1
0
mirror of https://github.com/janet-lang/janet synced 2024-11-28 02:59:54 +00:00

Remove ValuePrint. Improve ValueToString for reference types.

This commit is contained in:
Calvin Rose 2017-02-13 00:11:30 -05:00
parent 37faac1f8a
commit 42ecaf301a
4 changed files with 256 additions and 313 deletions

26
main.c
View File

@ -7,16 +7,21 @@
#include "value.h"
#include "disasm.h"
void StringPut(uint8_t * string) {
uint32_t i;
uint32_t len = VStringSize(string);
for (i = 0; i < len; ++i)
fputc(string[i], stdout);
}
/* Test c function */
Value print(VM * vm) {
uint32_t i, j, count;
uint32_t j, count;
Value nil;
count = VMCountArgs(vm);
for (j = 0; j < count; ++j) {
uint8_t * string = ValueToString(vm, VMGetArg(vm, j));
uint32_t len = VStringSize(string);
for (i = 0; i < len; ++i)
fputc(string[i], stdout);
StringPut(string);
fputc('\n', stdout);
}
nil.type = TYPE_NIL;
@ -25,7 +30,7 @@ Value print(VM * vm) {
/* A simple repl for debugging */
void debugRepl() {
char buffer[128] = {0};
char buffer[1024] = {0};
const char * reader = buffer;
Value func;
VM vm;
@ -46,7 +51,7 @@ void debugRepl() {
while (p.status == PARSER_PENDING) {
/* Get some input if we are done */
if (*reader == '\0') {
printf("> ");
printf(">> ");
if (!fgets(buffer, sizeof(buffer), stdin)) {
return;
}
@ -86,9 +91,9 @@ void debugRepl() {
}
/* Print asm */
printf("\n");
dasmFunc(stdout, func.data.func);
printf("\n");
//printf("\n");
//dasmFunc(stdout, func.data.func);
//printf("\n");
/* Execute function */
VMLoad(&vm, func);
@ -98,7 +103,8 @@ void debugRepl() {
buffer[0] = 0;
continue;
} else {
ValuePrint(vm.ret, 0);
uint8_t * string = ValueToString(&vm, vm.ret);
StringPut(string);
printf("\n");
}
}

86
value.c
View File

@ -5,79 +5,6 @@
#include "ds.h"
#include "vm.h"
/* Print the bytecode for a FuncDef */
static void FuncDefBytecodePrint(FuncDef * def) {
uint32_t count, i;
count = def->byteCodeLen;
printf("(bytecode)[");
if (count) {
for (i = 0; i < count - 1; ++i) {
printf("%04x ", def->byteCode[i]);
}
printf("%04x", def->byteCode[i]);
}
printf("]");
}
/* Print a value recursively. Used for debugging */
void ValuePrint(Value x, uint32_t indent) {
uint32_t i;
for (i = 0; i < indent; ++i)
fputc(' ', stdout);
switch (x.type) {
case TYPE_NIL:
printf("<nil>");
break;
case TYPE_BOOLEAN:
printf(x.data.boolean ? "<true>" : "<false>");
break;
case TYPE_NUMBER:
printf("%f", x.data.number);
break;
case TYPE_FORM:
case TYPE_ARRAY:
if (x.type == TYPE_ARRAY) printf(" [\n"); else printf(" (\n");
for (i = 0; i < x.data.array->count; ++i) {
ValuePrint(x.data.array->data[i], indent + 4);
printf("\n");
}
for (i = 0; i < indent; ++i) fputc(' ', stdout);
