]
struct ProcessedEntry {
url: String,
id: String,
title: String,
subreddit: String,
author: String,
timestamp: u64,
#[serde(with="serde_bytes")]
embedding: Vec<u8>,
metadata: OriginalImageMetadata
}
use common::{ProcessedEntry, ShardInputHeader, ShardedRecord, ShardHeader, PackedIndexEntry, IndexHeader};
#[derive(FromArgs)]
#[argh(description="Process scraper dump files")]
struct CLIArguments {
#[argh(option, short='s', description="read subset of records")]
#[argh(option, short='s', description="randomly select fraction of records")]
sample: Option<f32>,
#[argh(switch, short='p', description="print basic information for records")]
print_records: bool,
@ -44,16 +32,36 @@ struct CLIArguments {
print_embeddings: bool,
#[argh(switch, short='a', description="print aggregates")]
print_aggregates: bool,
#[argh(option, short='E', description="x:y - load embedding named x from file y")]
#[argh(option, short='E', description="x:y[:f] - load embedding named x from file y, discard record if dot product >= filter threshold f")]
embedding: Vec<String>,
#[argh(option, short='H', description="path for histograms of dot with embeddings")]
histograms: Option<String>,
#[argh(switch, short='D', description="enable deduplicator")]
#[argh(switch, short='D', description="enable deduplication")]
deduplicate: bool,
#[argh(option, short='T', description="deduplication Hamming distance threshold")]
threshold: Option<u64>,
#[argh(positional)]
paths: Vec<String>
paths: Vec<String>,
#[argh(option, short='o', description="output embeddings to file")]
output_embeddings: Option<String>,
#[argh(option, short='C', description="split input into shards using these centroids")]
centroids: Option<String>,
#[argh(option, short='S', description="index shard directory")]
shards_dir: Option<String>,
#[argh(option, short='Q', description="query vectors file")]
queries: Option<String>,
#[argh(option, short='d', description="random seed")]
seed: Option<u64>,
#[argh(option, short='i', description="index output directory")]
index_output: Option<String>,
#[argh(switch, short='t', description="print titles")]
titles: bool,
#[argh(option, description="truncate centroids list")]
clip_centroids: Option<usize>,
#[argh(switch, description="print original linked URL")]
original_url: bool,
#[argh(option, short='q', description="product quantization codec path")]
pq_codec: Option<String>,
#[argh(switch, short='j', description="JSON output")]
json: bool
}
#[derive(Clone, Deserialize, Serialize, Debug)]
@ -70,13 +78,14 @@ impl Histogram {
}
fn add(&mut self, x: f32) {
let bucket = if x < self.min {
let mut bucket = if x < self.min {
0
} else if x >= self.max {
self.buckets.len() - 1
} else {
((x - self.min) / (self.max - self.min) * (self.buckets.len() as f32)) as usize
};
bucket = bucket.max(0).min(self.buckets.len() - 1);
self.buckets[bucket] += 1;
}
@ -86,93 +95,356 @@ impl Histogram {
}
}
fn dot(x: &[f32], y: &[f32]) -> f32 {
x.iter().zip(y).map(|(a, b)| a * b).sum::<f32>()
}
fn binarize(x: &[f32]) -> Vec<u8> {
let mut buf = vec![0; x.len() / 8];
fn binarize(x: &[f32]) -> u64 {
let mut hasher = seahash::SeaHasher::new();
for i in 0..(x.len() / 8) {
buf[i] = ((x[i * 8] > 0.0) as u8) + (((x[i * 8 + 1] > 0.0) as u8) << 1) + (((x[i * 8 + 2] > 0.0) as u8) << 2) + (((x[i * 8 + 3] > 0.0) as u8) << 3) + (((x[i * 8 + 4] > 0.0) as u8) << 4) + (((x[i * 8 + 5] > 0.0) as u8) << 5) + (((x[i * 8 + 6] > 0.0) as u8) << 6) + (((x[i * 8 + 7] > 0.0) as u8) << 7);
hasher.write_u8(((x[i * 8] > 0.0) as u8) + (((x[i * 8 + 1] > 0.0) as u8) << 1) + (((x[i * 8 + 2] > 0.0) as u8) << 2) + (((x[i * 8 + 3] > 0.0) as u8) << 3) + (((x[i * 8 + 4] > 0.0) as u8) << 4) + (((x[i * 8 + 5] > 0.0) as u8) << 5) + (((x[i * 8 + 6] > 0.0) as u8) << 6) + (((x[i * 8 + 7] > 0.0) as u8) << 7));
}
buf
hasher.finish()
}
fn main() -> Result<()> {
let args: CLIArguments = argh::from_env();
let mut rng = fastrand::Rng::new();
let mut latest_timestamp = DateTime::<Utc>::MIN_UTC;
let mut earliest_timestamp = DateTime::<Utc>::MAX_UTC;
let mut count = 0;
let mut deduped_count = 0;
let mut embeddings = Vec::new();
for x in args.embedding {
let (name, path) = x.split_once(':').unwrap();
let blob = std::fs::read(path).context("read embedding")?;
embeddings.push((name.to_string(), common::decode_fp16_buffer(&blob), Histogram::new(-1.0, 1.0, 512)));
}
// TODO ring of vecs probably has bad cache locality
let mut dedupe_ring: VecDeque<Vec<u8>> = VecDeque::with_capacity(2<<10);
