1
0
mirror of https://github.com/kepler155c/opus synced 2025-10-25 04:37:40 +00:00

proxy + pathfinding optimization

This commit is contained in:
kepler155c@gmail.com
2017-10-26 18:56:55 -04:00
parent 7fd93e8a8b
commit cac15722b8
15 changed files with 174 additions and 1271 deletions

View File

@@ -1,105 +0,0 @@
-- Various assertion function for API methods argument-checking
if (...) then
-- Dependancies
local _PATH = (...):gsub('%.core.assert$','')
local Utils = require (_PATH .. '.core.utils')
-- Local references
local lua_type = type
local floor = math.floor
local concat = table.concat
local next = next
local pairs = pairs
local getmetatable = getmetatable
-- Is I an integer ?
local function isInteger(i)
return lua_type(i) ==('number') and (floor(i)==i)
end
-- Override lua_type to return integers
local function type(v)
return isInteger(v) and 'int' or lua_type(v)
end
-- Does the given array contents match a predicate type ?
local function arrayContentsMatch(t,...)
local n_count = Utils.arraySize(t)
if n_count < 1 then return false end
local init_count = t[0] and 0 or 1
local n_count = (t[0] and n_count-1 or n_count)
local types = {...}
if types then types = concat(types) end
for i=init_count,n_count,1 do
if not t[i] then return false end
if types then
if not types:match(type(t[i])) then return false end
end
end
return true
end
-- Checks if arg is a valid array map
local function isMap(m)
if not arrayContentsMatch(m, 'table') then return false end
local lsize = Utils.arraySize(m[next(m)])
for k,v in pairs(m) do
if not arrayContentsMatch(m[k], 'string', 'int') then return false end
if Utils.arraySize(v)~=lsize then return false end
end
return true
end
-- Checks if s is a valid string map
local function isStringMap(s)
if lua_type(s) ~= 'string' then return false end
local w
for row in s:gmatch('[^\n\r]+') do
if not row then return false end
w = w or #row
if w ~= #row then return false end
end
return true
end
-- Does instance derive straight from class
local function derives(instance, class)
return getmetatable(instance) == class
end
-- Does instance inherits from class
local function inherits(instance, class)
return (getmetatable(getmetatable(instance)) == class)
end
-- Is arg a boolean
local function isBoolean(b)
return (b==true or b==false)
end
-- Is arg nil ?
local function isNil(n)
return (n==nil)
end
local function matchType(value, types)
return types:match(type(value))
end
return {
arrayContentsMatch = arrayContentsMatch,
derives = derives,
inherits = inherits,
isInteger = isInteger,
isBool = isBoolean,
isMap = isMap,
isStrMap = isStringMap,
isOutOfRange = isOutOfRange,
isNil = isNil,
type = type,
matchType = matchType
}
end

