1
0
mirror of https://github.com/osmarks/meme-search-engine.git synced 2025-01-08 00:10:31 +00:00
meme-search-engine/meme-rater/auroc_test.py

69 lines
1.8 KiB
Python
Raw Normal View History

2024-04-22 12:43:06 +00:00
import torch.nn
import torch.nn.functional as F
import torch
import sqlite3
import random
import numpy
import json
import time
from tqdm import tqdm
import torch
from model import Config, BradleyTerry
import shared
batch_size = 128
device = "cuda"
config = Config(
d_emb=1152,
n_hidden=1,
n_ensemble=16,
device=device,
dtype=torch.float32,
dropout=0.1
)
model = BradleyTerry(config).float()
modelc, _ = shared.checkpoint_for(1500)
model.load_state_dict(torch.load(modelc))
params = sum(p.numel() for p in model.parameters())
print(f"{params/1e6:.1f}M parameters")
print(model)
files = shared.fetch_all_files()
ratings = {}
model.eval()
with torch.inference_mode():
for bstart in tqdm(range(0, len(files), batch_size)):
batch = files[bstart:bstart + batch_size]
filenames = [ filename for filename, embedding in batch ]
embs = torch.stack([ torch.Tensor(embedding) for filename, embedding in batch ])
inputs = embs.unsqueeze(0).expand((config.n_ensemble, len(batch), config.d_emb)).to(device)
scores = model.ensemble(inputs).float()
mscores = torch.median(scores, dim=0).values
for filename, mscore in zip(filenames, mscores):
ratings[filename] = float(mscore)
ratings = sorted(ratings.items(), key=lambda x: x[1])
random.shuffle(ratings)
N = 150
buf = f"""<!DOCTYPE html>
<div>
{''.join(f'<div><img src="{"images/" + f}" width="30%"><br><input type=checkbox data-score="{s}"></div>' for i, (f, s) in enumerate(ratings[:N]))}
</div>
<script>
const dump = () => {{
const data = []
for (const x of document.querySelectorAll("input[type=checkbox]")) {{
data.push([parseFloat(x.getAttribute("data-score")), x.checked])
}}
console.log(JSON.stringify(data))
}}
</script>
"""
with open("eval.html", "w") as f:
f.write(buf)