1
0
mirror of https://github.com/janet-lang/janet synced 2024-11-06 00:36:17 +00:00
janet/vm.c

781 lines
24 KiB
C
Raw Normal View History

2017-02-09 20:02:59 +00:00
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "vm.h"
#include "value.h"
#include "ds.h"
2017-02-09 20:02:59 +00:00
#define VMArg(i) (vm->base + (i))
#define VMOpArg(i) (VMArg(vm->pc[(i)]))
static const char OOM[] = "Out of memory";
static const char NO_UPVALUE[] = "Out of memory";
static const char EXPECTED_FUNCTION[] = "Expected function";
static const char VMS_EXPECTED_NUMBER_ROP[] = "Expected right operand to be number";
static const char VMS_EXPECTED_NUMBER_LOP[] = "Expected left operand to be number";
/* The metadata header associated with an allocated block of memory */
#define GCHeader(mem) ((GCMemoryHeader *)(mem) - 1)
/* Memory header struct. Node of a linked list of memory blocks. */
typedef struct GCMemoryHeader GCMemoryHeader;
struct GCMemoryHeader {
GCMemoryHeader * next;
uint32_t color;
};
/* Forward declaration */
static void VMMark(VM * vm, Value * x);
/* Helper to mark function environments */
static void VMMarkFuncEnv(VM * vm, FuncEnv * env) {
if (GCHeader(env)->color != vm->black) {
Value temp;
GCHeader(env)->color = vm->black;
if (env->thread) {
temp.type = TYPE_THREAD;
temp.data.array = env->thread;
VMMark(vm, &temp);
} else {
uint32_t count = env->stackOffset;
uint32_t i;
GCHeader(env->values)->color = vm->black;
for (i = 0; i < count; ++i) {
VMMark(vm, env->values + i);
}
}
}
}
/* Mark allocated memory associated with a value. This is
* the main function for doing garbage collection. */
static void VMMark(VM * vm, Value * x) {
switch (x->type) {
case TYPE_NIL:
case TYPE_BOOLEAN:
case TYPE_NUMBER:
case TYPE_CFUNCTION:
break;
case TYPE_STRING:
case TYPE_SYMBOL:
GCHeader(VStringRaw(x->data.string))->color = vm->black;
break;
case TYPE_BYTEBUFFER:
GCHeader(x->data.buffer)->color = vm->black;
GCHeader(x->data.buffer->data)->color = vm->black;
break;
case TYPE_ARRAY:
case TYPE_FORM:
if (GCHeader(x->data.array)->color != vm->black) {
uint32_t i, count;
count = x->data.array->count;
GCHeader(x->data.array)->color = vm->black;
GCHeader(x->data.array->data)->color = vm->black;
for (i = 0; i < count; ++i)
VMMark(vm, x->data.array->data + i);
}
break;
case TYPE_THREAD:
if (GCHeader(x->data.array)->color != vm->black) {
uint32_t i, count;
count = x->data.array->count;
GCHeader(x->data.array)->color = vm->black;
GCHeader(x->data.array->data)->color = vm->black;
if (count) {
count += FrameSize(x->data.array);
for (i = 0; i < count; ++i)
VMMark(vm, x->data.array->data + i);
}
}
break;
case TYPE_FUNCTION:
if (GCHeader(x->data.func)->color != vm->black) {
Func * f = x->data.func;
GCHeader(f)->color = vm->black;
VMMarkFuncEnv(vm, f->env);
{
Value temp;
temp.type = TYPE_FUNCDEF;
temp.data.funcdef = x->data.funcdef;
VMMark(vm, &temp);
if (f->parent) {
temp.type = TYPE_FUNCTION;
temp.data.func = f->parent;
VMMark(vm, &temp);
}
}
}
break;
case TYPE_DICTIONARY:
if (GCHeader(x->data.dict)->color != vm->black) {
DictionaryIterator iter;
DictBucket * bucket;
GCHeader(x->data.dict)->color = vm->black;
GCHeader(x->data.dict->buckets)->color = vm->black;
