proxy + pathfinding optimization

This commit is contained in:
kepler155c@gmail.com 2017-10-26 18:56:55 -04:00
parent 7fd93e8a8b
commit cac15722b8
15 changed files with 174 additions and 1271 deletions

View File

@ -24,9 +24,9 @@ function Routine:terminate()
end
function Routine:resume(event, ...)
if coroutine.status(self.co) == 'running' then
return
end
--if coroutine.status(self.co) == 'running' then
--return
--end
if not self.co then
error('Cannot resume a dead routine')

View File

@ -1,105 +0,0 @@
-- Various assertion function for API methods argument-checking
if (...) then
-- Dependancies
local _PATH = (...):gsub('%.core.assert$','')
local Utils = require (_PATH .. '.core.utils')
-- Local references
local lua_type = type
local floor = math.floor
local concat = table.concat
local next = next
local pairs = pairs
local getmetatable = getmetatable
-- Is I an integer ?
local function isInteger(i)
return lua_type(i) ==('number') and (floor(i)==i)
end
-- Override lua_type to return integers
local function type(v)
return isInteger(v) and 'int' or lua_type(v)
end
-- Does the given array contents match a predicate type ?
local function arrayContentsMatch(t,...)
local n_count = Utils.arraySize(t)
if n_count < 1 then return false end
local init_count = t[0] and 0 or 1
local n_count = (t[0] and n_count-1 or n_count)
local types = {...}
if types then types = concat(types) end
for i=init_count,n_count,1 do
if not t[i] then return false end
if types then
if not types:match(type(t[i])) then return false end
end
end
return true
end
-- Checks if arg is a valid array map
local function isMap(m)
if not arrayContentsMatch(m, 'table') then return false end
local lsize = Utils.arraySize(m[next(m)])
for k,v in pairs(m) do
if not arrayContentsMatch(m[k], 'string', 'int') then return false end
if Utils.arraySize(v)~=lsize then return false end
end
return true
end
-- Checks if s is a valid string map
local function isStringMap(s)
if lua_type(s) ~= 'string' then return false end
local w
for row in s:gmatch('[^\n\r]+') do
if not row then return false end
w = w or #row
if w ~= #row then return false end
end
return true
end
-- Does instance derive straight from class
local function derives(instance, class)
return getmetatable(instance) == class
end
-- Does instance inherits from class
local function inherits(instance, class)
return (getmetatable(getmetatable(instance)) == class)
end
-- Is arg a boolean
local function isBoolean(b)
return (b==true or b==false)
end
-- Is arg nil ?
local function isNil(n)
return (n==nil)
end
local function matchType(value, types)
return types:match(type(value))
end
return {
arrayContentsMatch = arrayContentsMatch,
derives = derives,
inherits = inherits,
isInteger = isInteger,
isBool = isBoolean,
isMap = isMap,
isStrMap = isStringMap,
isOutOfRange = isOutOfRange,
isNil = isNil,
type = type,
matchType = matchType
}
end

View File

@ -1,98 +0,0 @@
--- Heuristic functions for search algorithms.
-- A <a href="http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html">distance heuristic</a>
-- provides an *estimate of the optimal distance cost* from a given location to a target.
-- As such, it guides the pathfinder to the goal, helping it to decide which route is the best.
--
-- This script holds the definition of some built-in heuristics available through jumper.
--
-- Distance functions are internally used by the `pathfinder` to evaluate the optimal path
-- from the start location to the goal. These functions share the same prototype:
-- local function myHeuristic(nodeA, nodeB)
-- -- function body
-- end
-- Jumper features some built-in distance heuristics, namely `MANHATTAN`, `EUCLIDIAN`, `DIAGONAL`, `CARDINTCARD`.
-- You can also supply your own heuristic function, following the same template as above.
local abs = math.abs
local sqrt = math.sqrt
local sqrt2 = sqrt(2)
local max, min = math.max, math.min
local Heuristics = {}
--- Manhattan distance.
-- <br/>This heuristic is the default one being used by the `pathfinder` object.
-- <br/>Evaluates as <code>distance = |dx|+|dy|</code>
-- @class function
-- @tparam node nodeA a node
-- @tparam node nodeB another node
-- @treturn number the distance from __nodeA__ to __nodeB__
-- @usage
-- -- First method
-- pathfinder:setHeuristic('MANHATTAN')
-- -- Second method
-- local Distance = require ('jumper.core.heuristics')
-- pathfinder:setHeuristic(Distance.MANHATTAN)
function Heuristics.MANHATTAN(nodeA, nodeB)
local dx = abs(nodeA._x - nodeB._x)
local dy = abs(nodeA._y - nodeB._y)
local dz = abs(nodeA._z - nodeB._z)
return (dx + dy + dz)
end
--- Euclidian distance.
-- <br/>Evaluates as <code>distance = squareRoot(dx*dx+dy*dy)</code>
-- @class function
-- @tparam node nodeA a node
-- @tparam node nodeB another node
-- @treturn number the distance from __nodeA__ to __nodeB__
-- @usage
-- -- First method
-- pathfinder:setHeuristic('EUCLIDIAN')
-- -- Second method
-- local Distance = require ('jumper.core.heuristics')
-- pathfinder:setHeuristic(Distance.EUCLIDIAN)
function Heuristics.EUCLIDIAN(nodeA, nodeB)
local dx = nodeA._x - nodeB._x
local dy = nodeA._y - nodeB._y
local dz = nodeA._z - nodeB._z
return sqrt(dx*dx+dy*dy+dz*dz)
end
--- Diagonal distance.
-- <br/>Evaluates as <code>distance = max(|dx|, abs|dy|)</code>
-- @class function
-- @tparam node nodeA a node
-- @tparam node nodeB another node
-- @treturn number the distance from __nodeA__ to __nodeB__
-- @usage
-- -- First method
-- pathfinder:setHeuristic('DIAGONAL')
-- -- Second method
-- local Distance = require ('jumper.core.heuristics')
-- pathfinder:setHeuristic(Distance.DIAGONAL)
function Heuristics.DIAGONAL(nodeA, nodeB)
local dx = abs(nodeA._x - nodeB._x)
local dy = abs(nodeA._y - nodeB._y)
return max(dx,dy)
end
--- Cardinal/Intercardinal distance.
-- <br/>Evaluates as <code>distance = min(dx, dy)*squareRoot(2) + max(dx, dy) - min(dx, dy)</code>
-- @class function
-- @tparam node nodeA a node
-- @tparam node nodeB another node
-- @treturn number the distance from __nodeA__ to __nodeB__
-- @usage
-- -- First method
-- pathfinder:setHeuristic('CARDINTCARD')
-- -- Second method
-- local Distance = require ('jumper.core.heuristics')
-- pathfinder:setHeuristic(Distance.CARDINTCARD)
function Heuristics.CARDINTCARD(nodeA, nodeB)
local dx = abs(nodeA._x - nodeB._x)
local dy = abs(nodeA._y - nodeB._y)
return min(dx,dy) * sqrt2 + max(dx,dy) - min(dx,dy)
end
return Heuristics

View File

@ -1,32 +0,0 @@
local addNode(self, node, nextNode, ed)
if not self._pathDB[node] then self._pathDB[node] = {} end
self._pathDB[node][ed] = (nextNode == ed and node or nextNode)
end
-- Path lookupTable
local lookupTable = {}
lookupTable.__index = lookupTable
function lookupTable:new()
local lut = {_pathDB = {}}
return setmetatable(lut, lookupTable)
end
function lookupTable:addPath(path)
local st, ed = path._nodes[1], path._nodes[#path._nodes]
for node, count in path:nodes() do
local nextNode = path._nodes[count+1]
if nextNode then addNode(self, node, nextNode, ed) end
end
end
function lookupTable:hasPath(nodeA, nodeB)
local found
found = self._pathDB[nodeA] and self._path[nodeA][nodeB]
if found then return true, true end
found = self._pathDB[nodeB] and self._path[nodeB][nodeA]
if found then return true, false end
return false
end
return lookupTable

