1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-12-30 20:10:35 +00:00
hyperrogue/rogueviz/som/kohonen.cpp

1912 lines
50 KiB
C++

// the general implementation of non-Euclidean self-organizing maps
// Copyright (C) 2011-2022 Tehora and Zeno Rogue, see 'hyper.cpp' for details
#include "kohonen.h"
namespace rogueviz { namespace kohonen {
int columns;
vector<sample> data;
map<int, int> sample_vdata_id;
int whattodraw[3] = {-2,-2,-2};
int min_group = 10, max_group = 10;
vector<string> colnames;
kohvec weights;
vector<neuron> net;
int neuronId(neuron& n) { return &n - &(net[0]); }
bool neurons_indexed = false;
int samples;
template<class T> T sqr(T x) { return x*x; }
vector<neuron*> whowon;
void normalize() {
alloc(weights);
for(int k=0; k<columns; k++) {
double sum = 0, sqsum = 0;
for(sample& s: data)
sum += s.val[k],
sqsum += s.val[k] * s.val[k];
double variance = sqsum/samples - sqr(sum/samples);
weights[k] = 1 / sqrt(variance);
}
}
double vdot(const kohvec& a, const kohvec& b) {
double diff = 0;
for(int k=0; k<columns; k++) diff += a[k] * b[k] * weights[k];
return diff;
}
void vshift(kohvec& a, const kohvec& b, ld i) {
for(int k=0; k<columns; k++) a[k] += b[k] * i;
}
double vnorm(kohvec& a, kohvec& b) {
double diff = 0;
for(int k=0; k<columns; k++) diff += sqr((a[k]-b[k]) * weights[k]);
return diff;
}
bool noshow = false;
vector<int> samples_to_show;
void loadsamples(const string& fname) {
data.clear();
samples_to_show.clear();
clear();
fhstream f(fname, "rt");
if(!f.f) {
fprintf(stderr, "Could not load samples: %s\n", fname.c_str());
return;
}
if(!scan(f, columns)) {
printf("Bad format: %s\n", fname.c_str());
return;
}
printf("Loading samples: %s\n", fname.c_str());
while(true) {
sample s;
bool shown = false;
alloc(s.val);
if(feof(f.f)) break;
for(int i=0; i<columns; i++)
if(!scan(f, s.val[i])) { goto bigbreak; }
fgetc(f.f);
while(true) {
int c = fgetc(f.f);
if(c == -1 || c == 10 || c == 13) break;
if(c == '!' && s.name == "") shown = true;
else if(!rv_ignore(c)) s.name += c;
}
data.push_back(std::move(s));
if(shown)
samples_to_show.push_back(isize(data)-1);
}
bigbreak:
samples = isize(data);
normalize();
colnames.resize(columns);
for(int i=0; i<columns; i++) colnames[i] = "Column " + its(i);
}
int tmax = 30000;
double distmul = 1;
double learning_factor = .1;
int qpct = 100;
int t, lpct, cells;
double maxdist;
neuron& winner(int id) {
double bdiff = HUGE_VAL;
neuron *bcell = NULL;
for(neuron& n: net) {
double diff = vnorm(n.net, data[id].val);
if(diff < bdiff) bdiff = diff, bcell = &n;
}
return *bcell;
}
void setindex(bool b) {
if(b == neurons_indexed) return;
neurons_indexed = b;
if(b) {
for(neuron& n: net) n.lpbak = n.where->landparam, n.where->landparam = neuronId(n);
}
else {
for(neuron& n: net) n.where->landparam = n.lpbak;
}
}
neuron *getNeuron(cell *c) {
if(!c) return NULL;
setindex(true);
if(c->landparam < 0 || c->landparam >= cells) return NULL;
neuron& ret = net[c->landparam];
if(ret.where != c) return NULL;
return &ret;
}
neuron *getNeuronSlow(cell *c) {
if(neurons_indexed) return getNeuron(c);
for(neuron& n: net) if(n.where == c) return &n;
return NULL;
}
double maxudist;
neuron *distfrom;
eWall som_floor = waNone;
void coloring() {
if(noshow) return;
setindex(false);
bool besttofind = true;
for(int pid=0; pid<3; pid++) {
int c = whattodraw[pid];
if(c == -5) {
if(besttofind) {
besttofind = false;
for(neuron& n: net) {
double bdiff = 1e20;
n.bestsample = -1;
for(auto p: sample_vdata_id) {
double diff = vnorm(n.net, data[p.first].val);
if(diff < bdiff) bdiff = diff, n.bestsample = p.second;
}
}
}
for(int i=0; i<cells; i++) {
if(net[i].bestsample >= 0)
part(net[i].where->landparam_color, pid) = part(vdata[net[i].bestsample].cp.color1, pid+1);
else
part(net[i].where->landparam_color, pid) = 128;
}
}
else {
vector<double> listing;
for(neuron& n: net) switch(c) {
case -4:
listing.push_back(log(5+n.allsamples));
break;
case -3:
if(distfrom)
listing.push_back(vnorm(n.net, distfrom->net));
else
listing.push_back(0);
break;
case -2:
listing.push_back(n.udist);
break;
case -1:
listing.push_back(-n.udist);
break;
default:
listing.push_back(n.net[c]);
break;
}
double minl = listing[0], maxl = listing[0];
for(double& d: listing) minl = min(minl, d), maxl = max(maxl, d);
if(maxl-minl < 1e-3) maxl = minl+1e-3;
for(int i=0; i<cells; i++)
part(net[i].where->landparam_color, pid) = 32 + (191 * (listing[i] - minl)) / (maxl - minl);
for(int i=0; i<cells; i++)
net[i].where->wall = som_floor;
vid.wallmode = 2;
}
}
}
ld precise_placement = 1.6;
bool neighbor_dir(cell *c, int a, int b) {
if(a == b) return false;
if(WDIM == 2)
return (a+1 == b) || (a-1 == b) || (a == 0 && b == c->type-1) || (b == 0 && a == c->type-1);
return currentmap->get_cellshape(c).dirdist[a][b] == 1;
}
bool triangulate(kohvec d, neuron& w, map<cell*, neuron*>& find, transmatrix& res) {