if (x.type == TYPE_ARRAY) printf(" ]\n"); else printf(" )\n");
break;
case TYPE_STRING:
printf("\"%.*s\"", VStringSize(x.data.string), (char *) x.data.string);
break;
case TYPE_SYMBOL:
printf("%.*s", VStringSize(x.data.string), (char *) x.data.string);
break;
case TYPE_CFUNCTION:
printf("<cfunction>");
break;
case TYPE_FUNCTION:
printf("<function ");
FuncDefBytecodePrint(x.data.func->def);
printf(">");
break;
case TYPE_DICTIONARY:
printf("<dictionary>");
break;
case TYPE_BYTEBUFFER:
printf("<bytebuffer>");
break;
case TYPE_FUNCDEF:
printf("<funcdef ");
FuncDefBytecodePrint(x.data.funcdef);
printf(">");
break;
case TYPE_FUNCENV:
printf("<funcenv>");
break;
case TYPE_THREAD:
printf("<thread>");
break;
}
}
static uint8_t * LoadCString(VM * vm, const char * string, uint32_t len) {
uint8_t * data = VMAlloc(vm, len + 2 * sizeof(uint32_t));
data += 2 * sizeof(uint32_t);
@ -104,12 +31,12 @@ static uint8_t * NumberToString(VM * vm, Number x) {
return data;
}
static const char * HEX_CHARACTERS = "0123456789ABCDEF";
static const char * HEX_CHARACTERS = "0123456789abcdef";
#define HEX(i) (((uint8_t *) HEX_CHARACTERS)[(i)])
/* Returns a string description for a pointer */
static uint8_t * StringDescription(VM * vm, const char * title, uint32_t titlelen, void * pointer) {
uint32_t len = 3 + titlelen + sizeof(pointer) * 2;
uint32_t len = 5 + titlelen + sizeof(void *) * 2;
uint32_t i;
uint8_t * data = VMAlloc(vm, len + 2 * sizeof(uint32_t));
uint8_t * c;
@ -125,12 +52,17 @@ static uint8_t * StringDescription(VM * vm, const char * title, uint32_t titlele
*c++ = ((uint8_t *)title) [i];
}
*c++ = ' ';
for (i = 0; i < sizeof(void *); ++i) {
uint8_t byte = buf.bytes[i];
*c++ = '0';
*c++ = 'x';
for (i = sizeof(void *); i > 0; --i) {
uint8_t byte = buf.bytes[i - 1];
if (!byte) continue;
*c++ = HEX(byte >> 4);
*c++ = HEX(byte & 0xF);
}
*c++ = '>';
VStringHash(data) = 0;
VStringSize(data) = len;
return data;
}

View File

@ -3,8 +3,6 @@
#include "datatypes.h"
void ValuePrint(Value x, uint32_t indent);
int ValueCompare(Value x, Value y);
int ValueEqual(Value x, Value y);

455
vm.c
View File

@ -467,259 +467,262 @@ int VMStart(VM * vm) {
}
for (;;) {
Value temp, v1, v2;
uint16_t opcode = *vm->pc;
switch (opcode) {
Value temp, v1, v2;
#define DO_BINARY_MATH(op) \
v1 = vm->base[vm->pc[2]]; \
v2 = vm->base[vm->pc[3]]; \
VMAssert(vm, v1.type == TYPE_NUMBER, VMS_EXPECTED_NUMBER_LOP); \
VMAssert(vm, v2.type == TYPE_NUMBER, VMS_EXPECTED_NUMBER_ROP); \
temp.type = TYPE_NUMBER; \
temp.data.number = v1.data.number op v2.data.number; \
vm->base[vm->pc[1]] = temp; \
vm->pc += 4; \
break;
#define DO_BINARY_MATH(op) \
v1 = vm->base[vm->pc[2]]; \
v2 = vm->base[vm->pc[3]]; \