let threshold = args.threshold.unwrap_or(3);
for path in args.paths {
fn reader_thread(paths: &Vec<String>, tx: SyncSender<ProcessedEntry>) -> Result<()> {
for path in paths {
let stream = zstd::stream::Decoder::new(fs::File::open(path).context("read dump file")?)?;
let mut stream = BufReader::new(stream);
loop {
let res: Result<ProcessedEntry, DecodeError> = rmp_serde::from_read(&mut stream);
if res.is_ok() {
count += 1;
}
match res {
Ok(x) => {
if args.sample.is_some() && rng.f32() > args.sample.unwrap() {
continue;
}
let timestamp = Utc.timestamp_opt(x.timestamp as i64, 0).unwrap();
let embedding = common::decode_fp16_buffer(&x.embedding);
latest_timestamp = latest_timestamp.max(timestamp);
earliest_timestamp = earliest_timestamp.min(timestamp);
if args.deduplicate {
let code = binarize(&embedding);
if dedupe_ring.len() == dedupe_ring.capacity() {
dedupe_ring.pop_front().unwrap();
}
let has_match = dedupe_ring.iter().any(|x| hamming::distance(x, &code) <= threshold);
dedupe_ring.push_back(code);
if has_match {
deduped_count += 1;
continue;
}
}
if args.print_records {
println!("{} {} https://reddit.com/r/{}/comments/{} {}", timestamp, x.title, x.subreddit, x.id, x.metadata.final_url);
}
if args.print_embeddings {
println!("https://mse.osmarks.net/?e={}", base64::engine::general_purpose::URL_SAFE.encode(&x.embedding));
}
for (_name, vec, histogram) in &mut embeddings {
let dot = dot(&embedding, vec);
histogram.add(dot);
}
},
Ok(x) => tx.send(x)?,
Err(DecodeError::InvalidDataRead(x)) | Err(DecodeError::InvalidMarkerRead(x)) if x.kind() == std::io::ErrorKind::UnexpectedEof => break,
Err(e) => return Err(e).context("decode fail")
}
}
}
Ok(())
}
const SHARD_SPILL: usize = 2;
const RECORD_PAD_SIZE: usize = 4096; // NVMe disk sector size
const D_EMB: u32 = 1152;
const EMPTY_LOOKUP: (u32, u64, u32) = (u32::MAX, 0, 0);
const KNN_K: usize = 30;
const BALANCE_WEIGHT: f64 = 0.2;
const BATCH_SIZE: usize = 128;
fn main() -> Result<()> {
let args: CLIArguments = argh::from_env();
let mut rng = fastrand::Rng::with_seed(args.seed.unwrap_or(0));
let mut latest_timestamp = DateTime::<Utc>::MIN_UTC;
let mut earliest_timestamp = DateTime::<Utc>::MAX_UTC;
let mut count = 0;
let mut deduped_count = 0;
// load specified embeddings from files
let mut embeddings = Vec::new();
for x in args.embedding {
let (name, snd) = x.split_once(':').unwrap();
let (path, threshold) = if let Some((path, threshold)) = snd.split_once(':') {
(path, Some(threshold.parse::<f32>().context("parse threshold")?))
} else {
(snd, None)
};
let blob = fs::read(path).context("read embedding")?;
embeddings.push((name.to_string(), common::decode_fp16_buffer(&blob), Histogram::new(-1.0, 1.0, 512), threshold));
}
let pq_codec = if let Some(pq_codec) = args.pq_codec {
let data = fs::read(pq_codec).context("read pq codec")?;
let pq_codec: ProductQuantizer = rmp_serde::from_read(&data[..]).context("decode pq codec")?;
Some(pq_codec)
} else {
None
};
// construct FAISS index over query vectors for kNNs
let (mut queries_index, max_query_id) = if let Some(queries_file) = args.queries {
println!("constructing index");
// not memory-efficient but this is small
let data = fs::read(queries_file).context("read queries file")?;
//let mut index = faiss::index_factory(D_EMB, "HNSW32,SQfp16", faiss::MetricType::InnerProduct)?;
let mut index = faiss::index_factory(D_EMB, "HNSW32,SQfp16", faiss::MetricType::InnerProduct)?;
//let mut index = faiss::index_factory(D_EMB, "IVF4096,SQfp16", faiss::MetricType::InnerProduct)?;
let unpacked = common::decode_fp16_buffer(&data);
index.train(&unpacked)?;
index.add(&unpacked)?;
println!("done");
(Some(index), unpacked.len() / D_EMB as usize)
} else {
(None, 0)
};
// if sufficient config to split index exists, set up output files
let mut shards_out = if let (Some(shards_dir), Some(centroids)) = (&args.shards_dir, &args.centroids) {
let mut shards = Vec::new();
let centroids_data = fs::read(centroids).context("read centroids file")?;
let mut centroids_data = common::decode_fp16_buffer(&centroids_data);
if let Some(clip) = args.clip_centroids {
centroids_data.truncate(clip * D_EMB as usize);
}
for i in 0..(centroids_data.len() / (D_EMB as usize)) {
let centroid = centroids_data[i * (D_EMB as usize)..(i + 1) * (D_EMB as usize)].to_vec();
let mut file = fs::File::create(PathBuf::from(shards_dir).join(format!("{}.shard.msgpack", i))).context("create shard file")?;