View File

@ -4,14 +4,12 @@
-- and then cached within the `grid`.
--
-- In the following implementation, nodes can be compared using the `<` operator. The comparison is
-- made with regards of their `f` cost. From a given node being examined, the `pathfinder` will expand the search
-- made with regards of their `f` cost. From a given node being examined, the `pathfinder` will expand the search
-- to the next neighbouring node having the lowest `f` cost. See `core.bheap` for more details.
--
--
if (...) then
local assert = assert
--- The `Node` class.<br/>
-- This class is callable.
-- Therefore,_ <code>Node(...)</code> _acts as a shortcut to_ <code>Node:new(...)</code>.
@ -26,7 +24,7 @@ if (...) then
-- @treturn node a new `node`
-- @usage local node = Node(3,4)
function Node:new(x,y,z)
return setmetatable({_x = x, _y = y, _z = z, _clearance = {}}, Node)
return setmetatable({_x = x, _y = y, _z = z }, Node)
end
-- Enables the use of operator '<' to compare nodes.
@ -36,48 +34,24 @@ if (...) then
--- Returns x-coordinate of a `node`
-- @class function
-- @treturn number the x-coordinate of the `node`
-- @usage local x = node:getX()
-- @usage local x = node:getX()
function Node:getX() return self._x end
--- Returns y-coordinate of a `node`
-- @class function
-- @treturn number the y-coordinate of the `node`
-- @usage local y = node:getY()
-- @treturn number the y-coordinate of the `node`
-- @usage local y = node:getY()
function Node:getY() return self._y end
function Node:getZ() return self._z end
--- Returns x and y coordinates of a `node`
-- @class function
-- @treturn number the x-coordinate of the `node`
-- @treturn number the y-coordinate of the `node`
-- @usage local x, y = node:getPos()
-- @usage local x, y = node:getPos()
function Node:getPos() return self._x, self._y, self._z end
--- Returns the amount of true [clearance](http://aigamedev.com/open/tutorial/clearance-based-pathfinding/#TheTrueClearanceMetric)
-- for a given `node`
-- @class function
-- @tparam string|int|func walkable the value for walkable locations in the collision map array.
-- @treturn int the clearance of the `node`
-- @usage
-- -- Assuming walkable was 0
-- local clearance = node:getClearance(0)
function Node:getClearance(walkable)
return self._clearance[walkable]
end
--- Removes the clearance value for a given walkable.
-- @class function
-- @tparam string|int|func walkable the value for walkable locations in the collision map array.
-- @treturn node self (the calling `node` itself, can be chained)
-- @usage
-- -- Assuming walkable is defined
-- node:removeClearance(walkable)
function Node:removeClearance(walkable)
self._clearance[walkable] = nil
return self
end
--- Clears temporary cached attributes of a `node`.
-- Deletes the attributes cached within a given node after a pathfinding call.
-- This function is internally used by the search algorithms, so you should not use it explicitely.
@ -91,10 +65,10 @@ if (...) then
self._opened, self._closed, self._parent = nil, nil, nil
return self
end
return setmetatable(Node,
{__call = function(self,...)
return Node:new(...)
{__call = function(_,...)
return Node:new(...)
end}
)
end

View File

@ -6,17 +6,7 @@
-- It should normally not be used explicitely, yet it remains fully accessible.
--
if (...) then
-- Dependencies
local _PATH = (...):match('(.+)%.path$')
local Heuristic = require (_PATH .. '.heuristics')
-- Local references
local abs, max = math.abs, math.max
local t_insert, t_remove = table.insert, table.remove
--- The `Path` class.<br/>
-- This class is callable.
-- Therefore, <em><code>Path(...)</code></em> acts as a shortcut to <em><code>Path:new(...)</code></em>.
@ -42,8 +32,8 @@ if (...) then
-- for node, count in p:iter() do
-- ...
-- end
function Path:iter()
local i,pathLen = 1,#self._nodes
function Path:nodes()
local i = 1
return function()
if self._nodes[i] then
i = i+1
@ -51,150 +41,9 @@ if (...) then
end
end
end
--- Iterates on each single `node` along a `path`. At each step of iteration,
-- returns a `node` plus a count value. Alias for @{Path:iter}
-- @class function
-- @name Path:nodes
-- @treturn node a `node`
-- @treturn int the count for the number of nodes
-- @see Path:iter
-- @usage
-- for node, count in p:nodes() do
-- ...
-- end
Path.nodes = Path.iter
--- Evaluates the `path` length
-- @class function
-- @treturn number the `path` length
-- @usage local len = p:getLength()
function Path:getLength()
local len = 0
for i = 2,#self._nodes do
len = len + Heuristic.EUCLIDIAN(self._nodes[i], self._nodes[i-1])
end
return len
end
--- Counts the number of steps.
-- Returns the number of waypoints (nodes) in the current path.
-- @class function
-- @tparam node node a node to be added to the path
-- @tparam[opt] int index the index at which the node will be inserted. If omitted, the node will be appended after the last node in the path.
-- @treturn path self (the calling `path` itself, can be chained)
-- @usage local nSteps = p:countSteps()
function Path:addNode(node, index)
index = index or #self._nodes+1
t_insert(self._nodes, index, node)
return self
end
--- `Path` filling modifier. Interpolates between non contiguous nodes along a `path`
-- to build a fully continuous `path`. This maybe useful when using search algorithms such as Jump Point Search.
-- Does the opposite of @{Path:filter}
-- @class function
-- @treturn path self (the calling `path` itself, can be chained)
-- @see Path:filter
-- @usage p:fill()
function Path:fill()
local i = 2
local xi,yi,dx,dy
local N = #self._nodes
local incrX, incrY
while true do
xi,yi = self._nodes[i]._x,self._nodes[i]._y
dx,dy = xi-self._nodes[i-1]._x,yi-self._nodes[i-1]._y
if (abs(dx) > 1 or abs(dy) > 1) then
incrX = dx/max(abs(dx),1)
incrY = dy/max(abs(dy),1)
t_insert(self._nodes, i, self._grid:getNodeAt(self._nodes[i-1]._x + incrX, self._nodes[i-1]._y +incrY))
N = N+1
else i=i+1
end
if i>N then break end
end
return self
end
--- `Path` compression modifier. Given a `path`, eliminates useless nodes to return a lighter `path`
-- consisting of straight moves. Does the opposite of @{Path:fill}
-- @class function
-- @treturn path self (the calling `path` itself, can be chained)
-- @see Path:fill
-- @usage p:filter()
function Path:filter()
local i = 2
local xi,yi,dx,dy, olddx, olddy
xi,yi = self._nodes[i]._x, self._nodes[i]._y
dx, dy = xi - self._nodes[i-1]._x, yi-self._nodes[i-1]._y
while true do
olddx, olddy = dx, dy
if self._nodes[i+1] then
i = i+1
xi, yi = self._nodes[i]._x, self._nodes[i]._y
dx, dy = xi - self._nodes[i-1]._x, yi - self._nodes[i-1]._y
if olddx == dx and olddy == dy then
t_remove(self._nodes, i-1)
i = i - 1
end
else break end
end
return self
end
--- Clones a `path`.
-- @class function
-- @treturn path a `path`
-- @usage local p = path:clone()
function Path:clone()
local p = Path:new()
for node in self:nodes() do p:addNode(node) end
return p
end
--- Checks if a `path` is equal to another. It also supports *filtered paths* (see @{Path:filter}).
-- @class function
-- @tparam path p2 a path
-- @treturn boolean a boolean
-- @usage print(myPath:isEqualTo(anotherPath))
function Path:isEqualTo(p2)
local p1 = self:clone():filter()
local p2 = p2:clone():filter()
for node, count in p1:nodes() do
if not p2._nodes[count] then return false end
local n = p2._nodes[count]
if n._x~=node._x or n._y~=node._y then return false end
end
return true
end
--- Reverses a `path`.
-- @class function
-- @treturn path self (the calling `path` itself, can be chained)
-- @usage myPath:reverse()
function Path:reverse()
local _nodes = {}
for i = #self._nodes,1,-1 do
_nodes[#_nodes+1] = self._nodes[i]
end
self._nodes = _nodes
return self
end
--- Appends a given `path` to self.
-- @class function
-- @tparam path p a path
-- @treturn path self (the calling `path` itself, can be chained)
-- @usage myPath:append(anotherPath)
function Path:append(p)
for node in p:nodes() do self:addNode(node) end
return self
end
return setmetatable(Path,
{__call = function(self,...)
{__call = function(_,...)
return Path:new(...)
end
})