DictIterate(x->data.dict, &iter);
while (DictIterateNext(&iter, &bucket)) {
GCHeader(bucket)->color = vm->black;
VMMark(vm, &bucket->key);
VMMark(vm, &bucket->value);
}
}
break;
case TYPE_FUNCDEF:
if (GCHeader(x->data.funcdef)->color != vm->black) {
GCHeader(x->data.funcdef->byteCode)->color = vm->black;
uint32_t count, i;
count = x->data.funcdef->literalsLen;
if (x->data.funcdef->literals) {
GCHeader(x->data.funcdef->literals)->color = vm->black;
for (i = 0; i < count; ++i)
VMMark(vm, x->data.funcdef->literals + i);
}
}
break;
case TYPE_FUNCENV:
VMMarkFuncEnv(vm, x->data.funcenv);
break;
}
}
/* Iterate over all allocated memory, and free memory that is not
* marked as reachable. Flip the gc color flag for next sweep. */
static void VMSweep(VM * vm) {
GCMemoryHeader * previous = NULL;
GCMemoryHeader * current = vm->blocks;
while (current) {
if (current->color != vm->black) {
if (previous) {
previous->next = current->next;
} else {
vm->blocks = current->next;
}
free(current);
} else {
previous = current;
}
current = current->next;
}
/* Rotate flag */
vm->black = !vm->black;
}
/* Prepare a memory block */
static void * VMAllocPrepare(VM * vm, char * rawBlock, uint32_t size) {
GCMemoryHeader * mdata;
if (rawBlock == NULL) {
VMCrash(vm, OOM);
}
vm->nextCollection += size;
mdata = (GCMemoryHeader *) rawBlock;
mdata->next = vm->blocks;
vm->blocks = mdata;
mdata->color = !vm->black;
return rawBlock + sizeof(GCMemoryHeader);
}
/* Allocate some memory that is tracked for garbage collection */
void * VMAlloc(VM * vm, uint32_t size) {
uint32_t totalSize = size + sizeof(GCMemoryHeader);
return VMAllocPrepare(vm, malloc(totalSize), totalSize);
}
/* Allocate some zeroed memory that is tracked for garbage collection */
void * VMZalloc(VM * vm, uint32_t size) {
uint32_t totalSize = size + sizeof(GCMemoryHeader);
return VMAllocPrepare(vm, calloc(1, totalSize), totalSize);
2017-02-09 20:02:59 +00:00
}
/* Run garbage collection */
void VMCollect(VM * vm) {
Value thread;
thread.type = TYPE_THREAD;
thread.data.array = vm->thread;
VMMark(vm, &thread);
VMMark(vm, &vm->tempRoot);
VMSweep(vm);
vm->nextCollection = 0;
2017-02-09 20:02:59 +00:00
}
/* Run garbage collection if needed */
void VMMaybeCollect(VM * vm) {
if (vm->nextCollection >= vm->memoryInterval) {
2017-02-09 20:02:59 +00:00
VMCollect(vm);
}
}
/* Push a stack frame onto a thread */
static void VMThreadPush(VM * vm, Array * thread, Value callee, uint32_t size) {
uint16_t oldSize;
uint32_t nextCount, i;
if (thread->count) {
oldSize = FrameSize(thread);
nextCount = thread->count + oldSize + FRAME_SIZE;
} else {
oldSize = 0;
nextCount = FRAME_SIZE;
}
ArrayEnsure(vm, thread, nextCount + size);
2017-02-09 20:02:59 +00:00
/* Ensure values start out as nil so as to not confuse
* the garabage collector */
for (i = nextCount; i < nextCount + size; ++i) {
thread->data[i].type = TYPE_NIL;
}
thread->count = nextCount;
FramePrevSize(thread) = oldSize;
FrameSize(thread) = size;
FrameEnvValue(thread).type = TYPE_NIL;
FrameEnv(thread) = NULL;
FrameCallee(thread) = callee;
FrameMeta(thread).type = TYPE_NUMBER;
FramePCValue(thread).type = TYPE_NUMBER;
vm->base = ThreadStack(thread);
}
/* Copy the current function stack to the current closure