rmp_serde::encode::write(&mut file, &ShardInputHeader { id: i as u32, centroid: centroid.clone(), max_query_id })?;
shards.push((centroid, file, 0, i));
}
Some(shards)
} else {
None
};
// we can't fit all generated shards into RAM or they wouldn't be sharded anyway; keep file handles and locations lookup table
let (mut read_out_vertices, shard_specs) = if let (Some(shards_dir), Some(_index_output)) = (&args.shards_dir, &args.index_output) {
let mut original_ids_to_shards = Vec::new(); // locations in shard files of graph vertices: [(shard, offset, len)]
let mut shard_id_mappings = Vec::new();
let mut files = Vec::new();
let mut shard_specs = Vec::new();
// open shard files and build lookup from their header files
for file in fs::read_dir(shards_dir)? {
let file = file?;
let path = file.path();
let filename = path.file_name().unwrap().to_str().unwrap();
let (fst, snd) = filename.split_once(".").unwrap();
if snd == "shard-header.msgpack" {
let header: ShardHeader = rmp_serde::from_read(BufReader::new(fs::File::open(path)?))?;
if original_ids_to_shards.len() < (header.max as usize + 1) {
// probably somewhat inefficient, oh well
original_ids_to_shards.resize(header.max as usize + 1, [EMPTY_LOOKUP; SHARD_SPILL]);
}
for (i, &id) in header.mapping.iter().enumerate() {
let len = header.offsets[i + 1] - header.offsets[i]; // always valid, as we have a dummy entry at the end
let mut did_write = false;
// write location to next empty slot
//println!("{} {} {} {:?}", id, header.offsets[i], header.max, original_ids_to_shards[id as usize]);
for rec in original_ids_to_shards[id as usize].iter_mut() {
if *rec == EMPTY_LOOKUP {
*rec = (header.id, header.offsets[i], len as u32);
did_write = true;
break;
}
}
// each record should be in exactly SHARD_SPILL shards
if !did_write {
bail!("shard processing inconsistency");
}
}
shard_specs.push((header.centroid.clone(), header.mapping[header.medioid as usize]));
shard_id_mappings.push((header.id, header.mapping));
} else if snd == "shard.bin" {
let file = fs::File::open(&path).context("open shard file")?;
let id: u32 = str::parse(fst)?;
files.push((id, file));
}
}
files.sort_by_key(|(id, _)| *id);
shard_id_mappings.sort_by_key(|(id, _)| *id);
let read_out_vertices =move |id: u32| -> Result<(Vec<u32>, Vec<u32>)> {
let mut out_vertices: Vec<u32> = vec![];
let mut shards: Vec<u32> = vec![];
// look up each location in shard files
for &(shard, offset, len) in original_ids_to_shards[id as usize].iter() {
shards.push(shard);
let shard = shard as usize;
// this random access is almost certainly rather slow
// parallelize?
files[shard].1.seek(SeekFrom::Start(offset))?;
let mut buf = vec![0; len as usize];
files[shard].1.read_exact(&mut buf)?;
let s: &mut [u32] = bytemuck::cast_slice_mut(&mut *buf);
for within_shard_id in s.iter_mut() {
*within_shard_id = shard_id_mappings[shard].1[*within_shard_id as usize];
}
out_vertices.extend(s.iter().unique());
}
Ok((out_vertices, shards))
};
(Some(read_out_vertices), Some(shard_specs))
} else {
(None, None)
};
let mut index_output_file = if let Some(index_output) = &args.index_output {
let main_output = BufWriter::new(fs::File::create(PathBuf::from(index_output).join("index.bin")).context("create index file")?);
let pq_codes =BufWriter::new(fs::File::create(PathBuf::from(index_output).join("index.pq-codes.bin")).context("create index file")?);
Some((main_output, pq_codes))
} else {
None
};
let mut output_file = args.output_embeddings.map(|x| fs::File::create(x).context("create output file")).transpose()?;
let mut i: u64 = 0;
let mut dedupe_ring: VecDeque<u64> = VecDeque::with_capacity(2<<20);
let mut dedupe_hashset: HashSet<u64> = HashSet::with_capacity(2<<21);
let mut dedupe_url_ring: VecDeque<u64> = VecDeque::with_capacity(2<<20);
let mut dedupe_url_hashset: HashSet<u64> = HashSet::with_capacity(2<<21);
let (tx, rx) = sync_channel(1024);
let th = std::thread::spawn(move || reader_thread(&args.paths, tx));
let mut rng2 = rng.fork();
let initial_filter = |x: ProcessedEntry| {
i += 1;
if args.sample.is_some() && rng2.f32() > args.sample.unwrap() {
return None;
}
let timestamp = Utc.timestamp_opt(x.timestamp as i64, 0).unwrap();
let embedding = common::decode_fp16_buffer(&x.embedding);
latest_timestamp = latest_timestamp.max(timestamp);
earliest_timestamp = earliest_timestamp.min(timestamp);
for (_name, vec, histogram, threshold) in &mut embeddings {