View File

@ -5,125 +5,20 @@ if (...) then
-- Dependencies
local _PATH = (...):gsub('%.utils$','')
local Path = require (_PATH .. '.path')
local Node = require (_PATH .. '.node')
-- Local references
local pairs = pairs
local type = type
local t_insert = table.insert
local assert = assert
local coroutine = coroutine
-- Raw array items count
local function arraySize(t)
local count = 0
for k,v in pairs(t) do
for _ in pairs(t) do
count = count+1
end
return count
end
-- Parses a string map and builds an array map
local function stringMapToArray(str)
local map = {}
local w, h
for line in str:gmatch('[^\n\r]+') do
if line then
w = not w and #line or w
assert(#line == w, 'Error parsing map, rows must have the same size!')
h = (h or 0) + 1
map[h] = {}
for char in line:gmatch('.') do
map[h][#map[h]+1] = char
end
end
end
return map
end
-- Collects and returns the keys of a given array
local function getKeys(t)
local keys = {}
for k,v in pairs(t) do keys[#keys+1] = k end
return keys
end
-- Calculates the bounds of a 2d array
local function getArrayBounds(map)
local min_x, max_x
local min_y, max_y
for y in pairs(map) do
min_y = not min_y and y or (y<min_y and y or min_y)
max_y = not max_y and y or (y>max_y and y or max_y)
for x in pairs(map[y]) do
min_x = not min_x and x or (x<min_x and x or min_x)
max_x = not max_x and x or (x>max_x and x or max_x)
end
end
return min_x,max_x,min_y,max_y
end
-- Converts an array to a set of nodes
local function arrayToNodes(map)
local min_x, max_x
local min_y, max_y
local min_z, max_z
local nodes = {}
for y in pairs(map) do
min_y = not min_y and y or (y<min_y and y or min_y)
max_y = not max_y and y or (y>max_y and y or max_y)
nodes[y] = {}
for x in pairs(map[y]) do
min_x = not min_x and x or (x<min_x and x or min_x)
max_x = not max_x and x or (x>max_x and x or max_x)
nodes[y][x] = {}
for z in pairs(map[y][x]) do
min_z = not min_z and z or (z<min_z and z or min_z)
max_z = not max_z and z or (z>max_z and z or max_z)
nodes[y][x][z] = Node:new(x,y,z)
end
end
end
return nodes,
(min_x or 0), (max_x or 0),
(min_y or 0), (max_y or 0),
(min_z or 0), (max_z or 0)
end
-- Iterator, wrapped within a coroutine
-- Iterates around a given position following the outline of a square
local function around()
local iterf = function(x0, y0, z0, s)
local x, y, z = x0-s, y0-s, z0-s
coroutine.yield(x, y, z)
repeat
x = x + 1
coroutine.yield(x,y,z)
until x == x0+s
repeat
y = y + 1
coroutine.yield(x,y,z)
until y == y0 + s
repeat
z = z + 1
coroutine.yield(x,y,z)
until z == z0 + s
repeat
x = x - 1
coroutine.yield(x, y,z)
until x == x0-s
repeat
y = y - 1
coroutine.yield(x,y,z)
until y == y0-s+1
repeat
z = z - 1
coroutine.yield(x,y,z)
until z == z0-s+1
end
return coroutine.create(iterf)
end
-- Extract a path from a given start/end position
local function traceBackPath(finder, node, startNode)
local path = Path:new()
@ -151,17 +46,11 @@ if (...) then
local function outOfRange(i,low,up)
return (i< low or i > up)
end
return {
arraySize = arraySize,
getKeys = getKeys,
indexOf = indexOf,
outOfRange = outOfRange,
getArrayBounds = getArrayBounds,
arrayToNodes = arrayToNodes,
strToMap = stringMapToArray,
around = around,
drAround = drAround,
traceBackPath = traceBackPath
}