environment */
static void VMThreadSplitStack(VM * vm, Array * thread) {
FuncEnv * env = FrameEnv(thread);
/* Check for closures */
if (env) {
uint32_t size = FrameSize(thread);
env->thread = NULL;
env->stackOffset = size;
env->values = VMAlloc(vm, sizeof(Value) * size);
2017-02-09 20:02:59 +00:00
memcpy(env->values, ThreadStack(thread), size * sizeof(Value));
}
}
/* Pop the top-most stack frame from stack */
static void VMThreadPop(VM * vm, Array * thread) {
if (thread->count) {
VMThreadSplitStack(vm, thread);
thread->count -= FRAME_SIZE + FramePrevSize(thread);
} else {
VMError(vm, "Nothing to pop from stack.");
}
vm->base = ThreadStack(thread);
}
/* Get an upvalue */
static Value * GetUpValue(VM * vm, Func * fn, uint16_t level, uint16_t index) {
FuncEnv * env;
Value * stack;
while (fn && level--)
fn = fn->parent;
VMAssert(vm, fn, NO_UPVALUE);
env = fn->env;
if (env->thread)
stack = env->thread->data + env->stackOffset;
else
stack = env->values;
return stack + index;
}
/* Get a constant */
static Value * LoadConstant(VM * vm, Func * fn, uint16_t index) {
if (index > fn->def->literalsLen) {
VMError(vm, NO_UPVALUE);
}
return fn->def->literals + index;
}
/* Truthiness definition in VM */
static int truthy(Value * v) {
return v->type != TYPE_NIL && !(v->type == TYPE_BOOLEAN && !v->data.boolean);
}
/* Pushes a function on the call stack. */
static void VMPushCallee(VM * vm, uint32_t ret, uint32_t arity, Value callee) {
Array * thread = vm->thread;
FrameReturn(thread) = ret;
if (callee.type == TYPE_FUNCTION) {
Func * fn = callee.data.func;
VMThreadPush(vm, thread, callee, fn->def->locals);
} else if (callee.type == TYPE_CFUNCTION) {
VMThreadPush(vm, thread, callee, arity);
} else {
VMError(vm, EXPECTED_FUNCTION);
return;
}
/* Reset the base and frame after changing the stack */
vm->base = ThreadStack(thread);
}
/* Return from the vm */
static void VMReturn(VM * vm, Value ret) {
VMThreadPop(vm, vm->thread);
if (vm->thread->count == 0) {
VMExit(vm, ret);
}
vm->base = ThreadStack(vm->thread);
vm->pc = FramePC(vm->thread);
vm->base[FrameReturn(vm->thread)] = ret;
}
/* Implementation of the opcode for function calls */
static void VMCallOp(VM * vm) {
uint32_t ret = vm->pc[1];
uint32_t arity = vm->pc[2];
Value callee = *VMOpArg(3);
uint32_t i;
Value * argWriter;
FramePC(vm->thread) = vm->pc + 4 + arity;
VMPushCallee(vm, ret, arity, callee);
argWriter = vm->base;
if (callee.type == TYPE_CFUNCTION) {
for (i = 0; i < arity; ++i)
*(argWriter++) = *VMOpArg(4 + i);
VMReturn(vm, callee.data.cfunction(vm));
VMMaybeCollect(vm);
} else if (callee.type == TYPE_FUNCTION) {
Func * f = callee.data.func;
uint32_t extraNils = f->def->locals;
if (arity > f->def->arity) {
arity = f->def->arity;
} else if (arity < f->def->arity) {
extraNils += f->def->arity - arity;
}
for (i = 0; i < arity; ++i)
*(argWriter++) = *VMOpArg(4 + i);
for (i = 0; i < extraNils; ++i)
(argWriter++)->type = TYPE_NIL;
vm->pc = f->def->byteCode;
} else {
VMError(vm, EXPECTED_FUNCTION);
}
}
/* Implementation of the opcode for tail calls */
static void VMTailCallOp(VM * vm) {
uint32_t arity = vm->pc[1];
Value callee = *VMOpArg(2);
Value * extra, * argWriter;