let dot = SpatialSimilarity::dot(&embedding, vec).unwrap() as f32;
histogram.add(dot);
if let Some(threshold) = threshold {
if dot >= *threshold {
return None;
}
}
}
// distance thresholding is too costly to do over a long range so just do it badly
if args.deduplicate {
let code = binarize(&embedding);
let mut hasher = seahash::SeaHasher::new();
hasher.write(&x.metadata.final_url.as_bytes());
let url_code = hasher.finish();
if dedupe_ring.len() == dedupe_ring.capacity() {
dedupe_ring.pop_front().unwrap();
dedupe_url_ring.pop_front().unwrap();
}
dedupe_ring.push_back(code);
dedupe_url_ring.push_back(url_code);
if dedupe_hashset.insert(code) == false || dedupe_url_hashset.insert(url_code) == false {
deduped_count += 1;
return None;
}
}
if args.print_records {
println!("{} {} https://reddit.com/r/{}/comments/{} {}", timestamp, x.title, x.subreddit, x.id, x.metadata.final_url);
}
if args.original_url {
println!("{}", x.url);
}
if args.titles {
println!("{}", x.title);
}
if args.print_embeddings {
println!("https://mse.osmarks.net/?e={}", base64::engine::general_purpose::URL_SAFE.encode(&x.embedding));
}
Some((x, embedding))
};
let mut dead_count = 0;
let mut bal_count = 1;
for batch in &rx.iter().filter_map(initial_filter).chunks(BATCH_SIZE) {
let batch: Vec<_> = batch.collect();
let batch_len = batch.len();
for (x, _embedding) in batch.iter() {
if let Some(ref mut file) = output_file {
file.write_all(&x.embedding)?;
}
}
if let Some(shards) = &mut shards_out {
let mut knn_query = vec![];
for (_, embedding) in batch.iter() {
knn_query.extend(embedding);
}
let index = queries_index.as_mut().context("need queries")?;
let knn_result = index.search(&knn_query, KNN_K)?;
for (i, (x, embedding)) in batch.iter().enumerate() {
// closest matches first
shards.sort_by_cached_key(|&(ref centroid, _, shard_count, _shard_index)| {
let mut dot = SpatialSimilarity::dot(&centroid, &embedding).unwrap();
dot -= BALANCE_WEIGHT * (shard_count as f64 / bal_count as f64);
-scale_dot_result_f64(dot)
});
let entry = ShardedRecord {
id: count + i as u32,
vector: x.embedding.clone(),
query_knns: knn_result.labels[i * KNN_K..(i + 1)*KNN_K].into_iter().map(|x| x.get().unwrap() as u32).collect()
};
let data = rmp_serde::to_vec(&entry)?;
for (_, file, shard_count, _shard_index) in shards[0..SHARD_SPILL].iter_mut() {
file.write_all(&data)?;
*shard_count += 1;
}
bal_count += 1;
// it is possible that using the count which is updated at the end of the batch leads to confusing numerics issues
// also, this one starts at 1, so we avoid a division by zero on the first one
}
}
if let (Some(read_out_vertices), Some(index_output_file)) = (&mut read_out_vertices, &mut index_output_file) {
let quantizer = pq_codec.as_ref().unwrap();
let mut batch_embeddings = Vec::with_capacity(batch.len() * D_EMB as usize);
for (_x, embedding) in batch.iter() {
batch_embeddings.extend_from_slice(&embedding);
}
let codes = quantizer.quantize_batch(&batch_embeddings);
for (i, (x, _embedding)) in batch.into_iter().enumerate() {
let (vertices, shards) = read_out_vertices(count)?; // TODO: could parallelize this given the batching
let mut entry = PackedIndexEntry {
id: count + i as u32,
vertices,
vector: x.embedding.chunks_exact(2).map(|x| u16::from_le_bytes([x[0], x[1]])).collect(),
timestamp: x.timestamp,
dimensions: x.metadata.dimension,
score: 0.5, // TODO
url: x.metadata.final_url,
shards
};
let mut bytes = bitcode::encode(&entry);
if bytes.len() > (RECORD_PAD_SIZE - 2) {
// we do need the records to fit in a fixed size and can't really drop things, so discard URL so it can exist as a graph node only
entry.url = String::new();
bytes = bitcode::encode(&entry);
dead_count += 1;
}
let len = bytes.len() as u16;
bytes.resize(RECORD_PAD_SIZE - 2, 0);
index_output_file.0.write_all(&u16::to_le_bytes(len))?;
index_output_file.0.write_all(&bytes)?;
}
index_output_file.1.write_all(&codes)?;
}
count += batch_len as u32;
}
if args.print_aggregates {
println!("earliest={} latest={} count={} deduped={}", earliest_timestamp, latest_timestamp, count, deduped_count);
println!("earliest={} latest={} count={} read={} deduped={}", earliest_timestamp, latest_timestamp, count, i, deduped_count);
}
if let Some(histogram_path) = args.histograms {
let mut file = std::fs::File::create(histogram_path)?;
for (name, _, histogram) in &embeddings {
let mut file = fs::File::create(histogram_path)?;