VMAssert(vm, v1.type == TYPE_NUMBER, VMS_EXPECTED_NUMBER_LOP); \
VMAssert(vm, v2.type == TYPE_NUMBER, VMS_EXPECTED_NUMBER_ROP); \
temp.type = TYPE_NUMBER; \
temp.data.number = v1.data.number op v2.data.number; \
vm->base[vm->pc[1]] = temp; \
vm->pc += 4; \
break;
case VM_OP_ADD: /* Addition */
DO_BINARY_MATH(+)
case VM_OP_ADD: /* Addition */
DO_BINARY_MATH(+)
case VM_OP_SUB: /* Subtraction */
DO_BINARY_MATH(-)
case VM_OP_SUB: /* Subtraction */
DO_BINARY_MATH(-)
case VM_OP_MUL: /* Multiplication */
DO_BINARY_MATH(*)
case VM_OP_MUL: /* Multiplication */
DO_BINARY_MATH(*)
case VM_OP_DIV: /* Division */
DO_BINARY_MATH(/)
case VM_OP_DIV: /* Division */
DO_BINARY_MATH(/)
#undef DO_BINARY_MATH
#undef DO_BINARY_MATH
case VM_OP_NOT: /* Boolean unary (Boolean not) */
temp.type = TYPE_BOOLEAN;
temp.data.boolean = !truthy(vm->base[vm->pc[2]]);
vm->base[vm->pc[1]] = temp;
vm->pc += 3;
break;
case VM_OP_NOT: /* Boolean unary (Boolean not) */
temp.type = TYPE_BOOLEAN;
temp.data.boolean = !truthy(vm->base[vm->pc[2]]);
vm->base[vm->pc[1]] = temp;
vm->pc += 3;
break;
case VM_OP_LD0: /* Load 0 */
temp.type = TYPE_NUMBER;
temp.data.number = 0;
vm->base[vm->pc[1]] = temp;
vm->pc += 2;
break;
case VM_OP_LD0: /* Load 0 */
temp.type = TYPE_NUMBER;
temp.data.number = 0;
vm->base[vm->pc[1]] = temp;
vm->pc += 2;
break;
case VM_OP_LD1: /* Load 1 */
temp.type = TYPE_NUMBER;
temp.data.number = 1;
vm->base[vm->pc[1]] = temp;
vm->pc += 2;
break;
case VM_OP_LD1: /* Load 1 */
temp.type = TYPE_NUMBER;
temp.data.number = 1;
vm->base[vm->pc[1]] = temp;
vm->pc += 2;
break;
case VM_OP_FLS: /* Load False */
temp.type = TYPE_BOOLEAN;
temp.data.boolean = 0;
vm->base[vm->pc[1]] = temp;
vm->pc += 2;
break;
case VM_OP_FLS: /* Load False */
temp.type = TYPE_BOOLEAN;
temp.data.boolean = 0;
vm->base[vm->pc[1]] = temp;
vm->pc += 2;
break;
case VM_OP_TRU: /* Load True */
temp.type = TYPE_BOOLEAN;
temp.data.boolean = 1;
vm->base[vm->pc[1]] = temp;
vm->pc += 2;
break;
case VM_OP_TRU: /* Load True */
temp.type = TYPE_BOOLEAN;
temp.data.boolean = 1;
vm->base[vm->pc[1]] = temp;
vm->pc += 2;
break;
case VM_OP_NIL: /* Load Nil */
temp.type = TYPE_NIL;
vm->base[vm->pc[1]] = temp;
vm->pc += 2;
break;
case VM_OP_NIL: /* Load Nil */
temp.type = TYPE_NIL;
vm->base[vm->pc[1]] = temp;
vm->pc += 2;
break;
case VM_OP_I16: /* Load Small Integer */
temp.type = TYPE_NUMBER;
temp.data.number = ((int16_t *)(vm->pc))[2];
vm->base[vm->pc[1]] = temp;
vm->pc += 3;
break;
case VM_OP_I16: /* Load Small Integer */
temp.type = TYPE_NUMBER;
temp.data.number = ((int16_t *)(vm->pc))[2];
vm->base[vm->pc[1]] = temp;
vm->pc += 3;
break;
case VM_OP_UPV: /* Load Up Value */
temp = vm->frame->callee;
VMAssert(vm, temp.type == TYPE_FUNCTION, EXPECTED_FUNCTION);