View File

@@ -1,98 +0,0 @@
--- Heuristic functions for search algorithms.
-- A <a href="http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html">distance heuristic</a>
-- provides an *estimate of the optimal distance cost* from a given location to a target.
-- As such, it guides the pathfinder to the goal, helping it to decide which route is the best.
--
-- This script holds the definition of some built-in heuristics available through jumper.
--
-- Distance functions are internally used by the `pathfinder` to evaluate the optimal path
-- from the start location to the goal. These functions share the same prototype:
-- local function myHeuristic(nodeA, nodeB)
-- -- function body
-- end
-- Jumper features some built-in distance heuristics, namely `MANHATTAN`, `EUCLIDIAN`, `DIAGONAL`, `CARDINTCARD`.
-- You can also supply your own heuristic function, following the same template as above.
local abs = math.abs
local sqrt = math.sqrt
local sqrt2 = sqrt(2)
local max, min = math.max, math.min
local Heuristics = {}
--- Manhattan distance.
-- <br/>This heuristic is the default one being used by the `pathfinder` object.
-- <br/>Evaluates as <code>distance = |dx|+|dy|</code>
-- @class function
-- @tparam node nodeA a node
-- @tparam node nodeB another node
-- @treturn number the distance from __nodeA__ to __nodeB__
-- @usage
-- -- First method
-- pathfinder:setHeuristic('MANHATTAN')
-- -- Second method
-- local Distance = require ('jumper.core.heuristics')
-- pathfinder:setHeuristic(Distance.MANHATTAN)
function Heuristics.MANHATTAN(nodeA, nodeB)
local dx = abs(nodeA._x - nodeB._x)
local dy = abs(nodeA._y - nodeB._y)
local dz = abs(nodeA._z - nodeB._z)
return (dx + dy + dz)
end
--- Euclidian distance.
-- <br/>Evaluates as <code>distance = squareRoot(dx*dx+dy*dy)</code>
-- @class function
-- @tparam node nodeA a node
-- @tparam node nodeB another node
-- @treturn number the distance from __nodeA__ to __nodeB__
-- @usage
-- -- First method
-- pathfinder:setHeuristic('EUCLIDIAN')
-- -- Second method
-- local Distance = require ('jumper.core.heuristics')
-- pathfinder:setHeuristic(Distance.EUCLIDIAN)
function Heuristics.EUCLIDIAN(nodeA, nodeB)
local dx = nodeA._x - nodeB._x
local dy = nodeA._y - nodeB._y
local dz = nodeA._z - nodeB._z
return sqrt(dx*dx+dy*dy+dz*dz)
end
--- Diagonal distance.
-- <br/>Evaluates as <code>distance = max(|dx|, abs|dy|)</code>
-- @class function
-- @tparam node nodeA a node
-- @tparam node nodeB another node
-- @treturn number the distance from __nodeA__ to __nodeB__
-- @usage
-- -- First method
-- pathfinder:setHeuristic('DIAGONAL')
-- -- Second method
-- local Distance = require ('jumper.core.heuristics')
-- pathfinder:setHeuristic(Distance.DIAGONAL)
function Heuristics.DIAGONAL(nodeA, nodeB)
local dx = abs(nodeA._x - nodeB._x)
local dy = abs(nodeA._y - nodeB._y)
return max(dx,dy)
end
--- Cardinal/Intercardinal distance.
-- <br/>Evaluates as <code>distance = min(dx, dy)*squareRoot(2) + max(dx, dy) - min(dx, dy)</code>
-- @class function
-- @tparam node nodeA a node
-- @tparam node nodeB another node
-- @treturn number the distance from __nodeA__ to __nodeB__
-- @usage
-- -- First method
-- pathfinder:setHeuristic('CARDINTCARD')
-- -- Second method
-- local Distance = require ('jumper.core.heuristics')
-- pathfinder:setHeuristic(Distance.CARDINTCARD)
function Heuristics.CARDINTCARD(nodeA, nodeB)
local dx = abs(nodeA._x - nodeB._x)
local dy = abs(nodeA._y - nodeB._y)
return min(dx,dy) * sqrt2 + max(dx,dy) - min(dx,dy)
end
return Heuristics

View File

@@ -1,32 +0,0 @@
local addNode(self, node, nextNode, ed)
if not self._pathDB[node] then self._pathDB[node] = {} end
self._pathDB[node][ed] = (nextNode == ed and node or nextNode)
end
-- Path lookupTable
local lookupTable = {}
lookupTable.__index = lookupTable
function lookupTable:new()
local lut = {_pathDB = {}}
return setmetatable(lut, lookupTable)
end
function lookupTable:addPath(path)
local st, ed = path._nodes[1], path._nodes[#path._nodes]
for node, count in path:nodes() do
local nextNode = path._nodes[count+1]
if nextNode then addNode(self, node, nextNode, ed) end
end
end
function lookupTable:hasPath(nodeA, nodeB)
local found
found = self._pathDB[nodeA] and self._path[nodeA][nodeB]
if found then return true, true end
found = self._pathDB[nodeB] and self._path[nodeB][nodeA]
if found then return true, false end
return false
end
return lookupTable