for (name, _, histogram, _) in &embeddings {
let width = 800.0;
let padding = 40.0;
let bars_height = 300 as f64;
@ -195,5 +467,26 @@ fn main() -> Result<()> {
file.write_all(plot.into_string().as_bytes())?;
}
}
if let Some(index_output) = &args.index_output {
let mut file = fs::File::create(PathBuf::from(index_output).join("index.msgpack"))?;
let header = IndexHeader {
shards: shard_specs.unwrap(),
count: count as u32,
record_pad_size: RECORD_PAD_SIZE,
dead_count,
quantizer: pq_codec.unwrap()
};
file.write_all(rmp_serde::to_vec_named(&header)?.as_slice())?;
}
if let Some(shards) = &mut shards_out {
for (_centroid, _file, count, index) in shards.iter_mut() {
println!("shard {}: {} records", index, count);
}
}
th.join().unwrap()?;
Ok(())
}

133
src/generate_index_shard.rs Normal file
View File

@ -0,0 +1,133 @@
use anyhow::{Result, Context};
use itertools::Itertools;
use std::io::{BufReader, Write, BufWriter};
use rmp_serde::decode::Error as DecodeError;
use std::fs;
use diskann::{augment_bipartite, build_graph, project_bipartite, random_fill_graph, vector::{dot, VectorList}, IndexBuildConfig, IndexGraph, Timer};
use half::f16;
mod common;
use common::{ShardInputHeader, ShardedRecord, ShardHeader};
const D_EMB: usize = 1152;
fn main() -> Result<()> {
let mut rng = fastrand::Rng::new();
let mut stream = BufReader::new(fs::File::open(std::env::args().nth(1).unwrap()).context("read dump file")?);
let mut original_ids = vec![];
let mut vector_data = vec![];
let mut query_knns = vec![];
let header: ShardInputHeader = rmp_serde::from_read(&mut stream)?;
let centroid_fp16 = header.centroid.iter().map(|x| f16::from_f32(*x)).collect::<Vec<_>>();
{
let _timer = Timer::new("read shard");
loop {
let res: Result<ShardedRecord, DecodeError> = rmp_serde::from_read(&mut stream);
match res {
Ok(x) => {
original_ids.push(x.id);
vector_data.extend(bytemuck::cast_slice(&x.vector));
query_knns.push(x.query_knns);
},
Err(DecodeError::InvalidDataRead(x)) | Err(DecodeError::InvalidMarkerRead(x)) if x.kind() == std::io::ErrorKind::UnexpectedEof => break,
Err(e) => return Err(e).context("decode fail")
}
}
}
let mut config = IndexBuildConfig {
r: 64,
r_cap: 80,
l: 256,
maxc: 750,
alpha: 65536
};
let vecs = VectorList {
data: vector_data,
d_emb: D_EMB,
length: original_ids.len()
};
let mut graph = IndexGraph::empty(original_ids.len(), config.r_cap);
{
//let _timer = Timer::new("project bipartite");
//project_bipartite(&mut rng, &mut graph, &query_knns, &query_knns_bwd, config, &vecs);
}
{
let _timer = Timer::new("random fill");
random_fill_graph(&mut rng, &mut graph, config.r);
}
let medioid = vecs.iter().position_max_by_key(|&v| {
dot(v, &centroid_fp16)
}).unwrap() as u32;
{
let _timer = Timer::new("first pass");
build_graph(&mut rng, &mut graph, medioid, &vecs, config);
}
{
let _timer = Timer::new("second pass");
config.alpha = 80000;
build_graph(&mut rng, &mut graph, medioid, &vecs, config);
}
std::mem::drop(vecs);
let mut query_knns_bwd = vec![vec![]; header.max_query_id];
{
let _timer = Timer::new("compute backward edges");
for (record_id, knns) in query_knns.iter().enumerate() {
for &k in knns {
query_knns_bwd[k as usize].push(record_id as u32);
}
}
}
{
let _timer = Timer::new("augment bipartite");
augment_bipartite(&mut rng, &mut graph, query_knns, query_knns_bwd, config);
}
let len = original_ids.len();
{
let _timer = Timer::new("write shard");
let mut graph_data = BufWriter::new(fs::File::create(&format!("{}.shard.bin", header.id))?);
let mut offsets = Vec::with_capacity(original_ids.len());
let mut offset = 0;
for out_neighbours in graph.graph.iter() {
let out_neighbours = out_neighbours.read().unwrap();
offsets.push(offset);
let s: &[u8] = bytemuck::cast_slice(&*out_neighbours);
offset += s.len() as u64;
graph_data.write_all(s)?;
}
offsets.push(offset); // dummy entry for convenience
let mut header_f = fs::File::create(&format!("{}.shard-header.msgpack", header.id))?;
header_f.write_all(&rmp_serde::to_vec(&ShardHeader {
id: header.id,
max: *original_ids.iter().max().unwrap(),
centroid: header.centroid,
medioid,
offsets,
mapping: original_ids
})?)?;
}
println!("{} vectors", len);
Ok(())
}

View File

@ -15,4 +15,9 @@ output, input, *xs = sys.argv[1:]
with open(output, "wb") as f:
with open(input, "rb") as g:
input_data = g.read()
f.write(get_embedding({"images": [input_data]})[0])
if not xs:
result = get_embedding({"images": [input_data]})[0]
else:
result = get_embedding({"text": xs})[0]
f.write(result)
print(base64.urlsafe_b64encode(result).decode("ascii"))

173
src/query_disk_index.rs Normal file
View File

@ -0,0 +1,173 @@
use anyhow::{bail, Context, Result};
use diskann::vector::scale_dot_result_f64;
use serde::{Serialize, Deserialize};
use std::io::{BufReader, Read, Seek, SeekFrom, Write};
use std::path::PathBuf;
use std::fs;
use base64::Engine;
use argh::FromArgs;
use chrono::{TimeZone, Utc, DateTime};
use std::collections::VecDeque;
use itertools::Itertools;
use foldhash::{HashSet, HashSetExt};
use half::f16;
use diskann::{NeighbourBuffer, vector::{fast_dot_noprefetch, ProductQuantizer, DistanceLUT, scale_dot_result}};
use simsimd::SpatialSimilarity;
use memmap2::{Mmap, MmapOptions};
mod common;
use common::{PackedIndexEntry, IndexHeader};
#[derive(FromArgs)]
#[argh(description="Query disk index")]
struct CLIArguments {
#[argh(positional)]
query_vector: String,
#[argh(positional)]
index_path: String
}
fn read_node(id: u32, data_file: &mut fs::File, header: &IndexHeader) -> Result<PackedIndexEntry> {
let offset = id as usize * header.record_pad_size;
data_file.seek(SeekFrom::Start(offset as u64))?;
let mut buf = vec![0; header.record_pad_size as usize];
data_file.read_exact(&mut buf)?;
let len = u16::from_le_bytes(buf[0..2].try_into().unwrap()) as usize;
Ok(bitcode::decode(&buf[2..len+2])?)
}
fn read_pq_codes(id: u32, codes: &Mmap, buf: &mut Vec<u8>, pq_code_size: usize) {
let loc = (id as usize) * pq_code_size;
buf.extend(&codes[loc..loc+pq_code_size])
}
struct Scratch {
visited: HashSet<u32>,
neighbour_buffer: NeighbourBuffer,
neighbour_pre_buffer: Vec<u32>,
visited_list: Vec<(u32, i64, String, Vec<u32>)>
}
struct IndexRef<'a> {
data_file: &'a mut fs::File,
pq_codes: &'a Mmap,
header: &'a IndexHeader,
pq_code_size: usize
}
fn greedy_search(scratch: &mut Scratch, start: u32, query: &[f16], query_preprocessed: &DistanceLUT, index: IndexRef) -> Result<(usize, usize)> {
scratch.visited.clear();
scratch.neighbour_buffer.clear();
scratch.visited_list.clear();
let mut cmps = 0;
let mut pq_cmps = 0;
let node = read_node(start, index.data_file, index.header)?;
let vector = bytemuck::cast_slice(&node.vector);
scratch.neighbour_buffer.insert(start, fast_dot_noprefetch(query, &vector));
scratch.visited.insert(start);
while let Some(pt) = scratch.neighbour_buffer.next_unvisited() {
//println!("pt {} {:?}", pt, graph.out_neighbours(pt));
scratch.neighbour_pre_buffer.clear();
let node = read_node(pt, index.data_file, index.header)?;
let vector = bytemuck::cast_slice(&node.vector);
let distance = fast_dot_noprefetch(query, &vector);
cmps += 1;
scratch.visited_list.push((pt, distance, node.url, node.shards));
for &neighbour in node.vertices.iter() {
if scratch.visited.insert(neighbour) {
scratch.neighbour_pre_buffer.push(neighbour);
}
}
let mut pq_codes = Vec::with_capacity(index.pq_code_size * scratch.neighbour_pre_buffer.len());
for &neighbour in scratch.neighbour_pre_buffer.iter() {
read_pq_codes(neighbour, index.pq_codes, &mut pq_codes, index.pq_code_size);
}
let approx_scores = index.header.quantizer.asymmetric_dot_product(&query_preprocessed, &pq_codes);
for (i, &neighbour) in scratch.neighbour_pre_buffer.iter().enumerate() {
//let next_neighbour = scratch.neighbour_pre_buffer[(i + 1) % scratch.neighbour_pre_buffer.len()]; // TODO
//let node = read_node(neighbour, index.data_file, index.header)?;
//let vector = bytemuck::cast_slice(&node.vector);
//let distance = fast_dot_noprefetch(query, &vector);
pq_cmps += 1;
scratch.neighbour_buffer.insert(neighbour, approx_scores[i]);
//scratch.neighbour_buffer.insert(neighbour, distance);
}
}
Ok((cmps, pq_cmps))
}
fn main() -> Result<()> {
let args: CLIArguments = argh::from_env();
let query_vector: Vec<f16> = common::chunk_fp16_buffer(&base64::engine::general_purpose::URL_SAFE_NO_PAD.decode(args.query_vector.as_bytes()).context("invalid base64")?);
let query_vector_fp32 = query_vector.iter().map(|x| x.to_f32()).collect::<Vec<f32>>();
let index_path = PathBuf::from(&args.index_path);
let header: IndexHeader = rmp_serde::from_read(BufReader::new(fs::File::open(index_path.join("index.msgpack"))?))?;
let mut data_file = fs::File::open(index_path.join("index.bin"))?;
let pq_codes_file = fs::File::open(index_path.join("index.pq-codes.bin"))?;
let pq_codes = unsafe {
// This is unsafe because other processes could in principle edit the mmap'd file.
