1
0
mirror of https://github.com/janet-lang/janet synced 2024-12-24 23:40:27 +00:00
janet/test/suite5.janet
Calvin Rose 39f1d81fd4 Use :length method for (length abstract)
Also adds the janet_lengthv API call. This is
needed because janet_length returns a 32 bit integer, where
as lengthv lets us return larger values (useful for typed arrays).

janet_mcall is an api function that should make it easier to call
a janet method from C code. It shares a similar signature with
janet_call.
2019-09-08 19:26:16 -05:00

132 lines
4.6 KiB
Clojure

# Copyright (c) 2019 Calvin Rose & contributors
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
(import ./helper :prefix "" :exit true)
(start-suite 5)
# some tests typed array
(defn inspect-tarray
[x]
(def a @[])
(for i 0 (tarray/length x) (array/push a (x i)))
(pp a))
(assert-no-error
"create some typed arrays"
(do
(def a (tarray/new :float64 10))
(def b (tarray/new :float64 5 2 0 a))
(def c (tarray/new :uint32 20))))
(assert-no-error
"create some typed arrays from a buffer"
(do
(def buf (tarray/buffer (+ 64 (* (+ 1 (* (- 10 1) 2)) 8))))
(def b (tarray/new :float64 10 2 64 buf))))
(def a (tarray/new :float64 10))
(def b (tarray/new :float64 5 2 0 a))
(assert-no-error
"fill tarray"
(for i 0 (tarray/length a)
(set (a i) i)))
(assert (= (tarray/buffer a) (tarray/buffer b)) "tarray views pointing same buffer")
(assert (= (a 2) (b 1) ) "tarray views pointing same buffer")
(assert (= ((tarray/slice b) 3) (b 3) (a 6) 6) "tarray slice")
(assert (= ((tarray/slice b 1) 2) (b 3) (a 6) 6) "tarray slice")
(assert (= (:length a) (length a)) "length method and function")
(assert (= ((unmarshal (marshal b)) 3) (b 3)) "marshal")
# Array remove
(assert (deep= (array/remove @[1 2 3 4 5] 2) @[1 2 4 5]) "array/remove 1")
(assert (deep= (array/remove @[1 2 3 4 5] 2 2) @[1 2 5]) "array/remove 2")
(assert (deep= (array/remove @[1 2 3 4 5] 2 200) @[1 2]) "array/remove 3")
(assert (deep= (array/remove @[1 2 3 4 5] -3 200) @[1 2 3]) "array/remove 4")
# Break
(var summation 0)
(for i 0 10
(+= summation i)
(if (= i 7) (break)))
(assert (= summation 28) "break 1")
(assert (= nil ((fn [] (break) 4))) "break 2")
# Break with value
# Shouldn't error out
(assert-no-error "break 3" (for i 0 10 (if (> i 8) (break i))))
(assert-no-error "break 4" ((fn [i] (if (> i 8) (break i))) 100))
# take
(assert (deep= (take 0 []) []) "take 1")
(assert (deep= (take 10 []) []) "take 2")
(assert (deep= (take 0 [1 2 3 4 5]) []) "take 3")
(assert (deep= (take 10 [1 2 3]) [1 2 3]) "take 4")
(assert (deep= (take -1 [:a :b :c]) []) "take 5")
(assert-error :invalid-type (take 3 {}) "take 6")
# take-until
(assert (deep= (take-until pos? @[]) []) "take-until 1")
(assert (deep= (take-until pos? @[1 2 3]) []) "take-until 2")
(assert (deep= (take-until pos? @[-1 -2 -3]) [-1 -2 -3]) "take-until 3")
(assert (deep= (take-until pos? @[-1 -2 3]) [-1 -2]) "take-until 4")
(assert (deep= (take-until pos? @[-1 1 -2]) [-1]) "take-until 5")
(assert (deep= (take-until |(= $ 115) "books") "book") "take-until 6")
# take-while
(assert (deep= (take-while neg? @[]) []) "take-while 1")
(assert (deep= (take-while neg? @[1 2 3]) []) "take-while 2")
(assert (deep= (take-while neg? @[-1 -2 -3]) [-1 -2 -3]) "take-while 3")
(assert (deep= (take-while neg? @[-1 -2 3]) [-1 -2]) "take-while 4")
(assert (deep= (take-while neg? @[-1 1 -2]) [-1]) "take-while 5")
# drop
(assert (deep= (drop 0 []) []) "drop 1")
(assert (deep= (drop 10 []) []) "drop 2")
(assert (deep= (drop 0 [1 2 3 4 5]) [1 2 3 4 5]) "drop 3")
(assert (deep= (drop 10 [1 2 3]) []) "drop 4")
(assert (deep= (drop -2 [:a :b :c]) [:a :b :c]) "drop 5")
(assert-error :invalid-type (drop 3 {}) "drop 6")
# drop-until
(assert (deep= (drop-until pos? @[]) []) "drop-until 1")
(assert (deep= (drop-until pos? @[1 2 3]) [1 2 3]) "drop-until 2")
(assert (deep= (drop-until pos? @[-1 -2 -3]) []) "drop-until 3")
(assert (deep= (drop-until pos? @[-1 -2 3]) [3]) "drop-until 4")
(assert (deep= (drop-until pos? @[-1 1 -2]) [1 -2]) "drop-until 5")
(assert (deep= (drop-until |(= $ 115) "books") "s") "drop-until 6")
# Quasiquote bracketed tuples
(assert (= (tuple/type ~[1 2 3]) (tuple/type '[1 2 3])) "quasiquote bracket tuples")
(end-suite)