if(precise_placement < 1) return false;
vector<int> dirs;
vector<neuron*> other;
vector<kohvec> kv;
for(int i=0; i<WDIM; i++) {
ld bdiff = HUGE_VAL;
/* find the second neuron */
neuron *candidate = nullptr;
int cdir = -1;
forCellIdEx(c2, i, w.where) {
if(!find.count(c2)) continue;
auto w2 = find[c2];
double diff = vnorm(w2->net, d);
if(1) {
bool valid = true;
for(int d: dirs)
if(!neighbor_dir(w.where, d, i))
valid = false;
if(!valid) continue;
}
if(diff < bdiff) bdiff = diff, candidate = w2, cdir = i;
}
if(cdir == -1) break;
dirs.push_back(cdir);
other.push_back(candidate);
kv.push_back(candidate->net);
}
int q = isize(dirs);
const kohvec& a = w.net;
auto orig_d = d;
/* center at a */
for(int i=0; i<q; i++)
vshift(kv[i], a, -1);
vshift(d, a, -1);
transmatrix R;
hyperpoint coeff;
/* orthonormalize */
for(int i=0; i<q; i++) {
R[i][i] = vdot(kv[i], kv[i]);
if(R[i][i] < 1e-12) {
/*
auto head = [] (const vector<ld>& v) { vector<ld> res; for(int i=0; i<10; i++) res.push_back(v[i]); return res; };
println(hlog, "dot too small, i=", i,", dirs=", dirs);
println(hlog, "a = ", head(a));
println(hlog, "orig d = ", head(d));
for(auto z: other)
println(hlog, "orig kv: ", head(z->net), " @ ", z->where);
for(auto z: kv)
println(hlog, "curr kv: ", head(z));
*/
return false;
}
for(int j=i+1; j<q; j++) {
R[i][j] = vdot(kv[i], kv[j]) / R[i][i];
vshift(kv[j], kv[i], -R[i][j]);
}
coeff[i] = vdot(d, kv[i]) / R[i][i];
}
for(int i=q-1; i>=0; i--) {
for(int j=0; j<i; j++)
coeff[j] -= coeff[i] * R[j][i];
}
/* rescale if out of the simplex */
for(int i=0; i<q; i++)
if(coeff[i] < 0) {
coeff /= (1-coeff[i]);
coeff[i] = 0;
}
ld total = 0;
for(int i=0; i<q; i++) total += coeff[i];
if(total > 1) coeff /= total, total = 1;
coeff /= precise_placement;
hyperpoint h = (1-total) * C0;
for(int i=0; i<q; i++) h += coeff[i] * tC0(currentmap->adj(w.where, dirs[i]));
h = normalize(h);
res = rgpushxto0(h);
return true;
}
void distribute_neurons() {
whowon.resize(samples);
for(neuron& n: net) n.drawn_samples = 0, n.csample = 0;
for(auto p: sample_vdata_id) {
int s = p.first;
auto& w = winner(s);
whowon[s] = &w;
w.drawn_samples++;
}
map<cell*, neuron*> find;
if(precise_placement >= 1)
for(auto& w: net) find[w.where] = &w;
ld rad = .25 * cgi.scalefactor;
for(auto p: sample_vdata_id) {
int id = p.second;
int s = p.first;
auto& w = *whowon[s];
vdata[id].m->base = w.where;
if(!triangulate(data[s].val, w, find, vdata[id].m->at))
vdata[id].m->at =
spin(TAU*w.csample / w.drawn_samples) * xpush(rad * (w.drawn_samples-1) / w.drawn_samples);
w.csample++;
for(auto& e: vdata[id].edges) e.second->orig = nullptr;
}
shmup::fixStorage();
setindex(false);
}
int last_analyze_step;
ld analyze_each;
void analyze() {
initialize_neurons();
initialize_samples_to_show();
setindex(true);
maxudist = 0;
for(neuron& n: net) {
int qty = 0;
double total = 0;
forCellEx(c2, n.where) {
neuron *n2 = getNeuron(c2);
if(!n2) continue;
qty++;
total += sqrt(vnorm(n.net, n2->net));
}
n.udist = total / qty;
maxudist = max(maxudist, n.udist);
}
if(!noshow) distribute_neurons();
coloring();
last_analyze_step = t;
}
bool show_rings = true;
bool coloring_3d(cell *c, const shiftmatrix& V) {
if(WDIM == 3 && show_rings)
queuepoly(face_the_player(V), cgi.shRing, darkena(c->landparam_color, 0, 0xFF));
return false;
}
// traditionally Gaussian blur is used in the Kohonen algoritm
// but it does not seem to make much sense in hyperbolic geometry
// especially wrapped one.
// GAUSSIAN==1: use the Gaussian blur, on celldistance
// GAUSSIAN==2: use the Gaussian blur, on true distance
// GAUSSIAN==0: simulate the dispersion on our network
int gaussian = 0;
double mydistance(cell *c1, cell *c2) {
if(gaussian == 2) return hdist(tC0(ggmatrix(c1)), tC0(ggmatrix(c2)));
else return celldistance(c1, c2);
}
struct cellcrawler {
struct cellcrawlerdata {
cellwalker orig;
int from, spin, dist;
cellwalker target;
cellcrawlerdata(const cellwalker& o, int fr, int sp) : orig(o), from(fr), spin(sp) {}
};
vector<cellcrawlerdata> data;
void store(const cellwalker& o, int from, int spin, manual_celllister& cl) {
if(!cl.add(o.at)) return;
data.emplace_back(o, from, spin);
}
void build(const cellwalker& start) {
data.clear();
manual_celllister cl;
store(start, 0, 0, cl);
for(int i=0; i<isize(data); i++) {
cellwalker cw0 = data[i].orig;
for(int j=0; j<cw0.at->type; j++) {
cellwalker cw = cw0 + j + wstep;
if(!getNeuron(cw.at)) continue;
store(cw, i, j, cl);
}
}
if(gaussian || true) for(cellcrawlerdata& s: data)
s.dist = mydistance(s.orig.at, start.at);
}
void sprawl(const cellwalker& start) {
data[0].target = start;
for(int i=1; i<isize(data); i++) {
cellcrawlerdata& s = data[i];
s.target = data[s.from].target;
if(!s.target.at) continue;
s.target += s.spin;
if(!s.target.peek()) s.target.at = NULL;
else s.target += wstep;