// It would be annoying to do anything about this possibility, so ignore it.
MmapOptions::new().populate().map(&pq_codes_file)?
};
let query_preprocessed = header.quantizer.preprocess_query(&query_vector_fp32);
println!("{} items {} dead {} shards", header.count, header.dead_count, header.shards.len());
// TODO slightly dubious
let selected_shard = header.shards.iter().position_max_by_key(|x| {
scale_dot_result_f64(SpatialSimilarity::dot(&x.0, &query_vector_fp32).unwrap())
}).unwrap();
println!("best shard is {}", selected_shard);
for shard in 0..header.shards.len() {
let selected_start = header.shards[shard].1;
let mut scratch = Scratch {
visited: HashSet::new(),
neighbour_buffer: NeighbourBuffer::new(5000),
neighbour_pre_buffer: Vec::new(),
visited_list: Vec::new()
};
//let query_vector = diskann::vector::quantize(&query_vector, &header.quantizer, &mut rng);
let cmps = greedy_search(&mut scratch, selected_start, &query_vector, &query_preprocessed, IndexRef {
data_file: &mut data_file,
header: &header,
pq_codes: &pq_codes,
pq_code_size: header.quantizer.n_dims / header.quantizer.n_dims_per_code,
})?;
println!("index scan {}: {:?} cmps", shard, cmps);
scratch.visited_list.sort_by_key(|x| -x.1);
for (id, distance, url, shards) in scratch.visited_list.iter().take(20) {
println!("index scan: {} {} {} {:?}", id, distance, url, shards);
}
println!("");
}
let mut matches = vec![];
// brute force scan
for i in 0..header.count {
let node = read_node(i, &mut data_file, &header)?;
//println!("{} {}", i, node.url);
let vector = bytemuck::cast_slice(&node.vector);
matches.push((i, fast_dot_noprefetch(&query_vector, &vector), node.url, node.shards));
}
matches.sort_by_key(|x| -x.1);
for (id, distance, url, shards) in matches.iter().take(20) {
println!("brute force: {} {} {} {:?}", id, distance, url, shards);
}
Ok(())
}

View File

@ -19,7 +19,7 @@ static GLOBAL: MiMalloc = MiMalloc;
mod common;
use crate::common::{get_backend_config, query_clip_server, EmbeddingRequest};
use crate::common::{get_backend_config, query_clip_server, EmbeddingRequest, OriginalImageMetadata, ProcessedEntry};
fn function_which_returns_some_na() -> Option<String> { Some(String::from("na")) }
@ -27,14 +27,16 @@ fn function_which_returns_some_na() -> Option<String> { Some(String::from("na"))
#[serde(untagged)]
enum BadTimestampFormat {
Int(u64),
String(String)
String(String),
Float(f64) // *what* are they doing?