View File

@ -2,7 +2,8 @@
-- Implementation of the `grid` class.
-- The `grid` is a implicit graph which represents the 2D
-- world map layout on which the `pathfinder` object will run.
-- During a search, the `pathfinder` object needs to save some critical values. These values are cached within each `node`
-- During a search, the `pathfinder` object needs to save some critical values.
-- These values are cached within each `node`
-- object, and the whole set of nodes are tight inside the `grid` object itself.
if (...) then
@ -12,16 +13,10 @@ if (...) then
-- Local references
local Utils = require (_PATH .. '.core.utils')
local Assert = require (_PATH .. '.core.assert')
local Node = require (_PATH .. '.core.node')
-- Local references
local pairs = pairs
local assert = assert
local next = next
local setmetatable = setmetatable
local floor = math.floor
local coroutine = coroutine
-- Offsets for straights moves
local straightOffsets = {
@ -30,12 +25,6 @@ if (...) then
{x = 0, y = 0, z = 1} --[[U]], {x = 0, y = -0, z = -1}, --[[D]]
}
-- Offsets for diagonal moves
local diagonalOffsets = {
{x = -1, y = -1} --[[NW]], {x = 1, y = -1}, --[[NE]]
{x = -1, y = 1} --[[SW]], {x = 1, y = 1}, --[[SE]]
}
--- The `Grid` class.<br/>
-- This class is callable.
-- Therefore,_ <code>Grid(...)</code> _acts as a shortcut to_ <code>Grid:new(...)</code>.
@ -43,46 +32,21 @@ if (...) then
local Grid = {}
Grid.__index = Grid
-- Specialized grids
local PreProcessGrid = setmetatable({},Grid)
local PostProcessGrid = setmetatable({},Grid)
PreProcessGrid.__index = PreProcessGrid
PostProcessGrid.__index = PostProcessGrid
PreProcessGrid.__call = function (self,x,y,z)
return self:getNodeAt(x,y,z)
end
PostProcessGrid.__call = function (self,x,y,z,create)
if create then return self:getNodeAt(x,y,z) end
return self._nodes[y] and self._nodes[y][x] and self._nodes[y][x][z]
end
--- Inits a new `grid`
-- @class function
-- @tparam table|string map A collision map - (2D array) with consecutive indices (starting at 0 or 1)
-- @tparam table Map dimensions
-- or a `string` with line-break chars (<code>\n</code> or <code>\r</code>) as row delimiters.
-- @tparam[opt] bool cacheNodeAtRuntime When __true__, returns an empty `grid` instance, so that
-- later on, indexing a non-cached `node` will cause it to be created and cache within the `grid` on purpose (i.e, when needed).
-- This is a __memory-safe__ option, in case your dealing with some tight memory constraints.
-- Defaults to __false__ when omitted.
-- @treturn grid a new `grid` instance
-- @usage
-- -- A simple 3x3 grid
-- local myGrid = Grid:new({{0,0,0},{0,0,0},{0,0,0}})
--
-- -- A memory-safe 3x3 grid
-- myGrid = Grid('000\n000\n000', true)
function Grid:new(map, cacheNodeAtRuntime)
if type(map) == 'string' then
assert(Assert.isStrMap(map), 'Wrong argument #1. Not a valid string map')
map = Utils.strToMap(map)
end
--assert(Assert.isMap(map),('Bad argument #1. Not a valid map'))
assert(Assert.isBool(cacheNodeAtRuntime) or Assert.isNil(cacheNodeAtRuntime),
('Bad argument #2. Expected \'boolean\', got %s.'):format(type(cacheNodeAtRuntime)))
if cacheNodeAtRuntime then
return PostProcessGrid:new(map,walkable)
end
return PreProcessGrid:new(map,walkable)
function Grid:new(dim)
local newGrid = { }
newGrid._min_x, newGrid._max_x = dim.x, dim.ex
newGrid._min_y, newGrid._max_y = dim.y, dim.ey
newGrid._min_z, newGrid._max_z = dim.z, dim.ez
newGrid._nodes = { }
newGrid._width = (newGrid._max_x-newGrid._min_x)+1
newGrid._height = (newGrid._max_y-newGrid._min_y)+1
newGrid._length = (newGrid._max_z-newGrid._min_z)+1
return setmetatable(newGrid,Grid)
end
--- Checks if `node` at [x,y] is __walkable__.
@ -90,41 +54,11 @@ if (...) then
-- @class function
-- @tparam int x the x-location of the node
-- @tparam int y the y-location of the node
-- @tparam[opt] string|int|func walkable the value for walkable locations in the collision map array (see @{Grid:new}).
-- Defaults to __false__ when omitted.
-- If this parameter is a function, it should be prototyped as __f(value)__ and return a `boolean`:
-- __true__ when value matches a __walkable__ `node`, __false__ otherwise. If this parameter is not given
-- while location [x,y] __is valid__, this actual function returns __true__.
-- @tparam[optchain] int clearance the amount of clearance needed. Defaults to 1 (normal clearance) when not given.
-- @treturn bool __true__ if `node` exists and is __walkable__, __false__ otherwise
-- @usage
-- -- Always true
-- print(myGrid:isWalkableAt(2,3))
-- @tparam int z the z-location of the node
--
-- -- True if node at [2,3] collision map value is 0
-- print(myGrid:isWalkableAt(2,3,0))
--
-- -- True if node at [2,3] collision map value is 0 and has a clearance higher or equal to 2
-- print(myGrid:isWalkableAt(2,3,0,2))
--
function Grid:isWalkableAt(x, y, z, walkable, clearance)
local nodeValue = self._map[y] and self._map[y][x] and self._map[y][x][z]
if nodeValue then
if not walkable then return true end
else
return false
end
local hasEnoughClearance = not clearance and true or false
if not hasEnoughClearance then
if not self._isAnnotated[walkable] then return false end
local node = self:getNodeAt(x,y,z)
local nodeClearance = node:getClearance(walkable)
hasEnoughClearance = (nodeClearance >= clearance)
end
if self._eval then
return walkable(nodeValue) and hasEnoughClearance
end
return ((nodeValue == walkable) and hasEnoughClearance)
function Grid:isWalkableAt(x, y, z)
local node = self:getNodeAt(x,y,z)
return node and node.walkable ~= 1
end
--- Returns the `grid` width.
@ -143,14 +77,6 @@ if (...) then
return self._height
end
--- Returns the collision map.
-- @class function
-- @treturn map the collision map (see @{Grid:new})
-- @usage local map = myGrid:getMap()
function Grid:getMap()
return self._map
end
--- Returns the set of nodes.
-- @class function
-- @treturn {{node,...},...} an array of nodes
@ -174,18 +100,14 @@ if (...) then
--- Returns neighbours. The returned value is an array of __walkable__ nodes neighbouring a given `node`.
-- @class function
-- @tparam node node a given `node`
-- @tparam[opt] string|int|func walkable the value for walkable locations in the collision map array (see @{Grid:new}).
-- Defaults to __false__ when omitted.
-- @tparam[optchain] bool allowDiagonal when __true__, allows adjacent nodes are included (8-neighbours).
-- Defaults to __false__ when omitted.
-- @tparam[optchain] bool tunnel When __true__, allows the `pathfinder` to tunnel through walls when heading diagonally.
-- @tparam[optchain] int clearance When given, will prune for the neighbours set all nodes having a clearance value lower than the passed-in value
-- @tparam[opt] string|int|func walkable the value for walkable locations
-- in the collision map array (see @{Grid:new}).
-- Defaults to __false__ when omitted.
-- @treturn {node,...} an array of nodes neighbouring a given node
-- @usage
-- local aNode = myGrid:getNodeAt(5,6)
-- local neighbours = myGrid:getNeighbours(aNode, 0, true)
function Grid:getNeighbours(node, walkable, allowDiagonal, tunnel, clearance)
function Grid:getNeighbours(node)
local neighbours = {}
for i = 1,#straightOffsets do
local n = self:getNodeAt(
@ -193,227 +115,31 @@ if (...) then
node._y + straightOffsets[i].y,
node._z + straightOffsets[i].z
)
if n and self:isWalkableAt(n._x, n._y, n._z, walkable, clearance) then
if n and self:isWalkableAt(n._x, n._y, n._z) then
neighbours[#neighbours+1] = n
end
end
if not allowDiagonal then return neighbours end
tunnel = not not tunnel
for i = 1,#diagonalOffsets do
local n = self:getNodeAt(
node._x + diagonalOffsets[i].x,
node._y + diagonalOffsets[i].y
)
if n and self:isWalkableAt(n._x, n._y, walkable, clearance) then