}
}
vector<vector<float>> dispersion;
};
double dispersion_end_at = 1.6;
bool dispersion_long;
double dispersion_precision = .0001;
int dispersion_each = 1;
int dispersion_count;
void buildcellcrawler(cell *c, cellcrawler& cr, int dir) {
cr.build(cellwalker(c,dir));
if(!gaussian) {
vector<float> curtemp;
vector<float> newtemp;
vector<int> qty;
vector<pair<float*, float*> > pairs;
int N = isize(net);
curtemp.resize(N, 0);
newtemp.resize(N, 0);
qty.resize(N, 0);
for(int i=0; i<N; i++)
forCellEx(c2, net[i].where) {
neuron *nj = getNeuron(c2);
if(nj) {
pairs.emplace_back(&curtemp[i], &newtemp[neuronId(*nj)]);
qty[i]++;
}
}
curtemp[neuronId(*getNeuron(c))] = 1;
ld vmin = 0, vmax = 1;
int iter;
auto &d = cr.dispersion;
d.clear();
// DEBBI(DF_LOG, ("Building dispersion, precision = ", dispersion_precision, " end_at = ", dispersion_end_at, "...\n"));
for(iter=0; dispersion_count ? true : vmax > vmin * dispersion_end_at; iter++) {
if(iter % dispersion_each == 0) {
d.emplace_back(N);
auto& dispvec = d.back();
for(int i=0; i<N; i++) dispvec[i] = curtemp[neuronId(*getNeuron(cr.data[i].orig.at))] / vmax;
if(isize(d) == dispersion_count) break;
}
double df = dispersion_precision * (iter+1);
double df0 = df / ceil(df);
for(int i=0; i<df; i++) {
for(auto& p: pairs)
*p.second += *p.first;
for(int i=0; i<N; i++) {
curtemp[i] += (newtemp[i] / qty[i] - curtemp[i]) * df0;
newtemp[i] = 0;
}
}
vmin = vmax = curtemp[0];
for(int i=0; i<N; i++)
if(curtemp[i] < vmin) vmin = curtemp[i];
else if(curtemp[i] > vmax) vmax = curtemp[i];
}
if(!dispersion_count) {
if(!dispersion_long) dispersion_count = isize(d);
DEBB(DF_LOG, ("Dispersion count = ", isize(d), " celldist = ", celldist(c)));
}
/*
println(hlog, "dlast = ", d.back());
println(hlog, "dlast2 = ", d[d.size()-2]);
println(hlog, "vmin=", vmin, " vmax=",vmax, " end_at=", dispersion_end_at);
*/
}
}
map<int, cellcrawler> scc;
pair<int, int> get_cellcrawler_id(cell *c) {
if(!closed_manifold)
return make_pair(neuronId(*getNeuronSlow(c)), 0);
if(among(geometry, gZebraQuotient, gMinimal, gArnoldCat, gField435, gField534) || (euclid && quotient && !closed_manifold) || IRREGULAR || (GDIM == 3 && sphere) || (hyperbolic && GDIM == 3)
|| (euclid && nonorientable)) {
// Zebra Quotient does exhibit some symmetries,
// but these are so small anyway that it is safer to just build
// a crawler for every neuron
return make_pair(neuronId(*getNeuronSlow(c)), 0);
// not yet implemented for cylinder
}
if(euclid && closed_manifold && PURE && nonorientable)
return make_pair(euc2_coordinates(c).second * 2 + ctof(c), 0);
int id = 0, dir = 0;
#if CAP_GP
if(GOLDBERG) {
gp::local_info li = gp::get_local_info(c);
id = (li.relative.first & 15) + (li.relative.second & 15) * 16 + gmod(li.total_dir, S6) * 256;
// ld = li.last_dir;
}
#else
if(0) ;
#endif
else {
id = c->type == S7;
// if(id == 0) ld = c->c.spin(0);
}
/* if(geometry == gZebraQuotient) {
id = 8*id + ld;
id = 64 * id + c->master->zebraval;
return make_pair(id, 0);
} */
return make_pair(id, dir);
}
/* unit test: do the crawlers work correctly? */
bool verify_crawler(cellcrawler& cc, cellwalker cw) {
cc.sprawl(cw);
for(auto& d: cc.data) if(celldistance(cw.at, d.target.at) != d.dist)
return false;
vector<int> cellcounter(cells, 0);
for(auto& d: cc.data) cellcounter[d.target.at->landparam]++;
for(int i=0; i<cells; i++) if(cellcounter[i] != 1) return false;
return true;
}
void verify_crawlers() {
setindex(false);
gaussian = 1;
auto& allcells = currentmap->allcells();
cells = isize(allcells);
net.resize(cells);
for(int i=0; i<cells; i++) net[i].where = allcells[i];
setindex(true);
map<int, cellcrawler> allcrawlers;
int uniq = 0, failures = 0;
printf("Verifying crawlers...\n");
for(cell *c: allcells) {
auto id = get_cellcrawler_id(c);
if(allcrawlers.count(id.first)) {
bool b = verify_crawler(allcrawlers[id.first], cellwalker(c, id.second));
if(!b) {
printf("cell %p: type = %d id = %d dir = %d / earlier crawler failed\n", hr::voidp(c), c->type, id.first, id.second);
failures++;
}
}
else {
for(int i=0; i<c->type; i++)
for(auto& cc: allcrawlers) if(verify_crawler(cc.second, cellwalker(c, i))) {
printf("cell %p: type = %d id = %d dir = %d / also works id %d in direction %d\n", hr::voidp(c), c->type, id.first, id.second, cc.first, i);
uniq--;
goto breakcheck;
}
breakcheck:
cellcrawler cr;
cr.build(cellwalker(c, id.second));
allcrawlers[id.first] = std::move(cr);
uniq++;
}
}
printf("Crawlers constructed: %d (%d unique, %d failures)\n", isize(allcrawlers), uniq, failures);
setindex(false);
if(failures) exit(1);
}
bool finished() { return t == 0; }
int krad, kqty;
double ttpower = 1;
void step() {
if(t == 0) return;
initialize_dispersion();
initialize_neurons_initial();
double tt = (t-.5) / tmax;
tt = pow(tt, ttpower);
double sigma = maxdist * tt;
int id = hrand(samples);
