mirror of
https://github.com/osmarks/meme-search-engine.git
synced 2024-11-10 22:09:54 +00:00
52 lines
1.7 KiB
Python
52 lines
1.7 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from dataclasses import dataclass
|
||
|
from functools import partial
|
||
|
import math
|
||
|
|
||
|
@dataclass
|
||
|
class Config:
|
||
|
d_emb: int
|
||
|
n_hidden: int
|
||
|
n_ensemble: int
|
||
|
device: str
|
||
|
dtype: torch.dtype
|
||
|
dropout: float
|
||
|
|
||
|
class Model(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.hidden = nn.ModuleList([ nn.Linear(config.d_emb, config.d_emb, dtype=config.dtype, device=config.device) for _ in range(config.n_hidden) ])
|
||
|
self.dropout = nn.ModuleList([ nn.Dropout(p=config.dropout) for _ in range(config.n_hidden) ])
|
||
|
self.output = nn.Linear(config.d_emb, 1, dtype=config.dtype, device=config.device)
|
||
|
|
||
|
def forward(self, embs):
|
||
|
x = embs
|
||
|
for (layer, dropout) in zip(self.hidden, self.dropout):
|
||
|
x = F.silu(layer(dropout(x)))
|
||
|
return self.output(x)
|
||
|
|
||
|
class Ensemble(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.models = nn.ModuleList([ Model(config) for i in range(config.n_ensemble) ])
|
||
|
|
||
|
# model batch
|
||
|
def forward(self, embs):
|
||
|
xs = torch.stack([ x(embs[i]) for i, x in enumerate(self.models) ]) # model batch output_dim=1
|
||
|
return xs.squeeze(-1)
|
||
|
|
||
|
class BradleyTerry(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.ensemble = Ensemble(config)
|
||
|
|
||
|
def forward(self, embs): # model batch input=2 d_emb
|
||
|
scores1 = self.ensemble(embs[:, :, 0]).float() # model batch
|
||
|
scores2 = self.ensemble(embs[:, :, 1]).float()
|
||
|
# win probabilities
|
||
|
#print(scores1, scores2)
|
||
|
probs = torch.sigmoid(scores1 - scores2) # model batch
|
||
|
#print(probs)
|
||
|
return probs
|