Array * thread = vm->thread;
uint16_t newFrameSize;
uint32_t i;
/* Check for closures */
if (FrameEnvValue(thread).type == TYPE_FUNCENV) {
FuncEnv * env = FrameEnv(thread);
uint16_t frameSize = FrameSize(thread);
Value * envValues = VMAlloc(vm, FrameSize(thread) * sizeof(Value));
2017-02-09 20:02:59 +00:00
env->values = envValues;
memcpy(envValues, vm->base, frameSize * sizeof(Value));
env->stackOffset = frameSize;
env->thread = NULL;
}
if (callee.type == TYPE_CFUNCTION) {
newFrameSize = arity;
} else if (callee.type == TYPE_FUNCTION) {
Func * f = callee.data.func;
newFrameSize = f->def->locals;
} else {
VMError(vm, EXPECTED_FUNCTION);
}
/* Ensure that stack is zeroed in this spot */
ArrayEnsure(vm, thread, thread->count + newFrameSize + arity);
2017-02-09 20:02:59 +00:00
vm->base = ThreadStack(thread);
extra = argWriter = vm->base + FrameSize(thread) + FRAME_SIZE;
for (i = 0; i < arity; ++i) {
*argWriter++ = *VMOpArg(3 + i);
}
/* Copy the end of the stack to the parameter position */
memcpy(vm->base, extra, arity * sizeof(Value));
/* nil the new stack for gc */
argWriter = vm->base + arity;
for (i = arity; i < newFrameSize; ++i) {
(argWriter++)->type = TYPE_NIL;
}
FrameSize(thread) = newFrameSize;
FrameCallee(thread) = callee;
if (callee.type == TYPE_CFUNCTION) {
VMReturn(vm, callee.data.cfunction(vm));
VMMaybeCollect(vm);
} else {
Func * f = callee.data.func;
vm->pc = f->def->byteCode;
}
}
/* Instantiate a closure */
static void VMMakeClosure(VM * vm, uint16_t ret, uint16_t literal) {
Value * vRet = VMArg(ret);
if (FrameCallee(vm->thread).type != TYPE_FUNCTION) {
VMError(vm, EXPECTED_FUNCTION);
} else {
Func * fn, * current;
Value * constant;
Array * thread = vm->thread;
FuncEnv * env = FrameEnv(vm->thread);
if (!env) {
env = VMAlloc(vm, sizeof(FuncEnv));
2017-02-09 20:02:59 +00:00
env->thread = thread;
env->stackOffset = thread->count;
env->values = NULL;
FrameEnvValue(vm->thread).data.funcenv = env;
FrameEnvValue(vm->thread).type = TYPE_FUNCENV;
}
current = FrameCallee(vm->thread).data.func;
constant = LoadConstant(vm, current, literal);
if (constant->type != TYPE_FUNCDEF) {
VMError(vm, EXPECTED_FUNCTION);
}
fn = VMAlloc(vm, sizeof(Func));
2017-02-09 20:02:59 +00:00
fn->def = constant->data.funcdef;
fn->parent = current;
fn->env = env;
vRet->type = TYPE_FUNCTION;
vRet->data.func = fn;
VMMaybeCollect(vm);
}
}
/* Start running the VM */
int VMStart(VM * vm) {
/* Set jmp_buf to jump back to for return. */
{
int n;
if ((n = setjmp(vm->jump))) {
/* Good return */
if (n == 1) {
return 0;
} else {
/* Error or crash. Handling TODO. */
2017-02-09 20:02:59 +00:00
return n;
}
}
}
for (;;) {
uint16_t opcode = *vm->pc;
switch (opcode) {
Value *vRet, *v1, *v2;
case VM_OP_ADD: /* Addition */
vRet = VMOpArg(1);
v1 = VMOpArg(2);
v2 = VMOpArg(3);
VMAssert(vm, v1->type == TYPE_NUMBER, VMS_EXPECTED_NUMBER_LOP);
VMAssert(vm, v2->type == TYPE_NUMBER, VMS_EXPECTED_NUMBER_ROP);
vRet->type = TYPE_NUMBER;
vRet->data.number = v1->data.number + v2->data.number;
vm->pc += 4;
break;
case VM_OP_SUB: /* Subtraction */
vRet = VMOpArg(1);
v1 = VMOpArg(2);
v2 = VMOpArg(3);
VMAssert(vm, v1->type == TYPE_NUMBER, VMS_EXPECTED_NUMBER_LOP);