neuron& n = winner(id);
whowon.resize(samples);
whowon[id] = &n;
/*
for(neuron& n2: net) {
int d = celldistance(n.where, n2.where);
double nu = learning_factor;
// nu *= exp(-t*(double)maxdist/perdist);
// nu *= exp(-t/t2);
nu *= exp(-sqr(d/sigma));
for(int k=0; k<columns; k++)
n2.net[k] += nu * (irisdata[id][k] - n2.net[k]);
} */
auto cid = get_cellcrawler_id(n.where);
cellcrawler& s = scc[cid.first];
s.sprawl(cellwalker(n.where, cid.second));
vector<float> fake(0,0);
/* for(auto& sd: s.data)
fake.push_back(exp(-sqr(sd.dist/sigma))); */
int dispersion_count = isize(s.dispersion);
int dispid = int(dispersion_count * tt);
auto it = gaussian ? fake.begin() : s.dispersion[dispid].begin();
for(auto& sd: s.data) {
neuron *n2 = getNeuron(sd.target.at);
if(!n2) { it++; continue; }
n2->debug++;
double nu = learning_factor;
if(gaussian) {
nu *= exp(-sqr(sd.dist/sigma));
if(isnan(nu))
throw hr_exception(lalign(0, "obtained nan, ", sd.dist, " / ", sigma));
}
else
nu *= *(it++);
for(int k=0; k<columns; k++) {
n2->net[k] += nu * (data[id].val[k] - n2->net[k]);
/* if(isnan(n2->net[k]))
throw hr_exception("obtained nan somehow, nu = " + lalign(0, nu)); */
}
}
/* for(auto& n2: net) {
if(n2.debug > 1) throw hr_exception("sprawler error");
n2.debug = 0;
} */
t--; if(t == 0) analyze();
}
int initdiv = 1;
flagtype state = 0;
vector<double> bdiffs;
vector<unsigned short> bids;
vector<double> bdiffn;
int showsample(int id) {
if(sample_vdata_id.count(id))
return sample_vdata_id[id];
if(bids.size()) {
if(net[bids[id]].drawn_samples >= net[bids[id]].max_group_here) {
ld bdist = 1e18;
int whichid = -1;
for(auto p: sample_vdata_id) {
int s = p.first;
if(bids[s] == bids[id]) {
ld cdist = vnorm(data[s].val, data[id].val);
if(cdist < bdist) bdist = cdist, whichid = p.second;
}
}
return whichid;
}
net[bids[id]].drawn_samples++;
}
int i = vdata.size();
sample_vdata_id[id] = i;
vdata.emplace_back();
auto& v = vdata.back();
v.name = data[id].name;
v.cp = dftcolor;
createViz(i, bids.size() ? net[bids[id]].where : cwt.at, Id);
v.m->store();
return i;
}
int showsample(string s) {
if(s == "") return -1;
int ret = -1;
for(int i=0; i<samples; i++) {
if(s[0] != '*' && data[i].name == s)
ret = showsample(i);
if(s[0] == '*' && data[i].name.find(s.substr(1)) != string::npos)
ret = showsample(i);
}
return ret;
}
void showbestsamples() {
vector<int> samplesbak;
for(auto& n: net)
if(n.allsamples)
showsample(n.bestsample);
analyze();
}
int kohrestrict = 1000000;
void initialize_rv();
void initialize_neurons() {
if(state & KS_NEURONS) return;
create_neurons();
state |= KS_NEURONS;
}
vector<cell*> gen_neuron_cells() {
vector<cell*> allcells;
if(krad) {
celllister cl(cwt.at, krad, 1000000, NULL);
allcells = cl.lst;
}
else if(kqty) {
celllister cl(cwt.at, 999, kqty, NULL);
allcells = cl.lst;
allcells.resize(kqty);
}
else allcells = currentmap->allcells();
if(isize(allcells) > kohrestrict) {
map<cell*, int> clindex;
for(int i=0; i<isize(allcells); i++) clindex[allcells[i]] = i;
sort(allcells.begin(), allcells.end(), [&clindex] (cell *c1, cell *c2) {
ld d1 = hdist0(tC0(ggmatrix(c1)));
ld d2 = hdist0(tC0(ggmatrix(c2)));
if(d1 < d2 - 1e-6)
return true;
if(d2 < d1 - 1e-6)
return false;
return clindex[c1] < clindex[c2];
});
int at = kohrestrict;
ld dist = hdist0(tC0(ggmatrix(allcells[at-1])));
while(at < isize(allcells) && hdist0(tC0(ggmatrix(allcells[at]))) < dist + 1e-6) at++;
int at1 = kohrestrict;
while(at1 > 0 && hdist0(tC0(ggmatrix(allcells[at1-1]))) > dist - 1e-6) at1--;
printf("Cells numbered [%d,%d) are in the same distance\n", at1, at);
allcells.resize(kohrestrict);
for(int i=kohrestrict; i<isize(allcells); i++) {
setdist(allcells[i], 0, nullptr);
allcells[i]->wall = waInvisibleFloor;
}
}
return allcells;
}
void create_neurons() {
initialize_rv();
if(!samples) {
fprintf(stderr, "Error: SOM without samples\n");
exit(1);
}
weight_label = "quantity";
DEBBI(DF_LOG, ("Creating neurons"));
auto allcells = gen_neuron_cells();
cells = isize(allcells);
net.resize(cells);
for(int i=0; i<cells; i++) {
net[i].where = allcells[i];
allcells[i]->landparam = i;
net[i].where->land = laCanvas;
}
for(neuron& n: net) for(int d=BARLEV; d>=7; d--) setdist(n.where, d, NULL);
DEBB(DF_LOG, ("number of neurons = ", cells));
}
void set_neuron_initial() {
initialize_neurons();
DEBBI(DF_LOG, ("Setting initial neuron values"));
for(int i=0; i<cells; i++) {
alloc(net[i].net);
for(int k=0; k<columns; k++)
net[i].net[k] = 0;
for(int k=0; k<columns; k++)
for(int z=0; z<initdiv; z++)
net[i].net[k] += data[hrand(samples)].val[k] / initdiv;
}
}
void initialize_neurons_initial() {
if(state & KS_NEURONS_INI) return;
set_neuron_initial();
state |= KS_NEURONS_INI;
}
void initialize_samples_to_show() {
if(state & KS_SAMPLES) return;
if(noshow) return;
DEBBI(DF_LOG, ("Initializing samples-to-show (", isize(samples_to_show), " samples", ")"));