if tunnel then
neighbours[#neighbours+1] = n
else
local skipThisNode = false
local n1 = self:getNodeAt(node._x+diagonalOffsets[i].x, node._y)
local n2 = self:getNodeAt(node._x, node._y+diagonalOffsets[i].y)
if ((n1 and n2) and not self:isWalkableAt(n1._x, n1._y, walkable, clearance) and not self:isWalkableAt(n2._x, n2._y, walkable, clearance)) then
skipThisNode = true
end
if not skipThisNode then neighbours[#neighbours+1] = n end
end
end
end
return neighbours
end
--- Grid iterator. Iterates on every single node
-- in the `grid`. Passing __lx, ly, ex, ey__ arguments will iterate
-- only on nodes inside the bounding-rectangle delimited by those given coordinates.
-- @class function
-- @tparam[opt] int lx the leftmost x-coordinate of the rectangle. Default to the `grid` leftmost x-coordinate (see @{Grid:getBounds}).
-- @tparam[optchain] int ly the topmost y-coordinate of the rectangle. Default to the `grid` topmost y-coordinate (see @{Grid:getBounds}).
-- @tparam[optchain] int ex the rightmost x-coordinate of the rectangle. Default to the `grid` rightmost x-coordinate (see @{Grid:getBounds}).
-- @tparam[optchain] int ey the bottom-most y-coordinate of the rectangle. Default to the `grid` bottom-most y-coordinate (see @{Grid:getBounds}).
-- @treturn node a `node` on the collision map, upon each iteration step
-- @treturn int the iteration count
-- @usage
-- for node, count in myGrid:iter() do
-- print(node:getX(), node:getY(), count)
-- end
function Grid:iter(lx,ly,lz,ex,ey,ez)
local min_x = lx or self._min_x
local min_y = ly or self._min_y
local min_z = lz or self._min_z
local max_x = ex or self._max_x
local max_y = ey or self._max_y
local max_z = ez or self._max_z
local x, y, z
z = min_z
return function()
x = not x and min_x or x+1
if x > max_x then
x = min_x
y = y+1
end
y = not y and min_y or y+1
if y > max_y then
y = min_y
z = z+1
end
if z > max_z then
z = nil
end
return self._nodes[y] and self._nodes[y][x] and self._nodes[y][x][z] or self:getNodeAt(x,y,z)
end
end
--- Grid iterator. Iterates on each node along the outline (border) of a squared area
-- centered on the given node.
-- @tparam node node a given `node`
-- @tparam[opt] int radius the area radius (half-length). Defaults to __1__ when not given.
-- @treturn node a `node` at each iteration step
-- @usage
-- for node in myGrid:around(node, 2) do
-- ...
-- end
function Grid:around(node, radius)
local x, y, z = node._x, node._y, node._z
radius = radius or 1
local _around = Utils.around()
local _nodes = {}
repeat
local state, x, y, z = coroutine.resume(_around,x,y,z,radius)
local nodeAt = state and self:getNodeAt(x, y, z)
if nodeAt then _nodes[#_nodes+1] = nodeAt end
until (not state)
local _i = 0
return function()
_i = _i+1
return _nodes[_i]
end
end
--- Each transformation. Calls the given function on each `node` in the `grid`,
-- passing the `node` as the first argument to function __f__.
-- @class function
-- @tparam func f a function prototyped as __f(node,...)__
-- @tparam[opt] vararg ... args to be passed to function __f__
-- @treturn grid self (the calling `grid` itself, can be chained)
-- @usage
-- local function printNode(node)
-- print(node:getX(), node:getY())
-- end
-- myGrid:each(printNode)
function Grid:each(f,...)
for node in self:iter() do f(node,...) end
return self
end
--- Each (in range) transformation. Calls a function on each `node` in the range of a rectangle of cells,
-- passing the `node` as the first argument to function __f__.
-- @class function
-- @tparam int lx the leftmost x-coordinate coordinate of the rectangle
-- @tparam int ly the topmost y-coordinate of the rectangle
-- @tparam int ex the rightmost x-coordinate of the rectangle
-- @tparam int ey the bottom-most y-coordinate of the rectangle
-- @tparam func f a function prototyped as __f(node,...)__
-- @tparam[opt] vararg ... args to be passed to function __f__
-- @treturn grid self (the calling `grid` itself, can be chained)
-- @usage
-- local function printNode(node)
-- print(node:getX(), node:getY())
-- end
-- myGrid:eachRange(1,1,8,8,printNode)
function Grid:eachRange(lx,ly,ex,ey,f,...)
for node in self:iter(lx,ly,ex,ey) do f(node,...) end
return self
end
--- Map transformation.
-- Calls function __f(node,...)__ on each `node` in a given range, passing the `node` as the first arg to function __f__ and replaces
-- it with the returned value. Therefore, the function should return a `node`.
-- @class function
-- @tparam func f a function prototyped as __f(node,...)__
-- @tparam[opt] vararg ... args to be passed to function __f__
-- @treturn grid self (the calling `grid` itself, can be chained)
-- @usage
-- local function nothing(node)
-- return node
-- end
-- myGrid:imap(nothing)
function Grid:imap(f,...)
for node in self:iter() do
node = f(node,...)
end
return self
end
--- Map in range transformation.
-- Calls function __f(node,...)__ on each `node` in a rectangle range, passing the `node` as the first argument to the function and replaces
-- it with the returned value. Therefore, the function should return a `node`.
-- @class function
-- @tparam int lx the leftmost x-coordinate coordinate of the rectangle
-- @tparam int ly the topmost y-coordinate of the rectangle
-- @tparam int ex the rightmost x-coordinate of the rectangle
-- @tparam int ey the bottom-most y-coordinate of the rectangle
-- @tparam func f a function prototyped as __f(node,...)__
-- @tparam[opt] vararg ... args to be passed to function __f__
-- @treturn grid self (the calling `grid` itself, can be chained)
-- @usage
-- local function nothing(node)
-- return node
-- end
-- myGrid:imap(1,1,6,6,nothing)
function Grid:imapRange(lx,ly,ex,ey,f,...)
for node in self:iter(lx,ly,ex,ey) do
node = f(node,...)
end
return self
end
-- Specialized grids
-- Inits a preprocessed grid
function PreProcessGrid:new(map)
local newGrid = {}
newGrid._map = map
newGrid._nodes, newGrid._min_x, newGrid._max_x, newGrid._min_y, newGrid._max_y, newGrid._min_z, newGrid._max_z = Utils.arrayToNodes(newGrid._map)
newGrid._width = (newGrid._max_x-newGrid._min_x)+1
newGrid._height = (newGrid._max_y-newGrid._min_y)+1
newGrid._length = (newGrid._max_z-newGrid._min_z)+1
newGrid._isAnnotated = {}
return setmetatable(newGrid,PreProcessGrid)
end
-- Inits a postprocessed grid
function PostProcessGrid:new(map)
local newGrid = {}
newGrid._map = map
newGrid._nodes = {}
newGrid._min_x, newGrid._max_x, newGrid._min_y, newGrid._max_y = Utils.getArrayBounds(newGrid._map)
newGrid._width = (newGrid._max_x-newGrid._min_x)+1
newGrid._height = (newGrid._max_y-newGrid._min_y)+1
newGrid._isAnnotated = {}
return setmetatable(newGrid,PostProcessGrid)
end
--- Returns the `node` at location [x,y].
--- Returns the `node` at location [x,y,z].
-- @class function
-- @name Grid:getNodeAt
-- @tparam int x the x-coordinate coordinate
-- @tparam int y the y-coordinate coordinate
-- @tparam int z the z-coordinate coordinate
-- @treturn node a `node`
-- @usage local aNode = myGrid:getNodeAt(2,2)
-- Gets the node at location <x,y> on a preprocessed grid
function PreProcessGrid:getNodeAt(x,y,z)
return self._nodes[y] and self._nodes[y][x] and self._nodes[y][x][z] or nil
end
-- Gets the node at location <x,y> on a postprocessed grid
function PostProcessGrid:getNodeAt(x,y,z)
function Grid:getNodeAt(x,y,z)
if not x or not y or not z then return end
if Utils.outOfRange(x,self._min_x,self._max_x) then return end
if Utils.outOfRange(y,self._min_y,self._max_y) then return end
if Utils.outOfRange(z,self._min_z,self._max_z) then return end
-- inefficient
if not self._nodes[y] then self._nodes[y] = {} end
if not self._nodes[y][x] then self._nodes[y][x] = {} end
if not self._nodes[y][x][z] then self._nodes[y][x][z] = Node:new(x,y,z) end