vm->base[vm->pc[1]] = *GetUpValue(vm, temp.data.func, vm->pc[2], vm->pc[3]);
case VM_OP_UPV: /* Load Up Value */
temp = vm->frame->callee;
VMAssert(vm, temp.type == TYPE_FUNCTION, EXPECTED_FUNCTION);
vm->base[vm->pc[1]] = *GetUpValue(vm, temp.data.func, vm->pc[2], vm->pc[3]);
vm->pc += 4;
break;
case VM_OP_JIF: /* Jump If */
if (truthy(vm->base[vm->pc[1]])) {
vm->pc += 4;
break;
case VM_OP_JIF: /* Jump If */
if (truthy(vm->base[vm->pc[1]])) {
vm->pc += 4;
} else {
vm->pc += *((int32_t *)(vm->pc + 2));
}
break;
case VM_OP_JMP: /* Jump */
vm->pc += *((int32_t *)(vm->pc + 1));
break;
case VM_OP_CAL: /* Call */
VMCallOp(vm);
break;
case VM_OP_RET: /* Return */
VMReturn(vm, vm->base[vm->pc[1]]);
break;
case VM_OP_SUV: /* Set Up Value */
temp = vm->frame->callee;
VMAssert(vm, temp.type == TYPE_FUNCTION, EXPECTED_FUNCTION);
*GetUpValue(vm, temp.data.func, vm->pc[2], vm->pc[3]) = vm->base[vm->pc[1]];
vm->pc += 4;
break;
case VM_OP_CST: /* Load constant value */
temp = vm->frame->callee;
VMAssert(vm, temp.type == TYPE_FUNCTION, EXPECTED_FUNCTION);
vm->base[vm->pc[1]] = LoadConstant(vm, temp.data.func, vm->pc[2]);
vm->pc += 3;
break;
case VM_OP_I32: /* Load 32 bit integer */
temp.type = TYPE_NUMBER;
temp.data.number = *((int32_t *)(vm->pc + 2));
vm->base[vm->pc[1]] = temp;
vm->pc += 4;
break;
case VM_OP_F64: /* Load 64 bit float */
temp.type = TYPE_NUMBER;
temp.data.number = (Number) *((double *)(vm->pc + 2));
vm->base[vm->pc[1]] = temp;
vm->pc += 6;
break;
case VM_OP_MOV: /* Move Values */
vm->base[vm->pc[1]] = vm->base[vm->pc[2]];
vm->pc += 3;
break;
case VM_OP_CLN: /* Create closure from constant FuncDef */
vm->base[vm->pc[1]] = VMMakeClosure(vm, vm->pc[2]);
vm->pc += 3;
break;
case VM_OP_EQL: /* Equality */
temp.type = TYPE_BOOLEAN;
temp.data.boolean = ValueEqual(vm->base[vm->pc[2]], vm->base[vm->pc[3]]);
vm->base[vm->pc[1]] = temp;
vm->pc += 4;
break;
case VM_OP_LTN: /* Less Than */
temp.type = TYPE_BOOLEAN;
temp.data.boolean = (ValueCompare(vm->base[vm->pc[2]], vm->base[vm->pc[3]]) == -1);
vm->base[vm->pc[1]] = temp;
vm->pc += 4;
break;
case VM_OP_LTE: /* Less Than or Equal to */
temp.type = TYPE_BOOLEAN;
temp.data.boolean = (ValueEqual(vm->base[vm->pc[2]], vm->base[vm->pc[3]]) != 1);
vm->base[vm->pc[1]] = temp;
vm->pc += 4;
break;
case VM_OP_ARR: /* Array literal */
{
uint32_t i;
uint32_t arrayLen = vm->pc[2];
Array * array = ArrayNew(vm, arrayLen);
array->count = arrayLen;
for (i = 0; i < arrayLen; ++i)
array->data[i] = vm->base[vm->pc[3 + i]];
temp.type = TYPE_ARRAY;
temp.data.array = array;
vm->base[vm->pc[1]] = temp;
vm->pc += 3 + arrayLen;
}
break;
case VM_OP_DIC: /* Dictionary literal */
{
uint32_t i = 3;