VMAssert(vm, v2->type == TYPE_NUMBER, VMS_EXPECTED_NUMBER_ROP);
vRet->type = TYPE_NUMBER;
vRet->data.number = v1->data.number - v2->data.number;
vm->pc += 4;
break;
case VM_OP_MUL: /* Multiplication */
vRet = VMOpArg(1);
v1 = VMOpArg(2);
v2 = VMOpArg(3);
VMAssert(vm, v1->type == TYPE_NUMBER, VMS_EXPECTED_NUMBER_LOP);
VMAssert(vm, v2->type == TYPE_NUMBER, VMS_EXPECTED_NUMBER_ROP);
vRet->type = TYPE_NUMBER;
vRet->data.number = v1->data.number * v2->data.number;
vm->pc += 4;
break;
case VM_OP_DIV: /* Division */
vRet = VMOpArg(1);
v1 = VMOpArg(2);
v2 = VMOpArg(3);
VMAssert(vm, v1->type == TYPE_NUMBER, VMS_EXPECTED_NUMBER_LOP);
VMAssert(vm, v2->type == TYPE_NUMBER, VMS_EXPECTED_NUMBER_ROP);
vRet->type = TYPE_NUMBER;
vRet->data.number = v1->data.number / v2->data.number;
vm->pc += 4;
break;
case VM_OP_NOT: /* Boolean unary (Boolean not) */
vRet = VMOpArg(1);
v1 = VMOpArg(2);
vm->pc += 3;
vRet->type = TYPE_BOOLEAN;
vRet->data.boolean = !truthy(v1);
break;
case VM_OP_LD0: /* Load 0 */
vRet = VMOpArg(1);
vRet->type = TYPE_NUMBER;
vRet->data.number = 0;
vm->pc += 2;
break;
case VM_OP_LD1: /* Load 1 */
vRet = VMOpArg(1);
vRet->type = TYPE_NUMBER;
vRet->data.number = 1;
vm->pc += 2;
break;
case VM_OP_FLS: /* Load False */
vRet = VMOpArg(1);
vRet->type = TYPE_BOOLEAN;
vRet->data.boolean = 0;
vm->pc += 2;
break;
case VM_OP_TRU: /* Load True */
vRet = VMOpArg(1);
vRet->type = TYPE_BOOLEAN;
vRet->data.boolean = 1;
vm->pc += 2;
break;
case VM_OP_NIL: /* Load Nil */
vRet = VMOpArg(1);
vRet->type = TYPE_NIL;
vm->pc += 2;
break;
case VM_OP_I16: /* Load Small Integer */
vRet = VMOpArg(1);
vRet->type = TYPE_NUMBER;
vRet->data.number = ((int16_t *)(vm->pc))[2];
vm->pc += 3;
break;
case VM_OP_UPV: /* Load Up Value */
{
Value callee;
callee = FrameCallee(vm->thread);
VMAssert(vm, callee.type == TYPE_FUNCTION, EXPECTED_FUNCTION);
vRet = VMOpArg(1);
*vRet = *GetUpValue(vm, callee.data.func, vm->pc[2], vm->pc[3]);
vm->pc += 4;
}
break;
case VM_OP_JIF: /* Jump If */
if (truthy(VMOpArg(1))) {
vm->pc += 4;
} else {
vm->pc += *((int32_t *)(vm->pc + 2));
}
break;
case VM_OP_JMP: /* Jump */
vm->pc += *((int32_t *)(vm->pc + 1));
break;
case VM_OP_CAL: /* Call */
VMCallOp(vm);
break;
case VM_OP_RET: /* Return */
VMReturn(vm, *VMOpArg(1));
break;
case VM_OP_SUV: /* Set Up Value */
VMAssert(vm, FrameCallee(vm->thread).type == TYPE_FUNCTION, EXPECTED_FUNCTION);
vRet = VMOpArg(1);
*GetUpValue(vm, FrameCallee(vm->thread).data.func, vm->pc[2], vm->pc[3]) = *vRet;
vm->pc += 4;
break;
case VM_OP_CST: /* Load constant value */
VMAssert(vm, FrameCallee(vm->thread).type == TYPE_FUNCTION, EXPECTED_FUNCTION);
vRet = VMOpArg(1);
*vRet = *LoadConstant(vm, FrameCallee(vm->thread).data.func, vm->pc[2]);
vm->pc += 3;
break;
case VM_OP_I32: /* Load 32 bit integer */
vRet = VMOpArg(1);
vRet->type = TYPE_NUMBER;
vRet->data.number = *((int32_t *)(vm->pc + 2));
vm->pc += 4;
break;
case VM_OP_F64: /* Load 64 bit float */
vRet = VMOpArg(1);
vRet->type = TYPE_NUMBER;
vRet->data.number = (Number) *((double *)(vm->pc + 2));
vm->pc += 6;
break;
case VM_OP_MOV: /* Move Values */
vRet = VMOpArg(1);
v1 = vm->base + *((uint32_t *)(vm->pc + 2));
*vRet = *v1;
vm->pc += 4;
break;
case VM_OP_CLN: /* Create closure from constant FuncDef */