View File

@ -41,53 +41,24 @@ if (...) then
-- Dependencies
local _PATH = (...):gsub('%.pathfinder$','')
local Utils = require (_PATH .. '.core.utils')
local Assert = require (_PATH .. '.core.assert')
local Heap = require (_PATH .. '.core.bheap')
local Heuristic = require (_PATH .. '.core.heuristics')
local Grid = require (_PATH .. '.grid')
local Path = require (_PATH .. '.core.path')
-- Internalization
local t_insert, t_remove = table.insert, table.remove
local floor = math.floor
local pairs = pairs
local assert = assert
local type = type
local setmetatable, getmetatable = setmetatable, getmetatable
local setmetatable = setmetatable
--- Finders (search algorithms implemented). Refers to the search algorithms actually implemented in Jumper.
--
-- <li>[A*](http://en.wikipedia.org/wiki/A*_search_algorithm)</li>
-- <li>[Dijkstra](http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm)</li>
-- <li>[Theta Astar](http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/)</li>
-- <li>[BFS](http://en.wikipedia.org/wiki/Breadth-first_search)</li>
-- <li>[DFS](http://en.wikipedia.org/wiki/Depth-first_search)</li>
-- <li>[JPS](http://harablog.wordpress.com/2011/09/07/jump-point-search/)</li>
-- @finder Finders
-- @see Pathfinder:getFinders
local Finders = {
['ASTAR'] = require (_PATH .. '.search.astar'),
-- ['DIJKSTRA'] = require (_PATH .. '.search.dijkstra'),
-- ['THETASTAR'] = require (_PATH .. '.search.thetastar'),
['BFS'] = require (_PATH .. '.search.bfs'),
-- ['DFS'] = require (_PATH .. '.search.dfs'),
-- ['JPS'] = require (_PATH .. '.search.jps')
}
-- Will keep track of all nodes expanded during the search
-- to easily reset their properties for the next pathfinding call
local toClear = {}
--- Search modes. Refers to the search modes. In ORTHOGONAL mode, 4-directions are only possible when moving,
-- including North, East, West, South. In DIAGONAL mode, 8-directions are possible when moving,
-- including North, East, West, South and adjacent directions.
--
-- <li>ORTHOGONAL</li>
-- <li>DIAGONAL</li>
-- @mode Modes
-- @see Pathfinder:getModes
local searchModes = {['DIAGONAL'] = true, ['ORTHOGONAL'] = true}
-- Performs a traceback from the goal node to the start node
-- Only happens when the path was found
@ -103,259 +74,27 @@ if (...) then
-- @tparam grid grid a `grid`
-- @tparam[opt] string finderName the name of the `Finder` (search algorithm) to be used for search.
-- Defaults to `ASTAR` when not given (see @{Pathfinder:getFinders}).
-- @tparam[optchain] string|int|func walkable the value for __walkable__ nodes.
-- If this parameter is a function, it should be prototyped as __f(value)__, returning a boolean:
-- __true__ when value matches a __walkable__ `node`, __false__ otherwise.
-- @treturn pathfinder a new `pathfinder` instance
-- @usage
-- -- Example one
-- local finder = Pathfinder:new(myGrid, 'ASTAR', 0)
--
-- -- Example two
-- local function walkable(value)
-- return value > 0
-- end
-- local finder = Pathfinder(myGrid, 'JPS', walkable)
function Pathfinder:new(grid, finderName, walkable)
-- local finder = Pathfinder:new(myGrid, 'ASTAR')
function Pathfinder:new(heuristic)
local newPathfinder = {}
setmetatable(newPathfinder, Pathfinder)
--newPathfinder:setGrid(grid)
newPathfinder:setFinder(finderName)
--newPathfinder:setWalkable(walkable)
newPathfinder:setMode('DIAGONAL')
newPathfinder:setHeuristic('MANHATTAN')
newPathfinder:setTunnelling(false)
self._finder = Finders.ASTAR
self._heuristic = heuristic
return newPathfinder
end
--- Evaluates [clearance](http://aigamedev.com/open/tutorial/clearance-based-pathfinding/#TheTrueClearanceMetric)
-- for the whole `grid`. It should be called only once, unless the collision map or the
-- __walkable__ attribute changes. The clearance values are calculated and cached within the grid nodes.
-- @class function
-- @treturn pathfinder self (the calling `pathfinder` itself, can be chained)
-- @usage myFinder:annotateGrid()
function Pathfinder:annotateGrid()
assert(self._walkable, 'Finder must implement a walkable value')
for x=self._grid._max_x,self._grid._min_x,-1 do
for y=self._grid._max_y,self._grid._min_y,-1 do
local node = self._grid:getNodeAt(x,y)
if self._grid:isWalkableAt(x,y,self._walkable) then
local nr = self._grid:getNodeAt(node._x+1, node._y)
local nrd = self._grid:getNodeAt(node._x+1, node._y+1)
local nd = self._grid:getNodeAt(node._x, node._y+1)
if nr and nrd and nd then
local m = nrd._clearance[self._walkable] or 0
m = (nd._clearance[self._walkable] or 0)<m and (nd._clearance[self._walkable] or 0) or m
m = (nr._clearance[self._walkable] or 0)<m and (nr._clearance[self._walkable] or 0) or m
node._clearance[self._walkable] = m+1
else
node._clearance[self._walkable] = 1
end
else node._clearance[self._walkable] = 0
end
end
end
self._grid._isAnnotated[self._walkable] = true
return self
end
--- Removes [clearance](http://aigamedev.com/open/tutorial/clearance-based-pathfinding/#TheTrueClearanceMetric)values.
-- Clears cached clearance values for the current __walkable__.
-- @class function
-- @treturn pathfinder self (the calling `pathfinder` itself, can be chained)
-- @usage myFinder:clearAnnotations()
function Pathfinder:clearAnnotations()
assert(self._walkable, 'Finder must implement a walkable value')
for node in self._grid:iter() do
node:removeClearance(self._walkable)
end
self._grid._isAnnotated[self._walkable] = false
return self
end
--- Sets the `grid`. Defines the given `grid` as the one on which the `pathfinder` will perform the search.
-- @class function
-- @tparam grid grid a `grid`
-- @treturn pathfinder self (the calling `pathfinder` itself, can be chained)
-- @usage myFinder:setGrid(myGrid)
function Pathfinder:setGrid(grid)
assert(Assert.inherits(grid, Grid), 'Wrong argument #1. Expected a \'grid\' object')
self._grid = grid
self._grid._eval = self._walkable and type(self._walkable) == 'function'
return self
end
--- Returns the `grid`. This is a reference to the actual `grid` used by the `pathfinder`.
-- @class function
-- @treturn grid the `grid`
-- @usage local myGrid = myFinder:getGrid()
function Pathfinder:getGrid()
return self._grid
end
--- Sets the __walkable__ value or function.
-- @class function
-- @tparam string|int|func walkable the value for walkable nodes.
-- @treturn pathfinder self (the calling `pathfinder` itself, can be chained)
-- @usage
-- -- Value '0' is walkable
-- myFinder:setWalkable(0)
--
-- -- Any value greater than 0 is walkable
-- myFinder:setWalkable(function(n)
-- return n>0
-- end
function Pathfinder:setWalkable(walkable)
assert(Assert.matchType(walkable,'stringintfunctionnil'),
('Wrong argument #1. Expected \'string\', \'number\' or \'function\', got %s.'):format(type(walkable)))
self._walkable = walkable
self._grid._eval = type(self._walkable) == 'function'
return self
end
--- Gets the __walkable__ value or function.
-- @class function
-- @treturn string|int|func the `walkable` value or function
-- @usage local walkable = myFinder:getWalkable()
function Pathfinder:getWalkable()
return self._walkable
end
--- Defines the `finder`. It refers to the search algorithm used by the `pathfinder`.
-- Default finder is `ASTAR`. Use @{Pathfinder:getFinders} to get the list of available finders.
-- @class function
-- @tparam string finderName the name of the `finder` to be used for further searches.
-- @treturn pathfinder self (the calling `pathfinder` itself, can be chained)
-- @usage
-- --To use Breadth-First-Search
-- myFinder:setFinder('BFS')
-- @see Pathfinder:getFinders
function Pathfinder:setFinder(finderName)
if not finderName then
if not self._finder then
finderName = 'ASTAR'
else return
end
end
assert(Finders[finderName],'Not a valid finder name!')
self._finder = finderName
return self
end
--- Returns the name of the `finder` being used.
-- @class function
-- @treturn string the name of the `finder` to be used for further searches.
-- @usage local finderName = myFinder:getFinder()
function Pathfinder:getFinder()
return self._finder
end
--- Returns the list of all available finders names.
-- @class function
-- @treturn {string,...} array of built-in finders names.
-- @usage
-- local finders = myFinder:getFinders()
-- for i, finderName in ipairs(finders) do
-- print(i, finderName)
-- end
function Pathfinder:getFinders()
return Utils.getKeys(Finders)
end
--- Sets a heuristic. This is a function internally used by the `pathfinder` to find the optimal path during a search.
-- Use @{Pathfinder:getHeuristics} to get the list of all available `heuristics`. One can also define
-- his own `heuristic` function.
-- @class function
-- @tparam func|string heuristic `heuristic` function, prototyped as __f(dx,dy)__ or as a `string`.
-- @treturn pathfinder self (the calling `pathfinder` itself, can be chained)
-- @see Pathfinder:getHeuristics
-- @see core.heuristics
-- @usage myFinder:setHeuristic('MANHATTAN')
function Pathfinder:setHeuristic(heuristic)
assert(Heuristic[heuristic] or (type(heuristic) == 'function'),'Not a valid heuristic!')
self._heuristic = Heuristic[heuristic] or heuristic
return self
end
--- Returns the `heuristic` used. Returns the function itself.
-- @class function
-- @treturn func the `heuristic` function being used by the `pathfinder`
-- @see core.heuristics
-- @usage local h = myFinder:getHeuristic()
function Pathfinder:getHeuristic()
return self._heuristic
end
--- Gets the list of all available `heuristics`.
-- @class function
-- @treturn {string,...} array of heuristic names.
-- @see core.heuristics
-- @usage
-- local heur = myFinder:getHeuristic()
-- for i, heuristicName in ipairs(heur) do
-- ...
-- end
function Pathfinder:getHeuristics()
return Utils.getKeys(Heuristic)
end
--- Defines the search `mode`.
-- The default search mode is the `DIAGONAL` mode, which implies 8-possible directions when moving (north, south, east, west and diagonals).
-- In `ORTHOGONAL` mode, only 4-directions are allowed (north, south, east and west).
-- Use @{Pathfinder:getModes} to get the list of all available search modes.
-- @class function
-- @tparam string mode the new search `mode`.
-- @treturn pathfinder self (the calling `pathfinder` itself, can be chained)
-- @see Pathfinder:getModes
-- @see Modes
-- @usage myFinder:setMode('ORTHOGONAL')
function Pathfinder:setMode(mode)
assert(searchModes[mode],'Invalid mode')
self._allowDiagonal = (mode == 'DIAGONAL')
return self
end
--- Returns the search mode.
-- @class function
-- @treturn string the current search mode
-- @see Modes
-- @usage local mode = myFinder:getMode()
function Pathfinder:getMode()
return (self._allowDiagonal and 'DIAGONAL' or 'ORTHOGONAL')
end
--- Gets the list of all available search modes.
-- @class function
-- @treturn {string,...} array of search modes.
-- @see Modes
-- @usage local modes = myFinder:getModes()
-- for modeName in ipairs(modes) do
-- ...
-- end
function Pathfinder:getModes()
return Utils.getKeys(searchModes)
end
--- Enables tunnelling. Defines the ability for the `pathfinder` to tunnel through walls when heading diagonally.
-- This feature __is not compatible__ with Jump Point Search algorithm (i.e. enabling it will not affect Jump Point Search)
-- @class function
-- @tparam bool bool a boolean
-- @treturn pathfinder self (the calling `pathfinder` itself, can be chained)
-- @usage myFinder:setTunnelling(true)
function Pathfinder:setTunnelling(bool)
assert(Assert.isBool(bool), ('Wrong argument #1. Expected boolean, got %s'):format(type(bool)))
self._tunnel = bool
return self
end
--- Returns tunnelling feature state.
-- @class function
-- @treturn bool tunnelling feature actual state
-- @usage local isTunnellingEnabled = myFinder:getTunnelling()
function Pathfinder:getTunnelling()
return self._tunnel
end
--- Calculates a `path`. Returns the `path` from location __[startX, startY]__ to location __[endX, endY]__.
-- Both locations must exist on the collision map. The starting location can be unwalkable.
-- @class function
@ -363,11 +102,9 @@ if (...) then
-- @tparam int startY the y-coordinate for the starting location
-- @tparam int endX the x-coordinate for the goal location
-- @tparam int endY the y-coordinate for the goal location
-- @tparam int clearance the amount of clearance (i.e the pathing agent size) to consider
-- @treturn path a path (array of nodes) when found, otherwise nil
-- @usage local path = myFinder:getPath(1,1,5,5)
function Pathfinder:getPath(startX, startY, startZ, ih, endX, endY, endZ, oh, clearance)
function Pathfinder:getPath(startX, startY, startZ, ih, endX, endY, endZ, oh)
self:reset()
local startNode = self._grid:getNodeAt(startX, startY, startZ)
local endNode = self._grid:getNodeAt(endX, endY, endZ)
@ -381,14 +118,15 @@ if (...) then
assert(startNode, ('Invalid location [%d, %d, %d]'):format(startX, startY, startZ))
assert(endNode and self._grid:isWalkableAt(endX, endY, endZ),
('Invalid or unreachable location [%d, %d, %d]'):format(endX, endY, endZ))
local _endNode = Finders[self._finder](self, startNode, endNode, clearance, toClear)
local _endNode = self._finder(self, startNode, endNode, toClear)
if _endNode then
return Utils.traceBackPath(self, _endNode, startNode)
end
return nil
end
--- Resets the `pathfinder`. This function is called internally between successive pathfinding calls, so you should not
--- Resets the `pathfinder`. This function is called internally between
-- successive pathfinding calls, so you should not
-- use it explicitely, unless under specific circumstances.
-- @class function
-- @treturn pathfinder self (the calling `pathfinder` itself, can be chained)
@ -399,7 +137,6 @@ if (...) then
return self
end
-- Returns Pathfinder class
Pathfinder._VERSION = _VERSION
Pathfinder._RELEASEDATE = _RELEASEDATE
@ -408,5 +145,4 @@ if (...) then
return self:new(...)
end
})
end