if(!noshow) for(int s: samples_to_show) {
int vdid = isize(vdata);
sample_vdata_id[s] = vdid;
vdata.emplace_back();
auto &vd = vdata.back();
vd.name = data[s].name;
vd.cp = dftcolor;
createViz(vdid, cwt.at, Id);
storeall(vdid);
}
samples_to_show.clear();
state |= KS_SAMPLES;
}
void initialize_dispersion() {
if(state & KS_DISPERSION) return;
initialize_neurons();
DEBBI(DF_LOG, ("Initializing dispersion"));
if(gaussian || true) {
DEBB(DF_LOG, ("dist = ", fts(mydistance(net[0].where, net[1].where))));
cell *c1 = net[cells/2].where;
vector<double> mapdist;
for(neuron &n2: net) mapdist.push_back(mydistance(c1,n2.where));
sort(mapdist.begin(), mapdist.end());
maxdist = mapdist[isize(mapdist)*5/6] * distmul;
DEBB(DF_LOG, ("maxdist = ", fts(maxdist)));
}
dispersion_count = 0;
if(!gaussian)
DEBB(DF_LOG, ("dispersion precision = ", dispersion_precision, " end_at = ", dispersion_end_at, "...\n"));
DEBB(DF_LOG, ("building crawlers...\n"));
scc.clear();
for(int i=0; i<cells; i++) {
cell *c = net[i].where;
auto cid = get_cellcrawler_id(c);
if(!scc.count(cid.first)) {
// DEBB(DF_LOG, ("Building cellcrawler id = ", itsh(cid.first)));
buildcellcrawler(c, scc[cid.first], cid.second);
}
}
DEBB(DF_LOG, ("crawlers constructed = ", isize(scc), "\n"));
lpct = -46130;
state |= KS_DISPERSION;
}
void describe_cell(cell *c) {
if(cmode & sm::HELP) return;
neuron *n = getNeuronSlow(c);
if(!n) return;
string h;
h += "cell number: " + its(neuronId(*n)) + " (" + its(n->allsamples) + ")\n";
h += "parameters:"; for(int k=0; k<columns; k++) h += " " + fts(n->net[k]);
h += ", u-matrix = " + fts(n->udist);
h += "\n";
vector<pair<double, int>> v;
for(int s=0; s<samples; s++) if(whowon[s] == n) v.emplace_back(vnorm(n->net, data[s].val), s);
for(int i=1; i<isize(v); i++) swap(v[i], v[rand() % (i+1)]);
sort(v.begin(), v.end(), [] (pair<double,int> a, pair<double,int> b) { return a.first < b.first; });
for(int i=0; i<isize(v) && i<20; i++) {
int s = v[i].second;
h += "sample "+its(s)+":";
for(int k=0; k<columns; k++) h += " " + fts(data[s].val[k]);
h += " "; h += data[s].name; h += "\n";
}
appendHelp(h);
}
namespace levelline {
struct levelline {
int column, qty;
color_t color;
vector<double> values;
bool modified;
};
vector<levelline> levellines;
bool on;
void create() {
int xlalpha = part(default_edgetype.color, 0);
for(int i=0; i<columns; i++) {
levellines.emplace_back();
levelline& lv = levellines.back();
lv.column = i;
lv.color = ((hrandpos() & 0xFFFFFF) << 8) | xlalpha;
lv.qty = 0;
}
}
void build() {
if(levellines.size() == 0) create();
on = false;
for(auto& lv: levellines) {
if(!lv.qty || lv.qty < 0) { lv.values.clear(); continue; }
on = true;
if(!lv.modified) continue;
lv.modified = false;
vector<double> sample;
for(int j=0; j<=1024; j++) sample.push_back(data[hrand(samples)].val[lv.column]);
sort(sample.begin(), sample.end());
lv.values.clear();
lv.values.push_back(-1e10);
for(int j=0; j<=1024; j+=1024 >> (lv.qty)) lv.values.push_back(sample[j]);
lv.values.push_back(1e10);
}
}
void draw() {
if(!on) return;
for(auto& g: gmatrix) {
cell *c1 = g.first;
shiftmatrix T = g.second;
neuron *n1 = getNeuron(c1);
if(!n1) continue;
for(int i=0; i<c1->type; i++) {
cell *c2 = c1->move(i);
if(!c2) continue;
cell *c3 = c1->modmove(i-1);
if(!c3) continue;
if(!gmatrix.count(c2)) continue;
if(!gmatrix.count(c3)) continue;
double d2 = hdist(tC0(T), tC0(gmatrix[c2]));
double d3 = hdist(tC0(T), tC0(gmatrix[c3]));
neuron *n2 = getNeuron(c2);
if(!n2) continue;
neuron *n3 = getNeuron(c3);
if(!n3) continue;
for(auto& l: levellines) {
auto val1 = n1->net[l.column];
auto val2 = n2->net[l.column];
auto val3 = n3->net[l.column];
auto v1 = lower_bound(l.values.begin(), l.values.end(), val1);
auto v2 = lower_bound(l.values.begin(), l.values.end(), val2);
auto v3 = lower_bound(l.values.begin(), l.values.end(), val3);
auto draw = [&] () {
auto vmid = *v1;
queueline(
(T * ddspin(c1,i) * xpush0(d2 * (vmid-val1) / (val2-val1))),
(T * ddspin(c1,i-1) * xpush0(d3 * (vmid-val1) / (val3-val1))),
l.color, vid.linequality);
};
while(v1 < v2 && v1 < v3) {
draw();
v1++;
}
while(v1 > v2 && v1 > v3) {
v1--;
draw();
}
}
}
}
setindex(false);
}
void show() {
if(levellines.size() == 0) create();
cmode = sm::SIDE | sm::MAYDARK;
gamescreen();
dialog::init("level lines");
char nx = 'a';
for(auto &l : levellines) {
dialog::addSelItem(colnames[l.column], its(l.qty), nx++);
dialog::lastItem().colorv = l.color >> 8;
}
dialog::addItem("exit menu", '0');
dialog::addItem("shift+letter to change color", 0);
dialog::display();
keyhandler = [] (int sym, int uni) {
dialog::handleNavigation(sym, uni);
if(uni >= 'a' && uni - 'a' + isize(levellines)) {
auto& l = levellines[uni - 'a'];
dialog::editNumber(l.qty, 0, 10, 1, 0, colnames[l.column],
XLAT("Controls the number of level lines."))