View File

@@ -4,14 +4,12 @@
-- and then cached within the `grid`.
--
-- In the following implementation, nodes can be compared using the `<` operator. The comparison is
-- made with regards of their `f` cost. From a given node being examined, the `pathfinder` will expand the search
-- made with regards of their `f` cost. From a given node being examined, the `pathfinder` will expand the search
-- to the next neighbouring node having the lowest `f` cost. See `core.bheap` for more details.
--
--
if (...) then
local assert = assert
--- The `Node` class.<br/>
-- This class is callable.
-- Therefore,_ <code>Node(...)</code> _acts as a shortcut to_ <code>Node:new(...)</code>.
@@ -26,7 +24,7 @@ if (...) then
-- @treturn node a new `node`
-- @usage local node = Node(3,4)
function Node:new(x,y,z)
return setmetatable({_x = x, _y = y, _z = z, _clearance = {}}, Node)
return setmetatable({_x = x, _y = y, _z = z }, Node)
end
-- Enables the use of operator '<' to compare nodes.
@@ -36,48 +34,24 @@ if (...) then
--- Returns x-coordinate of a `node`
-- @class function
-- @treturn number the x-coordinate of the `node`
-- @usage local x = node:getX()
-- @usage local x = node:getX()
function Node:getX() return self._x end
--- Returns y-coordinate of a `node`
-- @class function
-- @treturn number the y-coordinate of the `node`
-- @usage local y = node:getY()
-- @treturn number the y-coordinate of the `node`
-- @usage local y = node:getY()
function Node:getY() return self._y end
function Node:getZ() return self._z end
--- Returns x and y coordinates of a `node`
-- @class function
-- @treturn number the x-coordinate of the `node`
-- @treturn number the y-coordinate of the `node`
-- @usage local x, y = node:getPos()
-- @usage local x, y = node:getPos()
function Node:getPos() return self._x, self._y, self._z end
--- Returns the amount of true [clearance](http://aigamedev.com/open/tutorial/clearance-based-pathfinding/#TheTrueClearanceMetric)
-- for a given `node`
-- @class function
-- @tparam string|int|func walkable the value for walkable locations in the collision map array.
-- @treturn int the clearance of the `node`
-- @usage
-- -- Assuming walkable was 0
-- local clearance = node:getClearance(0)
function Node:getClearance(walkable)
return self._clearance[walkable]
end
--- Removes the clearance value for a given walkable.
-- @class function
-- @tparam string|int|func walkable the value for walkable locations in the collision map array.
-- @treturn node self (the calling `node` itself, can be chained)
-- @usage
-- -- Assuming walkable is defined
-- node:removeClearance(walkable)
function Node:removeClearance(walkable)
self._clearance[walkable] = nil
return self
end
--- Clears temporary cached attributes of a `node`.
-- Deletes the attributes cached within a given node after a pathfinding call.
-- This function is internally used by the search algorithms, so you should not use it explicitely.
@@ -91,10 +65,10 @@ if (...) then
self._opened, self._closed, self._parent = nil, nil, nil
return self
end
return setmetatable(Node,
{__call = function(self,...)
return Node:new(...)
{__call = function(_,...)
return Node:new(...)
end}
)
end

