1
0
mirror of https://github.com/janet-lang/janet synced 2024-06-28 16:13:16 +00:00
janet/test/suite7.janet
Calvin Rose b8032ec61d Add propagate function and opcode
This allows better stacktraces when manually intercepting
signals to clean up resources. Also allows functionality
from Common Lisp's unwind-protect, such as calling cleanup code
while unwindinding the stack, restarting on certain signals, and
just in general having more control over signal and signal propagation.

Also fix a bug encountered while implementing with-resource in the
compiler. Desturcturing arguments that were not the last argument
would often result in bad code generation, as slots used to destructure
the earlier arguments would invalidate the later parameters. This is
fixed by allocating all named parameters before doing any destructuring.
2019-06-24 12:44:13 -04:00

109 lines
3.9 KiB
Clojure

# Copyright (c) 2019 Calvin Rose & contributors
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
(import ./helper :prefix "" :exit true)
(start-suite 7)
# Using a large test grammar
(def- core-env (table/getproto (fiber/getenv (fiber/current))))
(def- specials {'fn true
'var true
'do true
'while true
'def true
'splice true
'set true
'unquote true
'quasiquote true
'quote true
'if true})
(defn- check-number [text] (and (scan-number text) text))
(defn capture-sym
[text]
(def sym (symbol text))
[(if (or (core-env sym) (specials sym)) :coresym :symbol) text])
(def grammar
~{:ws (set " \v\t\r\f\n\0")
:readermac (set "';~,")
:symchars (+ (range "09" "AZ" "az" "\x80\xFF") (set "!$%&*+-./:<?=>@^_|"))
:token (some :symchars)
:hex (range "09" "af" "AF")
:escape (* "\\" (+ (set "ntrvzf0e\"\\")
(* "x" :hex :hex)
(error (constant "bad hex escape"))))
:comment (/ '(* "#" (any (if-not (+ "\n" -1) 1))) (constant :comment))
:symbol (/ ':token ,capture-sym)
:keyword (/ '(* ":" (any :symchars)) (constant :keyword))
:constant (/ '(+ "true" "false" "nil") (constant :constant))
:bytes (* "\"" (any (+ :escape (if-not "\"" 1))) "\"")
:string (/ ':bytes (constant :string))
:buffer (/ '(* "@" :bytes) (constant :string))
:long-bytes {:delim (some "`")
:open (capture :delim :n)
:close (cmt (* (not (> -1 "`")) (-> :n) ':delim) ,=)
:main (drop (* :open (any (if-not :close 1)) :close))}
:long-string (/ ':long-bytes (constant :string))
:long-buffer (/ '(* "@" :long-bytes) (constant :string))
:number (/ (cmt ':token ,check-number) (constant :number))
:raw-value (+ :comment :constant :number :keyword
:string :buffer :long-string :long-buffer
:parray :barray :ptuple :btuple :struct :dict :symbol)
:value (* (? '(some (+ :ws :readermac))) :raw-value '(any :ws))
:root (any :value)
:root2 (any (* :value :value))
:ptuple (* '"(" :root (+ '")" (error "")))
:btuple (* '"[" :root (+ '"]" (error "")))
:struct (* '"{" :root2 (+ '"}" (error "")))
:parray (* '"@" :ptuple)
:barray (* '"@" :btuple)
:dict (* '"@" :struct)
:main (+ :root (error ""))})
(def p (peg/compile grammar))
# Just make sure is valgrind clean.
(def p (-> p make-image load-image))
(assert (peg/match p "abc") "complex peg grammar 1")
(assert (peg/match p "[1 2 3 4]") "complex peg grammar 2")
#
# fn compilation special
#
(defn myfn1 [[x y z] & more]
more)
(defn myfn2 [head & more]
more)
(assert (= (myfn1 [1 2 3] 4 5 6) (myfn2 [:a :b :c] 4 5 6)) "destructuring and varargs")
#
# Test propagation of signals via fibers
#
(def f (fiber/new (fn [] (error :abc) 1) :ei))
(def res (resume f))
(assert-error :abc (propagate res f) "propagate 1")
(end-suite)