View File

@ -5,16 +5,14 @@
if (...) then
-- Internalization
local ipairs = ipairs
local huge = math.huge
-- Dependancies
local _PATH = (...):match('(.+)%.search.astar$')
local Heuristics = require (_PATH .. '.core.heuristics')
local Heap = require (_PATH.. '.core.bheap')
-- Updates G-cost
local function computeCost(node, neighbour, finder, clearance, heuristic)
local function computeCost(node, neighbour, heuristic)
local mCost, heading = heuristic(neighbour, node) -- Heuristics.EUCLIDIAN(neighbour, node)
if node._g + mCost < neighbour._g then
@ -25,31 +23,24 @@ if (...) then
end
-- Updates vertex node-neighbour
local function updateVertex(finder, openList, node, neighbour, endNode, clearance, heuristic, overrideCostEval)
local function updateVertex(openList, node, neighbour, endNode, heuristic)
local oldG = neighbour._g
local cmpCost = overrideCostEval or computeCost
cmpCost(node, neighbour, finder, clearance, heuristic)
computeCost(node, neighbour, heuristic)
if neighbour._g < oldG then
local nClearance = neighbour._clearance[finder._walkable]
local pushThisNode = clearance and nClearance and (nClearance >= clearance)
if (clearance and pushThisNode) or (not clearance) then
if neighbour._opened then neighbour._opened = false end
neighbour._h = heuristic(endNode, neighbour)
neighbour._f = neighbour._g + neighbour._h
openList:push(neighbour)
neighbour._opened = true
end
if neighbour._opened then neighbour._opened = false end
neighbour._h = heuristic(endNode, neighbour)
neighbour._f = neighbour._g + neighbour._h
openList:push(neighbour)
neighbour._opened = true
end
end
-- Calculates a path.
-- Returns the path from location `<startX, startY>` to location `<endX, endY>`.
return function (finder, startNode, endNode, clearance, toClear, overrideHeuristic, overrideCostEval)
local heuristic = overrideHeuristic or finder._heuristic
return function (finder, startNode, endNode, toClear)
local openList = Heap()
startNode._g = 0
startNode._h = heuristic(endNode, startNode)
startNode._h = finder._heuristic(endNode, startNode)
startNode._f = startNode._g + startNode._h
openList:push(startNode)
toClear[startNode] = true
@ -59,17 +50,17 @@ if (...) then
local node = openList:pop()
node._closed = true
if node == endNode then return node end
local neighbours = finder._grid:getNeighbours(node, finder._walkable, finder._allowDiagonal, finder._tunnel)
local neighbours = finder._grid:getNeighbours(node)
for i = 1,#neighbours do
local neighbour = neighbours[i]
if not neighbour._closed then
toClear[neighbour] = true
if not neighbour._opened then
neighbour._g = huge
neighbour._parent = nil
neighbour._parent = nil
end
updateVertex(finder, openList, node, neighbour, endNode, clearance, heuristic, overrideCostEval)
end
updateVertex(openList, node, neighbour, endNode, finder._heuristic)
end
end
--[[
@ -81,8 +72,6 @@ if (...) then
--]]
end
return nil
return nil
end
end

View File

@ -1,46 +0,0 @@
-- Breadth-First search algorithm
if (...) then
-- Internalization
local t_remove = table.remove
local function breadth_first_search(finder, openList, node, endNode, clearance, toClear)
local neighbours = finder._grid:getNeighbours(node, finder._walkable, finder._allowDiagonal, finder._tunnel)
for i = 1,#neighbours do
local neighbour = neighbours[i]
if not neighbour._closed and not neighbour._opened then
local nClearance = neighbour._clearance[finder._walkable]
local pushThisNode = clearance and nClearance and (nClearance >= clearance)
if (clearance and pushThisNode) or (not clearance) then
openList[#openList+1] = neighbour
neighbour._opened = true
neighbour._parent = node
toClear[neighbour] = true
end
end
end
end
-- Calculates a path.
-- Returns the path from location `<startX, startY>` to location `<endX, endY>`.
return function (finder, startNode, endNode, clearance, toClear)
local openList = {} -- We'll use a FIFO queue (simple array)
openList[1] = startNode
startNode._opened = true
toClear[startNode] = true
local node
while (#openList > 0) do
node = openList[1]
t_remove(openList,1)
node._closed = true
if node == endNode then return node end
breadth_first_search(finder, openList, node, endNode, clearance, toClear)
end
return nil
end
end