VMMakeClosure(vm, vm->pc[1], vm->pc[2]);
vm->pc += 3;
break;
case VM_OP_EQL: /* Equality */
vRet = VMOpArg(1);
vRet->type = TYPE_BOOLEAN;
vRet->data.boolean = ValueEqual(VMOpArg(2), VMOpArg(3));
vm->pc += 4;
break;
case VM_OP_LTN: /* Less Than */
vRet = VMOpArg(1);
v1 = VMOpArg(2);
v2 = VMOpArg(3);
vRet->type = TYPE_BOOLEAN;
vRet->data.boolean = (ValueCompare(VMOpArg(2), VMOpArg(3)) == -1);
vm->pc += 4;
break;
case VM_OP_LTE: /* Less Than or Equal to */
vRet = VMOpArg(1);
v1 = VMOpArg(2);
v2 = VMOpArg(3);
vRet->type = TYPE_BOOLEAN;
vRet->data.boolean = (ValueCompare(VMOpArg(2), VMOpArg(3)) != 1);
vm->pc += 4;
break;
case VM_OP_ARR: /* Array literal */
vRet = VMOpArg(1);
{
uint32_t i;
uint32_t arrayLen = vm->pc[2];
Array * array = ArrayNew(vm, arrayLen);
2017-02-09 20:02:59 +00:00
array->count = arrayLen;
for (i = 0; i < arrayLen; ++i)
array->data[i] = *VMOpArg(3 + i);
vRet->type = TYPE_ARRAY;
vRet->data.array = array;
vm->pc += 3 + arrayLen;
VMMaybeCollect(vm);
}
break;
case VM_OP_DIC: /* Dictionary literal */
vRet = VMOpArg(1);
{
uint32_t i = 3;
uint32_t kvs = vm->pc[2];
Dictionary * dict = DictNew(vm, kvs);
2017-02-09 20:02:59 +00:00
kvs = kvs * 2 + 3;
while (i < kvs) {
v1 = VMOpArg(i++);
v2 = VMOpArg(i++);
DictPut(vm, dict, v1, v2);
2017-02-09 20:02:59 +00:00
}
vRet->type = TYPE_DICTIONARY;
vRet->data.dict = dict;
vm->pc += kvs;
VMMaybeCollect(vm);
}
break;
case VM_OP_TCL: /* Tail call */
VMTailCallOp(vm);
break;
/* Macro for generating some math operators */
#define DO_MULTI_MATH(op, start) { \
uint16_t i; \
uint16_t count = vm->pc[1]; \
Number accum = start; \
vRet = VMOpArg(2); \
for (i = 0; i < count; ++i) { \
Value * x = VMOpArg(3 + i); \
VMAssert(vm, x->type == TYPE_NUMBER, "Expected number"); \
accum = accum op x->data.number; \
} \
vRet->type = TYPE_NUMBER; vRet->data.number = accum; \
vm->pc += 3 + count; \
}
/* Vectorized math */
case VM_OP_ADM:
DO_MULTI_MATH(+, 0)
break;
case VM_OP_SBM:
DO_MULTI_MATH(-, 0)
break;
case VM_OP_MUM:
DO_MULTI_MATH(*, 1)
break;
case VM_OP_DVM:
DO_MULTI_MATH(/, 1)
break;
#undef DO_MULTI_MATH
case VM_OP_RTN: /* Return nil */
{
Value temp;
temp.type = TYPE_NIL;
VMReturn(vm, temp);
}
break;
default:
VMError(vm, "Unknown opcode");
break;
}
}
}
#undef VMOpArg
#undef VMArg
2017-02-09 20:02:59 +00:00
/* Initialize the VM */
void VMInit(VM * vm) {
vm->tempRoot.type = TYPE_NIL;
vm->base = NULL;
vm->pc = NULL;
vm->error = NULL;
vm->thread = ArrayNew(vm, 20);
/* Garbage collection */
vm->blocks = NULL;
vm->nextCollection = 0;
vm->memoryInterval = 1024 * 256;
vm->black = 0;
2017-02-09 20:02:59 +00:00
}
/* Load a function into the VM. The function will be called with
* no arguments when run */
void VMLoad(VM * vm, Func * func) {
Value callee;
callee.type = TYPE_FUNCTION;
callee.data.func = func;
vm->thread = ArrayNew(vm, 20);
2017-02-09 20:02:59 +00:00
VMThreadPush(vm, vm->thread, callee, func->def->locals);
vm->pc = func->def->byteCode;
}
/* Clear all memory associated with the VM */
void VMDeinit(VM * vm) {
GCMemoryHeader * current = vm->blocks;
while (current) {
GCMemoryHeader * next = current->next;
free(current);
current = next;
}
vm->blocks = NULL;
2017-02-09 20:02:59 +00:00
}