uint32_t kvs = vm->pc[2];
Dictionary * dict = DictNew(vm, kvs + 2);
kvs = kvs + 3;
while (i < kvs) {
v1 = vm->base[vm->pc[i++]];
v2 = vm->base[vm->pc[i++]];
DictPut(vm, dict, v1, v2);
}
temp.type = TYPE_DICTIONARY;
temp.data.dict = dict;
vm->base[vm->pc[1]] = temp;
vm->pc += kvs;
}
break;
case VM_OP_TCL: /* Tail call */
VMTailCallOp(vm);
break;
/* Macro for generating some math operators */
#define DO_MULTI_MATH(op, start) { \
uint16_t count = vm->pc[2]; \
uint16_t i; \
Number accum = start; \
for (i = 0; i < count; ++i) { \
v1 = vm->base[vm->pc[3 + i]]; \
VMAssert(vm, v1.type == TYPE_NUMBER, "Expected number"); \
accum = accum op v1.data.number; \
} \
temp.type = TYPE_NUMBER; \
temp.data.number = accum; \
vm->base[vm->pc[1]] = temp; \
vm->pc += 3 + count; \
break; \
} else {
vm->pc += *((int32_t *)(vm->pc + 2));
}
break;
/* Vectorized math */
case VM_OP_ADM:
DO_MULTI_MATH(+, 0)
case VM_OP_JMP: /* Jump */
vm->pc += *((int32_t *)(vm->pc + 1));
break;
case VM_OP_SBM:
DO_MULTI_MATH(-, 0)
case VM_OP_CAL: /* Call */
VMCallOp(vm);
break;
case VM_OP_MUM:
DO_MULTI_MATH(*, 1)
case VM_OP_RET: /* Return */
VMReturn(vm, vm->base[vm->pc[1]]);
break;
case VM_OP_DVM:
DO_MULTI_MATH(/, 1)
case VM_OP_SUV: /* Set Up Value */
temp = vm->frame->callee;
VMAssert(vm, temp.type == TYPE_FUNCTION, EXPECTED_FUNCTION);
*GetUpValue(vm, temp.data.func, vm->pc[2], vm->pc[3]) = vm->base[vm->pc[1]];
vm->pc += 4;
break;
#undef DO_MULTI_MATH
case VM_OP_CST: /* Load constant value */
temp = vm->frame->callee;
VMAssert(vm, temp.type == TYPE_FUNCTION, EXPECTED_FUNCTION);
vm->base[vm->pc[1]] = LoadConstant(vm, temp.data.func, vm->pc[2]);
vm->pc += 3;
break;
case VM_OP_RTN: /* Return nil */
temp.type = TYPE_NIL;
VMReturn(vm, temp);
break;
case VM_OP_I32: /* Load 32 bit integer */
temp.type = TYPE_NUMBER;
temp.data.number = *((int32_t *)(vm->pc + 2));
vm->base[vm->pc[1]] = temp;
vm->pc += 4;
break;
case VM_OP_GET:
temp = ValueGet(vm, vm->base[vm->pc[2]], vm->base[vm->pc[3]]);
vm->base[vm->pc[1]] = temp;
vm->pc += 4;
break;
case VM_OP_F64: /* Load 64 bit float */
temp.type = TYPE_NUMBER;
temp.data.number = (Number) *((double *)(vm->pc + 2));
vm->base[vm->pc[1]] = temp;
vm->pc += 6;
break;
case VM_OP_SET:
ValueSet(vm, vm->base[vm->pc[1]], vm->base[vm->pc[2]], vm->base[vm->pc[3]]);
vm->pc += 4;
break;
case VM_OP_MOV: /* Move Values */
vm->base[vm->pc[1]] = vm->base[vm->pc[2]];
vm->pc += 3;
break;
default:
VMError(vm, "Unknown opcode");
break;
case VM_OP_CLN: /* Create closure from constant FuncDef */
vm->base[vm->pc[1]] = VMMakeClosure(vm, vm->pc[2]);
vm->pc += 3;
break;
case VM_OP_EQL: /* Equality */
temp.type = TYPE_BOOLEAN;
temp.data.boolean = ValueEqual(vm->base[vm->pc[2]], vm->base[vm->pc[3]]);