View File

@ -7,59 +7,46 @@ local Util = require('util')
local turtle = _G.turtle
local WALKABLE = 0
local function createMap(dim)
local map = { }
for _ = 1, dim.ez do
local row = {}
for _ = 1, dim.ex do
local col = { }
for _ = 1, dim.ey do
table.insert(col, WALKABLE)
end
table.insert(row, col)
local function addBlock(grid, b, dim)
if Point.inBox(b, dim) then
local node = grid:getNodeAt(b.x, b.y, b.z)
if node then
node.walkable = 1
end
table.insert(map, row)
end
return map
end
local function addBlock(map, dim, b)
map[b.z + dim.oz][b.x + dim.ox][b.y + dim.oy] = 1
end
-- map shrinks/grows depending upon blocks encountered
-- the map will encompass any blocks encountered, the turtle position, and the destination
local function mapDimensions(dest, blocks, boundingBox)
local function mapDimensions(dest, blocks, boundingBox, dests)
local sx, sz, sy = turtle.point.x, turtle.point.z, turtle.point.y
local ex, ez, ey = turtle.point.x, turtle.point.z, turtle.point.y
local function adjust(pt)
if pt.x < sx then
sx = pt.x
end
if pt.z < sz then
sz = pt.z
elseif pt.x > ex then
ex = pt.x
end
if pt.y < sy then
sy = pt.y
end
if pt.x > ex then
ex = pt.x
end
if pt.z > ez then
ez = pt.z
end
if pt.y > ey then
elseif pt.y > ey then
ey = pt.y
end
if pt.z < sz then
sz = pt.z
elseif pt.z > ez then
ez = pt.z
end
end
adjust(dest)
for _,b in ipairs(blocks) do
for _,d in pairs(dests) do
adjust(d)
end
for _,b in pairs(blocks) do
adjust(b)
end
@ -81,29 +68,23 @@ local function mapDimensions(dest, blocks, boundingBox)
end
return {
ex = ex - sx + 1,
ez = ez - sz + 1,
ey = ey - sy + 1,
ox = -sx + 1,
oz = -sz + 1,
oy = -sy + 1
ex = ex,
ez = ez,
ey = ey,
x = sx,
z = sz,
y = sy
}
end
-- shifting and coordinate flipping
local function pointToMap(dim, pt)
return { x = pt.x + dim.ox, z = pt.y + dim.oy, y = pt.z + dim.oz }
end
local function nodeToPoint(dim, node)
return { x = node:getX() - dim.ox, z = node:getY() - dim.oz, y = node:getZ() - dim.oy }
local function nodeToPoint(node)
return { x = node:getX(), z = node:getZ(), y = node:getY() }
end
local heuristic = function(n, node)
local m, h = Point.calculateMoves(
{ x = node._x, z = node._y, y = node._z, heading = node._heading },
{ x = n._x, z = n._y, y = n._z, heading = n._heading })
{ x = node._x, y = node._y, z = node._z, heading = node._heading },
{ x = n._x, y = n._y, z = n._z, heading = n._heading })
return m, h
end
@ -112,9 +93,9 @@ local function dimsAreEqual(d1, d2)
return d1.ex == d2.ex and
d1.ey == d2.ey and
d1.ez == d2.ez and
d1.ox == d2.ox and
d1.oy == d2.oy and
d1.oz == d2.oz
d1.x == d2.x and
d1.y == d2.y and
d1.z == d2.z
end
-- turtle sensor returns blocks in relation to the world - not turtle orientation
@ -122,7 +103,6 @@ end
-- really kinda dumb since it returns the coordinates as offsets of our location
-- instead of true coordinates
local function addSensorBlocks(blocks, sblocks)
for _,b in pairs(sblocks) do
if b.type ~= 'AIR' then
local pt = { x = turtle.point.x, y = turtle.point.y + b.y, z = turtle.point.z }
@ -142,28 +122,29 @@ local function addSensorBlocks(blocks, sblocks)
end
end
local function selectDestination(pts, box, map, dim)
local function selectDestination(pts, box, grid)
if #pts == 1 then
return pts[1]
end
while #pts > 0 do
local pt = Point.closest(turtle.point, pts)
if (box and not Point.inBox(pt, box)) or
map[pt.z + dim.oz][pt.x + dim.ox][pt.y + dim.oy] == 1 then
if box and not Point.inBox(pt, box) then
Util.removeByValue(pts, pt)
else
if grid:isWalkableAt(pt.x, pt.y, pt.z) then
return pt
end
Util.removeByValue(pts, pt)
else
return pt
end
end
end
local function pathTo(dest, options)
local blocks = options.blocks or turtle.getState().blocks or { }
local dests = options.dest or { dest } -- support alternative destinations
local box = options.box or turtle.getState().box
local lastDim = nil
local map = nil
local grid = nil
if box then
@ -171,32 +152,26 @@ local function pathTo(dest, options)
end
-- Creates a pathfinder object
local myFinder = Pathfinder(grid, 'ASTAR', WALKABLE)
myFinder:setMode('ORTHOGONAL')
myFinder:setHeuristic(heuristic)
local myFinder = Pathfinder(heuristic)
while turtle.point.x ~= dest.x or turtle.point.z ~= dest.z or turtle.point.y ~= dest.y do
-- map expands as we encounter obstacles
local dim = mapDimensions(dest, blocks, box)
local dim = mapDimensions(dest, blocks, box, dests)
-- reuse map if possible
if not lastDim or not dimsAreEqual(dim, lastDim) then
map = createMap(dim)
-- Creates a grid object
grid = Grid(map)
grid = Grid(dim)
myFinder:setGrid(grid)
myFinder:setWalkable(WALKABLE)
lastDim = dim
end
for _,b in ipairs(blocks) do
addBlock(map, dim, b)
for _,b in pairs(blocks) do
addBlock(grid, b, dim)
end
dest = selectDestination(dests, box, map, dim)
dest = selectDestination(dests, box, grid)
if not dest then
-- error('failed to reach destination')
return false, 'failed to reach destination'
@ -206,8 +181,8 @@ local function pathTo(dest, options)
end
-- Define start and goal locations coordinates
local startPt = pointToMap(dim, turtle.point)
local endPt = pointToMap(dim, dest)
local startPt = turtle.point
local endPt = dest
-- Calculates the path, and its length
local path = myFinder:getPath(
@ -218,7 +193,7 @@ local function pathTo(dest, options)
Util.removeByValue(dests, dest)
else
for node in path:nodes() do
local pt = nodeToPoint(dim, node)
local pt = nodeToPoint(node)
if turtle.abort then
return false, 'aborted'
@ -262,6 +237,12 @@ return {
turtle.getState().blocks = blocks
end,
addBlock = function(block)
if turtle.getState().blocks then
table.insert(turtle.getState().blocks, block)
end
end,
reset = function()
turtle.getState().box = nil
turtle.getState().blocks = nil

View File

@ -969,8 +969,23 @@ function turtle.abortAction()
end
-- [[ Pathing ]] --
function turtle.faceAgainst(pt, options) -- 4 sided
function turtle.setPersistent(isPersistent)
if isPersistent then
Pathing.setBlocks({ })
else
Pathing.setBlocks()
end
end
function turtle.setPathingBox(box)
Pathing.setBox(box)
end
function turtle.addWorldBlock(pt)
Pathing.addBlock(pt)
end
function turtle.faceAgainst(pt, options) -- 4 sided
options = options or { }
options.dest = { }
@ -989,7 +1004,6 @@ function turtle.faceAgainst(pt, options) -- 4 sided
end
function turtle.moveAgainst(pt, options) -- 6 sided
options = options or { }
options.dest = { }
@ -1090,6 +1104,32 @@ local function _actionUpAt(action, pt, ...)
end
end
local function _actionXXXAt(action, pt, dir, ...)
local reversed =
{ [0] = 2, [1] = 3, [2] = 0, [3] = 1, [4] = 5, [5] = 4, }
dir = reversed[dir]
local apt = { x = pt.x + headings[dir].xd,
y = pt.y + headings[dir].yd,
z = pt.z + headings[dir].zd, }
local direction
-- ex: place a block at this point, from above, facing east
if dir < 4 then
apt.heading = (dir + 2) % 4
direction = 'forward'
elseif dir == 4 then
apt.heading = pt.heading
direction = 'down'
elseif dir == 5 then
apt.heading = pt.heading
direction = 'up'
end
if turtle.pathfind(apt) then
return action[direction](...)
end
end
function turtle.detectAt(pt) return _actionAt(actionsAt.detect, pt) end
function turtle.detectDownAt(pt) return _actionDownAt(actionsAt.detect, pt) end
function turtle.detectForwardAt(pt) return _actionForwardAt(actionsAt.detect, pt) end
@ -1109,6 +1149,7 @@ function turtle.placeAt(pt, arg) return _actionAt(actionsAt.place, pt, ar
function turtle.placeDownAt(pt, arg) return _actionDownAt(actionsAt.place, pt, arg) end
function turtle.placeForwardAt(pt, arg) return _actionForwardAt(actionsAt.place, pt, arg) end
function turtle.placeUpAt(pt, arg) return _actionUpAt(actionsAt.place, pt, arg) end
function turtle.placeXXXAt(pt, dir, arg) return _actionXXXAt(actionsAt.place, pt, dir, arg) end
function turtle.dropAt(pt, ...) return _actionAt(actionsAt.drop, pt, ...) end
function turtle.dropDownAt(pt, ...) return _actionDownAt(actionsAt.drop, pt, ...) end

View File

@ -24,9 +24,10 @@ Event.addRoutine(function()
while true do
local data = socket:read()
if not data then
print('proxy: lost connection from ' .. socket.dhost)
break
end
socket:write({ proxy[data.fn](unpack(data.args)) })
socket:write({ proxy[data.fn](table.unpack(data.args)) })
end
end
end)

View File

@ -17,7 +17,7 @@ local function netUp()
_G.requireInjector()
local Event = require('event')
_G._e2 = _ENV
for _,file in pairs(fs.list('sys/network')) do
local fn, msg = Util.run(_ENV, 'sys/network/' .. file)
if not fn then
@ -48,8 +48,6 @@ print('Net daemon started')
local function startNetwork()
print('Starting network services')
_G._e1 = _ENV
local success, msg = Util.runFunction(
Util.shallowCopy(_ENV), netUp)