.reaction = [&l] () {
l.modified = true;
build();
};
}
else if(uni >= 'A' && uni - 'A' + isize(levellines)) {
auto& l = levellines[uni - 'A'];
dialog::openColorDialog(l.color, NULL);
dialog::get_di().dialogflags |= sm::MAYDARK | sm::SIDE;
}
else if(doexiton(sym, uni)) popScreen();
};
}
}
void ksave(const string& fname) {
initialize_neurons_initial();
FILE *f = fopen(fname.c_str(), "wt");
if(!f) {
fprintf(stderr, "Could not save the network\n");
return;
}
fprintf(f, "%d %d\n", cells, t);
for(neuron& n: net) {
for(int k=0; k<columns; k++)
fprintf(f, "%.9lf ", n.net[k]);
fprintf(f, "\n");
}
fclose(f);
}
void kload(const string& fname) {
initialize_neurons();
int xcells;
fhstream f(fname.c_str(), "rt");
if(!f.f) {
fprintf(stderr, "Could not load the network: %s\n", fname.c_str());
return;
}
if(!scan(f, xcells, t)) {
fprintf(stderr, "Bad network format: %s\n", fname.c_str());
return;
}
printf("Loading the network %s...\n", fname.c_str());
if(xcells != cells) {
fprintf(stderr, "Error: bad number of cells (x=%d c=%d)\n", xcells, cells);
exit(1);
}
for(neuron& n: net) {
for(int k=0; k<columns; k++) if(!scan(f, n.net[k])) return;
}
analyze();
}
void ksavew(const string& fname) {
FILE *f = fopen(fname.c_str(), "wt");
if(!f) {
fprintf(stderr, "Could not save the weights: %s\n", fname.c_str());
return;
}
printf("Saving the network to %s...\n", fname.c_str());
for(int i=0; i<columns; i++)
fprintf(f, "%s=%.9lf\n", colnames[i].c_str(), weights[i]);
fclose(f);
}
void kloadw(const string& fname) {
FILE *f = fopen(fname.c_str(), "rt");
if(!f) {
fprintf(stderr, "Could not load the weights\n");
return;
}
for(int i=0; i<columns; i++) {
string s1, s2;
char kind = 0;
while(true) {
int c = fgetc(f);
if(c == 10 || c == 13 || c == -1) {
if(s1 == "" && !kind && c != -1) continue;
if(s1 != "") colnames[i] = s1;
if(kind == '=') weights[i] = atof(s2.c_str());
if(kind == '*') weights[i] *= atof(s2.c_str());
if(kind == '/') weights[i] /= atof(s2.c_str());
if(c == -1) break;
goto nexti;
}
else if(c == '=' || c == '/' || c == '*') kind = c;
else if(rv_ignore(c)) ;
else (kind?s2:s1) += c;
}
nexti: ;
}
fclose(f);
analyze();
}
unsigned lastprogress;
void progress(string s) {
if(SDL_GetTicks() >= lastprogress + (noGUI ? 500 : 100)) {
if(noGUI)
printf("%s\n", s.c_str());
else {
clearMessages();
addMessage(s);
mainloopiter();
}
lastprogress = SDL_GetTicks();
}
}
template<class T> void save_raw(string fname, const vector<T>& v) {
FILE *f = fopen(fname.c_str(), "wb");
fwrite(&v[0], sizeof(v[0]), v.size(), f);
fclose(f);
}
template<class T> void load_raw(string fname, vector<T>& v) {
FILE *f = fopen(fname.c_str(), "rb");
if(!f) { fprintf(stderr, "file does not exist: %s\n", fname.c_str()); exit(1); }
fseek(f, 0, SEEK_END);
auto s = ftell(f);
rewind(f);
v.resize(s / sizeof(v[0]));
hr::ignore(fread(&v[0], sizeof(v[0]), v.size(), f));
fclose(f);
}
bool groupsizes_known = false;
void do_classify() {
initialize_neurons_initial();
if(bids.empty()) {
printf("Classifying...\n");
bids.resize(samples, 0);
bdiffs.resize(samples, 1e20);
for(int s=0; s<samples; s++) {
for(int n=0; n<cells; n++) {
double diff = vnorm(net[n].net, data[s].val);
if(diff < bdiffs[s]) bdiffs[s] = diff, bids[s] = n, whowon[s] = &net[n];
}
if(!(s % 128))
progress("Classifying: " + its(s) + "/" + its(samples));
}
}
if(bdiffs.empty()) {
printf("Computing distances...\n");
bdiffs.resize(samples, 1e20);
for(int s=0; s<samples; s++)
bdiffs[s] = vnorm(net[bids[s]].net, data[s].val);
}
if(bdiffn.empty()) {
printf("Finding samples...\n");
bdiffn.resize(cells, 1e20);
for(int i=0; i<cells; i++) net[i].bestsample = -1;
for(int s=0; s<samples; s++) {
int n = bids[s];
double diff = bdiffs[s];
if(diff < bdiffn[n]) bdiffn[n] = diff, net[n].bestsample = s;
}
}
whowon.resize(samples);
for(int i=0; i<samples; i++) whowon[i] = &net[bids[i]];
for(neuron& n: net) n.allsamples = 0;
for(int sn: bids) net[sn].allsamples++;
if(!groupsizes_known) {
groupsizes_known = true;
vector<int> neurons_to_sort;
for(int i=0; i<cells; i++) neurons_to_sort.push_back(i);
sort(neurons_to_sort.begin(), neurons_to_sort.end(), [] (int i, int j) { return net[i].allsamples < net[j].allsamples; });
int last = 0;
int lastfirst = 0, lastlast = 0;
for(int i=0; i<cells; i++) {
int ngroup = min_group + ((max_group - min_group) * i + (cells/2)) / (cells-1);
int as = net[neurons_to_sort[i]].allsamples;
if(ngroup != last) {
if(last) printf("%d: %d - %d\n", last, lastfirst, lastlast);
last = ngroup; lastfirst = as;
}
net[neurons_to_sort[i]].max_group_here = ngroup;
lastlast = as;
}
if(last) printf("%d: %d - %d\n", last, lastfirst, lastlast);
}
coloring();
}
void fillgroups() {
do_classify();
vector<int> samples_to_sort;
for(int i=0; i<samples; i++) samples_to_sort.push_back(i);
hrandom_shuffle(samples_to_sort);
for(int i=0; i<samples; i++) if(net[bids[i]].drawn_samples < net[bids[i]].max_group_here)
showsample(i);
distribute_neurons();
}
void kclassify(const string& fname_classify) {
do_classify();
if(fname_classify != "") {
printf("Listing classification to %s...\n", fname_classify.c_str());
FILE *f = fopen(fname_classify.c_str(), "wt");
if(!f) {
printf("Failed to open file\n");
}
else {
for(int s=0; s<samples; s++)
fprintf(f, "%s;%d\n", data[s].name.c_str(), bids[s]);
fclose(f);
}
}
}
void kclassify_save_raw(const string& fname_classify) {
printf("Saving raw classify to %s...\n", fname_classify.c_str());
do_classify();
save_raw(fname_classify, bids);
}
void kclassify_load_raw(const string& fname_classify) {
printf("Loading raw classify from %s...\n", fname_classify.c_str());