View File

@@ -6,17 +6,7 @@
-- It should normally not be used explicitely, yet it remains fully accessible.
--
if (...) then
-- Dependencies
local _PATH = (...):match('(.+)%.path$')
local Heuristic = require (_PATH .. '.heuristics')
-- Local references
local abs, max = math.abs, math.max
local t_insert, t_remove = table.insert, table.remove
--- The `Path` class.<br/>
-- This class is callable.
-- Therefore, <em><code>Path(...)</code></em> acts as a shortcut to <em><code>Path:new(...)</code></em>.
@@ -42,8 +32,8 @@ if (...) then
-- for node, count in p:iter() do
-- ...
-- end
function Path:iter()
local i,pathLen = 1,#self._nodes
function Path:nodes()
local i = 1
return function()
if self._nodes[i] then
i = i+1
@@ -51,150 +41,9 @@ if (...) then
end
end
end
--- Iterates on each single `node` along a `path`. At each step of iteration,
-- returns a `node` plus a count value. Alias for @{Path:iter}
-- @class function
-- @name Path:nodes
-- @treturn node a `node`
-- @treturn int the count for the number of nodes
-- @see Path:iter
-- @usage
-- for node, count in p:nodes() do
-- ...
-- end
Path.nodes = Path.iter
--- Evaluates the `path` length
-- @class function
-- @treturn number the `path` length
-- @usage local len = p:getLength()
function Path:getLength()
local len = 0
for i = 2,#self._nodes do
len = len + Heuristic.EUCLIDIAN(self._nodes[i], self._nodes[i-1])
end
return len
end
--- Counts the number of steps.
-- Returns the number of waypoints (nodes) in the current path.
-- @class function
-- @tparam node node a node to be added to the path
-- @tparam[opt] int index the index at which the node will be inserted. If omitted, the node will be appended after the last node in the path.
-- @treturn path self (the calling `path` itself, can be chained)
-- @usage local nSteps = p:countSteps()
function Path:addNode(node, index)
index = index or #self._nodes+1
t_insert(self._nodes, index, node)
return self
end
--- `Path` filling modifier. Interpolates between non contiguous nodes along a `path`
-- to build a fully continuous `path`. This maybe useful when using search algorithms such as Jump Point Search.
-- Does the opposite of @{Path:filter}
-- @class function
-- @treturn path self (the calling `path` itself, can be chained)
-- @see Path:filter
-- @usage p:fill()
function Path:fill()
local i = 2
local xi,yi,dx,dy
local N = #self._nodes
local incrX, incrY
while true do
xi,yi = self._nodes[i]._x,self._nodes[i]._y
dx,dy = xi-self._nodes[i-1]._x,yi-self._nodes[i-1]._y
if (abs(dx) > 1 or abs(dy) > 1) then
incrX = dx/max(abs(dx),1)
incrY = dy/max(abs(dy),1)
t_insert(self._nodes, i, self._grid:getNodeAt(self._nodes[i-1]._x + incrX, self._nodes[i-1]._y +incrY))
N = N+1
else i=i+1
end
if i>N then break end
end
return self
end
--- `Path` compression modifier. Given a `path`, eliminates useless nodes to return a lighter `path`
-- consisting of straight moves. Does the opposite of @{Path:fill}
-- @class function
-- @treturn path self (the calling `path` itself, can be chained)
-- @see Path:fill
-- @usage p:filter()
function Path:filter()
local i = 2
local xi,yi,dx,dy, olddx, olddy
xi,yi = self._nodes[i]._x, self._nodes[i]._y
dx, dy = xi - self._nodes[i-1]._x, yi-self._nodes[i-1]._y
while true do
olddx, olddy = dx, dy
if self._nodes[i+1] then
i = i+1
xi, yi = self._nodes[i]._x, self._nodes[i]._y
dx, dy = xi - self._nodes[i-1]._x, yi - self._nodes[i-1]._y
if olddx == dx and olddy == dy then
t_remove(self._nodes, i-1)
i = i - 1
end
else break end
end
return self
end
--- Clones a `path`.
-- @class function
-- @treturn path a `path`
-- @usage local p = path:clone()
function Path:clone()
local p = Path:new()
for node in self:nodes() do p:addNode(node) end
return p
end
--- Checks if a `path` is equal to another. It also supports *filtered paths* (see @{Path:filter}).
-- @class function
-- @tparam path p2 a path
-- @treturn boolean a boolean
-- @usage print(myPath:isEqualTo(anotherPath))
function Path:isEqualTo(p2)
local p1 = self:clone():filter()
local p2 = p2:clone():filter()
for node, count in p1:nodes() do
if not p2._nodes[count] then return false end
local n = p2._nodes[count]
if n._x~=node._x or n._y~=node._y then return false end
end
return true
end
--- Reverses a `path`.
-- @class function
-- @treturn path self (the calling `path` itself, can be chained)
-- @usage myPath:reverse()
function Path:reverse()
local _nodes = {}
for i = #self._nodes,1,-1 do
_nodes[#_nodes+1] = self._nodes[i]
end
self._nodes = _nodes
return self
end
--- Appends a given `path` to self.
-- @class function
-- @tparam path p a path
-- @treturn path self (the calling `path` itself, can be chained)
-- @usage myPath:append(anotherPath)
function Path:append(p)
for node in p:nodes() do self:addNode(node) end
return self
end
return setmetatable(Path,
{__call = function(self,...)
{__call = function(_,...)
return Path:new(...)
end
})