}
impl BadTimestampFormat {
fn to_u64(&self) -> Result<u64> {
match self {
BadTimestampFormat::Int(x) => Ok(*x),
BadTimestampFormat::String(x) => u64::from_str(&x).context("invalid string")
BadTimestampFormat::String(x) => u64::from_str(&x).context("invalid string"),
BadTimestampFormat::Float(x) => Ok(*x as u64)
}
}
}
@ -53,31 +55,9 @@ struct Entry {
id: String
}
#[derive(Clone, Deserialize, Serialize, Debug, PartialEq)]
struct OriginalImageMetadata {
mime_type: String,
original_file_size: usize,
dimension: (u32, u32),
final_url: String
}
#[derive(Clone, Deserialize, Serialize, Debug)]
struct ProcessedEntry {
url: String,
id: String,
title: String,
subreddit: String,
author: String,
timestamp: u64,
#[serde(with = "serde_bytes")]
embedding: Vec<u8>,
metadata: OriginalImageMetadata
}
lazy_static! {
// we do exclude galleries doing this but there don't seem to be any in the dataset
static ref URL_IGNORE: RegexSet = RegexSet::new([
r"//reddit\.com",
r"//reddit\.com/[^g]",
r"\.html?",
r"\.php",
r"\?articleid=",
@ -85,7 +65,7 @@ lazy_static! {
r"\.xml",
r"/rss/",
r"//vimeo\.com",
r"//www\.reddit\.com",
r"//www\.reddit\.com/[^g]",
r"//v\.redd\.it",
r"\.gifv$",
r"youtube\.com/user/"
@ -113,6 +93,7 @@ lazy_static! {
"/media",
r"youtu\.be",
r"youtube\.com",
"reddit.com/gallery/"
]).case_insensitive(true).build().unwrap();
static ref ACCEPTABLE_FILETYPES: HashSet<&'static str> = ["image/png", "image/webp", "image/avif", "image/jpeg", "image/gif", "image/webp", "image/apng", "image/bmp", "image/tiff"]
.into_iter().collect();
@ -139,6 +120,7 @@ lazy_static! {
static ref HTML_EXTRACTION_RULES: Vec<(Regex, Regex)> = [
(r"//imgur\.com/a/[A-Za-z0-9]+", r#"<meta name="twitter:image" data-react-helmet="true" content="([^"]+)">"#),
(r"//imgur\.com/gallery/[A-Za-z0-9]+", r#"<meta name="twitter:image" data-react-helmet="true" content="([^"]+)">"#),
(r"reddit.com/gallery/[A-Za-z0-9_-]+", r#"<li style="left:0px" class="_28TEYBuEdOuE3kN6UyoKMa"><figure class="_3BxRNDoASi9FbGX01ewiLg _3o5Vzct5tn9PE7e-emdDmf"><a href="([^"]+)" rel="noopener noreferrer" target="_blank""#) // lazy Reddit gallery extraction; hopefully they don't change the HTML
].into_iter().map(|(r, e)| (Regex::new(r).unwrap(), Regex::new(e).unwrap())).collect();
static ref IMAGES_FETCHED_COUNTER: IntCounter = register_int_counter!("mse_scrape_images_fetched", "images fetched").unwrap();
@ -181,10 +163,7 @@ fn process_file(path: PathBuf, tx: mpsc::Sender<Entry>, timestamp_threshold: Opt
// Technically this is slightly wrong because we reorder images slightly, but as long as it is not restarted all the time this is "fine".
let after_threshold = match timestamp_threshold {
Some(threshold) => {
let timestamp = match &entry.created_utc {
BadTimestampFormat::Int(x) => *x,
BadTimestampFormat::String(s) => u64::from_str(s).unwrap()
};
let timestamp = entry.created_utc.to_u64().unwrap();
timestamp > threshold
},
None => true
@ -219,7 +198,7 @@ struct Config {
async fn fetch_file(client: reqwest::Client, config: Arc<Config>, url: &str) -> Result<(Vec<u8>, String, String)> {
let mut url = url.to_string();
for (regex, replacement) in URL_REPLACEMENT_RULES.iter() {
url = regex.replace(&url, *replacement).to_string();
url = regex.replace_all(&url, *replacement).to_string();
}
let mut html_extract_rule = None;
@ -233,7 +212,7 @@ async fn fetch_file(client: reqwest::Client, config: Arc<Config>, url: &str) ->
let mut response = client.get(&*url).send().await?;
let content_type = std::str::from_utf8(&response.headers().get(reqwest::header::CONTENT_TYPE).context("no content type")?.as_bytes())?.to_owned();
if !(ACCEPTABLE_FILETYPES.contains(&content_type[..]) || (html_extract_rule.is_some() && content_type == "text/html")) {
if !(ACCEPTABLE_FILETYPES.contains(&content_type[..]) || (html_extract_rule.is_some() && content_type.starts_with("text/html"))) {
return Err(anyhow!("invalid Content-Type"));
}
match response.content_length() {
@ -255,7 +234,7 @@ async fn fetch_file(client: reqwest::Client, config: Arc<Config>, url: &str) ->
return Err(anyhow!("discarded"));
}
if let Some(extract_rule) = html_extract_rule {
if content_type == "text/html" {
if content_type.starts_with("text/html") {
let buffer = String::from_utf8_lossy(&buffer).to_string();
if let Some(mat) = extract_rule.captures(&buffer) {
let new_url = mat.get(1).unwrap().as_str();
@ -344,11 +323,11 @@ async fn main() -> Result<()> {
let config = Arc::new(Config {
max_content_length: 1<<24,
input: String::from("./reddit_subs_202212/"),
input: String::from("/srv/scratch/reddit_subs_202312/"),
output: String::from("."),
backend: String::from("http://localhost:1708"),
mode: OperatingMode::FullRun,
filename_threshold: Some(String::from("RS_2019-07.zst")),
filename_threshold: None,
metrics_addr: String::from("0.0.0.0:9914"),
contact_info: String::from("scraping-ops@osmarks.net"),
discard_hashes: [4168519401919155623, 4577010157274124110].into_iter().collect()