load_raw(fname_classify, bids);
do_classify();
}
void load_edges(const string& fname_edges, string edgename, int pick = 0) {
do_classify();
auto t = add_edgetype(edgename);
vector<pair<int, int>> edgedata;
load_raw(fname_edges, edgedata);
int N = isize(edgedata);
if(pick > 0 && pick < N) {
for(int i=1; i<N; i++) swap(edgedata[i], edgedata[hrand(i+1)]);
edgedata.resize(N = pick);
}
t->visible_from = 1. / N;
vector<pair<int, int>> edgedata2;
for(auto p: edgedata)
edgedata2.emplace_back(showsample(p.first), showsample(p.second));
distribute_neurons();
int i = 0;
for(auto p: edgedata2)
if(p.first >= 0 && p.second >= 0)
addedge(p.first, p.second, 1 / (i+++.5), true, t);
else {
printf("error reading graph\n");
exit(1);
}
}
void random_edges(int q) {
auto t = add_edgetype("random");
vector<int> ssamp;
for(auto p: sample_vdata_id) ssamp.push_back(p.second);
for(int i=0; i<q; i++)
addedge(ssamp[hrand(isize(ssamp))], ssamp[hrand(isize(ssamp))], 0, true, t);
}
void klistsamples(const string& fname_samples, bool best, bool colorformat) {
if(fname_samples != "") {
printf("Listing samples...\n");
FILE *f = fopen(fname_samples.c_str(), "wt");
if(!f) {
printf("Failed to open file\n");
}
else {
auto klistsample = [f, colorformat] (int id, int neu) {
if(colorformat) {
fprintf(f, "%s;+#%d\n", data[id].name.c_str(), neu);
}
else {
for(int k=0; k<columns; k++)
fprintf(f, "%.4lf ", data[id].val[k]);
fprintf(f, "!%s\n", data[id].name.c_str());
}
};
if(!colorformat) fprintf(f, "%d\n", columns);
if(best)
for(int n=0; n<cells; n++) {
if(!net[n].allsamples && !net[n].drawn_samples) { if(!colorformat) fprintf(f, "\n"); continue; }
if(net[n].bestsample >= 0)
klistsample(net[n].bestsample, n);
}
else
for(auto p: sample_vdata_id) {
int id = p.first;
klistsample(id, neuronId(*(whowon[id])));
}
fclose(f);
}
}
}
void neurondisttable(const string &name) {
FILE *f = fopen(name.c_str(), "wt");
if(!f) {
printf("Could not open file: %s\n", name.c_str());
return;
}
int neurons = isize(net);
fprintf(f, "%d\n", neurons);
for(int i=0; i<neurons; i++) {
for(int j=0; j<neurons; j++) fprintf(f, "%3d", celldistance(net[i].where, net[j].where));
// todo: build the table correctly for gaussian=2
fprintf(f, "\n");
}
fclose(f);
}
bool animate_loop;
bool animate_once;
bool animate_dispersion;
int heatmap_width = 16;
color_t heatmap(ld x) {
if(x < 1/10.) return gradient(0x101010, 0x800000, 0, x, 1/10.);
else if(x < 1/2.) return gradient(0x800000, 0xFF8000, 1/10., x, 1/2.);
else return gradient(0xFF8000, 0xFFFFFF, 1/2., x, 1);
}
bool draw_heatmap() {
if(animate_dispersion && heatmap_width) {
dynamicval<eGeometry> g(geometry, gEuclid);
dynamicval<eModel> pm(pmodel, mdDisk);
dynamicval<bool> ga(vid.always3, false);
dynamicval<color_t> ou(poly_outline);
dynamicval<geometryinfo1> gi(ginf[gEuclid].g, giEuclid2);
initquickqueue();
check_cgi(); cgi.require_shapes();
println(hlog, "animate_dispersion called");
int pixstep = 4;
int width = heatmap_width;
for(int y=width; y<vid.yres-width; y+=pixstep) {
curvepoint(atscreenpos(width, y, 1) * C0);
curvepoint(atscreenpos(width*2, y, 1) * C0);
curvepoint(atscreenpos(width*2, y+pixstep, 1) * C0);
curvepoint(atscreenpos(width, y+pixstep, 1) * C0);
queuecurve(shiftless(Id), 0, darkena(heatmap(ilerp(width, vid.yres-width, y+pixstep/2.)), 0, 0xFF), PPR::LINE);
}
for(int p=0; p<=10; p++) {
ld y = lerp(width, vid.yres-width, p / 10.);
curvepoint(atscreenpos(width*2, y, 1) * C0);
curvepoint(atscreenpos(width*3, y, 1) * C0);
queuecurve(shiftless(Id), 0xFFFFFFFF, 0, PPR::LINE);
}
quickqueue();
return true;
}
return false;
}
void steps() {
if(kohonen::animate_dispersion) {
initialize_rv();
initialize_neurons_initial();
initialize_dispersion();
setindex(false);
ld tfrac = frac(ticks * 1. / anims::period);
ld tt = pow(tfrac, ttpower);
println(hlog, "tt = ", tt);
double sigma = maxdist * tt;
neuron& n = net[0];
auto cid = get_cellcrawler_id(n.where);
cellcrawler& s = scc[cid.first];
s.sprawl(cellwalker(n.where, cid.second));
vector<float> fake(0,0);
int dispersion_count = isize(s.dispersion);
int dispid = int(dispersion_count * tt);
auto it = gaussian ? fake.begin() : s.dispersion[dispid].begin();
println(hlog, "it done");
for(auto& sd: s.data) {
neuron *n2 = getNeuron(sd.target.at);
ld nu;
if(gaussian) {
nu = exp(-sqr(sd.dist/sigma));
}
else
nu = *(it++);
n2->where->landparam = heatmap(nu);
}
}
if(kohonen::animate_once && !kohonen::finished()) {
unsigned int t = SDL_GetTicks();
while(SDL_GetTicks() < t+20) kohonen::step();
setindex(false);
}
if(kohonen::animate_loop) {
ld tfrac = frac(1 - ticks * 1. / anims::period);
int t1 = tmax * tfrac;
println(hlog, "got t1 = ", t1, "/", tmax);
if(t1 > t) {
initialize_rv();
set_neuron_initial();
t = tmax;
analyze();
}
while(t > t1) kohonen::step();
setindex(false);
}
}
void shift_color(int i) {
whattodraw[i]++;
if(whattodraw[i] == columns) whattodraw[i] = -5;
coloring();
}
void showMenu() {
string parts[3] = {"red", "green", "blue"};
for(int i=0; i<3; i++) {
string c;
if(whattodraw[i] == -1) c = "u-matrix";
else if(whattodraw[i] == -2) c = "u-matrix reversed";
else if(whattodraw[i] == -3) c = "distance from marked ('m')";
else if(whattodraw[i] == -4) c = "number of samples";
else if(whattodraw[i] == -5) c = "best sample's color";
else if(whattodraw[i] == -6) c = "sample names to colors";
else c = colnames[whattodraw[i]];
dialog::addSelItem(XLAT("coloring (%1)", parts[i]), c, '1'+i);
dialog::add_action([i] { shift_color(i); });
}
dialog::addItem("coloring (all)", '0');
dialog::add_action([] {
shift_color(0); shift_color(1); shift_color(2);