vm->base[vm->pc[1]] = temp;
vm->pc += 4;
break;
case VM_OP_LTN: /* Less Than */
temp.type = TYPE_BOOLEAN;
temp.data.boolean = (ValueCompare(vm->base[vm->pc[2]], vm->base[vm->pc[3]]) == -1);
vm->base[vm->pc[1]] = temp;
vm->pc += 4;
break;
case VM_OP_LTE: /* Less Than or Equal to */
temp.type = TYPE_BOOLEAN;
temp.data.boolean = (ValueEqual(vm->base[vm->pc[2]], vm->base[vm->pc[3]]) != 1);
vm->base[vm->pc[1]] = temp;
vm->pc += 4;
break;
case VM_OP_ARR: /* Array literal */
{
uint32_t i;
uint32_t arrayLen = vm->pc[2];
Array * array = ArrayNew(vm, arrayLen);
array->count = arrayLen;
for (i = 0; i < arrayLen; ++i)
array->data[i] = vm->base[vm->pc[3 + i]];
temp.type = TYPE_ARRAY;
temp.data.array = array;
vm->base[vm->pc[1]] = temp;
vm->pc += 3 + arrayLen;
}
break;
case VM_OP_DIC: /* Dictionary literal */
{
uint32_t i = 3;
uint32_t kvs = vm->pc[2];
Dictionary * dict = DictNew(vm, kvs + 2);
kvs = kvs + 3;
while (i < kvs) {
v1 = vm->base[vm->pc[i++]];
v2 = vm->base[vm->pc[i++]];
DictPut(vm, dict, v1, v2);
}
temp.type = TYPE_DICTIONARY;
temp.data.dict = dict;
vm->base[vm->pc[1]] = temp;
vm->pc += kvs;
}
break;
case VM_OP_TCL: /* Tail call */
VMTailCallOp(vm);
break;
/* Macro for generating some math operators */
#define DO_MULTI_MATH(op, start) { \
uint16_t count = vm->pc[2]; \
uint16_t i; \
Number accum = start; \
for (i = 0; i < count; ++i) { \
v1 = vm->base[vm->pc[3 + i]]; \
VMAssert(vm, v1.type == TYPE_NUMBER, "Expected number"); \
accum = accum op v1.data.number; \
} \
temp.type = TYPE_NUMBER; \
temp.data.number = accum; \
vm->base[vm->pc[1]] = temp; \
vm->pc += 3 + count; \
break; \
}
/* Vectorized math */
case VM_OP_ADM:
DO_MULTI_MATH(+, 0)
case VM_OP_SBM:
DO_MULTI_MATH(-, 0)
case VM_OP_MUM:
DO_MULTI_MATH(*, 1)
case VM_OP_DVM:
DO_MULTI_MATH(/, 1)
#undef DO_MULTI_MATH
case VM_OP_RTN: /* Return nil */
temp.type = TYPE_NIL;
VMReturn(vm, temp);
break;
case VM_OP_GET:
temp = ValueGet(vm, vm->base[vm->pc[2]], vm->base[vm->pc[3]]);
vm->base[vm->pc[1]] = temp;
vm->pc += 4;
break;
case VM_OP_SET:
ValueSet(vm, vm->base[vm->pc[1]], vm->base[vm->pc[2]], vm->base[vm->pc[3]]);
vm->pc += 4;
break;
default:
VMError(vm, "Unknown opcode");
break;
}
/* Move collection only to places that allocate memory */
/* This, however, is good for testing */
VMMaybeCollect(vm);
}
}
@ -753,6 +756,10 @@ void VMInit(VM * vm) {
/* Garbage collection */
vm->blocks = NULL;
vm->nextCollection = 0;
/* Setting memoryInterval to zero currently forces
* a collection pretty much every cycle, which is
* obviously horrible for performance. It helps ensure
* there are no memory bugs during dev */
vm->memoryInterval = 0;
vm->black = 0;
vm->lock = 0;