View File

@@ -5,125 +5,20 @@ if (...) then
-- Dependencies
local _PATH = (...):gsub('%.utils$','')
local Path = require (_PATH .. '.path')
local Node = require (_PATH .. '.node')
-- Local references
local pairs = pairs
local type = type
local t_insert = table.insert
local assert = assert
local coroutine = coroutine
-- Raw array items count
local function arraySize(t)
local count = 0
for k,v in pairs(t) do
for _ in pairs(t) do
count = count+1
end
return count
end
-- Parses a string map and builds an array map
local function stringMapToArray(str)
local map = {}
local w, h
for line in str:gmatch('[^\n\r]+') do
if line then
w = not w and #line or w
assert(#line == w, 'Error parsing map, rows must have the same size!')
h = (h or 0) + 1
map[h] = {}
for char in line:gmatch('.') do
map[h][#map[h]+1] = char
end
end
end
return map
end
-- Collects and returns the keys of a given array
local function getKeys(t)
local keys = {}
for k,v in pairs(t) do keys[#keys+1] = k end
return keys
end
-- Calculates the bounds of a 2d array
local function getArrayBounds(map)
local min_x, max_x
local min_y, max_y
for y in pairs(map) do
min_y = not min_y and y or (y<min_y and y or min_y)
max_y = not max_y and y or (y>max_y and y or max_y)
for x in pairs(map[y]) do
min_x = not min_x and x or (x<min_x and x or min_x)
max_x = not max_x and x or (x>max_x and x or max_x)
end
end
return min_x,max_x,min_y,max_y
end
-- Converts an array to a set of nodes
local function arrayToNodes(map)
local min_x, max_x
local min_y, max_y
local min_z, max_z
local nodes = {}
for y in pairs(map) do
min_y = not min_y and y or (y<min_y and y or min_y)
max_y = not max_y and y or (y>max_y and y or max_y)
nodes[y] = {}
for x in pairs(map[y]) do
min_x = not min_x and x or (x<min_x and x or min_x)
max_x = not max_x and x or (x>max_x and x or max_x)
nodes[y][x] = {}
for z in pairs(map[y][x]) do
min_z = not min_z and z or (z<min_z and z or min_z)
max_z = not max_z and z or (z>max_z and z or max_z)
nodes[y][x][z] = Node:new(x,y,z)
end
end
end
return nodes,
(min_x or 0), (max_x or 0),
(min_y or 0), (max_y or 0),
(min_z or 0), (max_z or 0)
end
-- Iterator, wrapped within a coroutine
-- Iterates around a given position following the outline of a square
local function around()
local iterf = function(x0, y0, z0, s)
local x, y, z = x0-s, y0-s, z0-s
coroutine.yield(x, y, z)
repeat
x = x + 1
coroutine.yield(x,y,z)
until x == x0+s
repeat
y = y + 1
coroutine.yield(x,y,z)
until y == y0 + s
repeat
z = z + 1
coroutine.yield(x,y,z)
until z == z0 + s
repeat
x = x - 1
coroutine.yield(x, y,z)
until x == x0-s
repeat
y = y - 1
coroutine.yield(x,y,z)
until y == y0-s+1
repeat
z = z - 1
coroutine.yield(x,y,z)
until z == z0-s+1
end
return coroutine.create(iterf)
end
-- Extract a path from a given start/end position
local function traceBackPath(finder, node, startNode)
local path = Path:new()
@@ -151,17 +46,11 @@ if (...) then
local function outOfRange(i,low,up)
return (i< low or i > up)
end
return {
arraySize = arraySize,
getKeys = getKeys,
indexOf = indexOf,
outOfRange = outOfRange,
getArrayBounds = getArrayBounds,
arrayToNodes = arrayToNodes,
strToMap = stringMapToArray,
around = around,
drAround = drAround,
traceBackPath = traceBackPath
}