});
dialog::addItem("level lines", '4');
dialog::add_action_push(levelline::show);
add_edit(precise_placement);
}
void save_compressed(string name) {
// save everything in compressed form
fhstream f(name, "wb");
if(!f.f) {
printf("failed to open for save_compressed: %s\n", name.c_str());
return;
}
// save columns
f.write(columns);
for(int i=0; i<columns; i++) f.write(colnames[i]);
for(int i=0; i<columns; i++) hwrite_raw<float>(f, weights[i]);
// save neurons
f.write<int>(isize(net));
for(int i=0; i<isize(net); i++)
for(int j=0; j<columns; j++) hwrite_raw<float>(f, net[i].net[j]);
// save shown samples
map<int, int> saved_id;
f.write<int>(isize(sample_vdata_id));
int index = 0;
for(auto p: sample_vdata_id) {
int i = p.first;
for(int j=0; j<columns; j++) hwrite_raw<float>(f, data[i].val[j]);
f.write(data[i].name);
int id = p.second;
saved_id[id] = index++;
auto& vd = vdata[id];
struct colorpair_old { color_t color1, color2; char shade; } cpo;
cpo.color1 = vd.cp.color1;
cpo.color2 = vd.cp.color2;
cpo.shade = vd.cp.shade;
hwrite_raw(f, cpo);
}
// save edge types
f.write<int>(isize(edgetypes));
for(auto&et: edgetypes) {
f.write(et->name);
hwrite_raw<float>(f, et->visible_from);
f.write(et->color);
}
// save edge infos
f.write<int>(isize(edgeinfos));
for(auto& ei: edgeinfos) {
for(int x=0; x<isize(edgetypes); x++)
if(ei->type == &*edgetypes[x]) f.write_char(x);
f.write(saved_id[ei->i]);
f.write(saved_id[ei->j]);
hwrite_raw<float>(f, ei->weight);
}
}
void load_compressed(string name) {
// save everything in compressed form
fhstream f(name, "rb");
if(!f.f) {
printf("failed to open for load_compressed: %s\n", name.c_str());
return;
}
// load columns
f.read(columns);
colnames.resize(columns);
for(int i=0; i<columns; i++) f.read(colnames[i]);
alloc(weights);
for(int i=0; i<columns; i++) weights[i] = f.get_raw<float>();
samples = 0;
initialize_neurons_initial();
// load neurons
int N = f.get<int>();
if(cells != N) {
fprintf(stderr, "Error: bad number of cells (N=%d c=%d)\n", N, cells);
exit(1);
}
for(neuron& n: net)
for(int k=0; k<columns; k++)
n.net[k] = f.get_raw<float>();
// load data
samples = f.get<int>();
data.resize(samples);
int id = 0;
for(auto& d: data) {
alloc(d.val);
for(int j=0; j<columns; j++)
d.val[j] = f.get_raw<float>();
f.read(d.name);
int i = vdata.size();
sample_vdata_id[id] = i;
vdata.emplace_back();
auto& v = vdata.back();
v.name = data[i].name;
struct colorpair_old { color_t color1, color2; char shade; } cpo;
hread_raw(f, cpo);
v.cp.color1 = cpo.color1;
v.cp.color2 = cpo.color2;
v.cp.shade = cpo.shade;
createViz(i, cwt.at, Id);
v.m->store();
id++;
}
// load edge types
int qet = f.get<int>();
for(int i=0; i<qet; i++) {
auto et = add_edgetype(f.get<string>());
et->visible_from = f.get_raw<float>();
f.read(et->color);
}
// load edge infos
int qei = f.get<int>();
for(int i=0; i<qei; i++) {
auto t = edgetypes[f.read_char()];
int ei = f.get<int>();
int ej = f.get<int>();
float w = f.get_raw<float>();
addedge(ei, ej, w, true, &*t);
}
analyze();
}
#if CAP_COMMANDLINE
int readArgs() {
using namespace arg;
// #1: load the samples
if(argis("-som")) {
PHASE(3);
shift(); kohonen::loadsamples(args());
}
// #2: set parameters
else if(argis("-somskrad")) {
shift(); krad = argi();
state &=~ (KS_NEURONS | KS_NEURONS_INI | KS_DISPERSION);
}
else if(argis("-somskqty")) {
shift(); kqty = argi();
state &=~ (KS_NEURONS | KS_NEURONS_INI | KS_DISPERSION);
}
else if(argis("-somsim")) {
gaussian = 0;
state &=~ KS_DISPERSION;
}
else if(argis("-somcgauss") || argis("-cgauss")) {
gaussian = 1;
state &=~ KS_DISPERSION;
}
else if(argis("-somggauss")) {
gaussian = 2;
state &=~ KS_DISPERSION;
}
else if(argis("-sompct")) {
shift(); qpct = argi();
}
else if(argis("-sompower")) {
shift_arg_formula(ttpower);
}
else if(argis("-somparam")) {
shift_arg_formula((gaussian ? distmul : dispersion_end_at));
if(dispersion_end_at <= 1) {
fprintf(stderr, "Dispersion parameter illegal\n");
dispersion_end_at = 1.5;
}
state &=~ KS_DISPERSION;
}
else if(argis("-sominitdiv")) {
shift(); initdiv = argi();
state &=~ KS_NEURONS_INI;
}
else if(argis("-somtmax")) {
shift(); t = (t*1./tmax) * argi();
tmax = argi();
}
else if(argis("-somlong")) {
shift(); dispersion_long = argi();
}
else if(argis("-somlearn")) {
// this one can be changed at any moment
shift_arg_formula(learning_factor);
}
else if(argis("-som-analyze")) {
analyze();
}
else if(argis("-somrun")) {
initialize_rv();
set_neuron_initial();
t = last_analyze_step = tmax;
}
// #3: load the neuron data (usually without #2)
else if(argis("-somload")) {
PHASE(3);
shift(); kohonen::kload(args());
}
// #4: run, stop etc.
else if(argis("-somrunto")) {
int i = argi();
shift(); while(t > i) {
if(t % 128 == 0) progress("Steps left: " + its(t));
kohonen::step();
}
}
else if(argis("-somstop")) {
t = 0;
}
else if(argis("-somnoshow")) {
noshow = true;
}
else if(argis("-somfinish")) {
while(!finished()) {
kohonen::step();
if(t % 128 == 0) progress("Steps left: " + its(t));
}
}
// #5 save data, classify etc.
else if(argis("-somsave")) {
PHASE(3);
shift(); kohonen::ksave(args());
}
else if(argis("-somsavew")) {
PHASE(3);
shift(); kohonen::ksavew(args());
}
else if(argis("-somloadw")) {
PHASE(3);
shift(); kohonen::kloadw(args());
}
else if(argis("-somclassify0")) {
PHASE(3);
shift(); kohonen::do_classify();
}
else if(argis("-somclassify")) {
PHASE(3);
shift(); kohonen::kclassify(args());
}
else if(argis("-somclassify-sr")) {
PHASE(3);
shift(); kohonen::kclassify_save_raw(args());
}
else if(argis("-somclassify-lr")) {
PHASE(3);
shift(); kohonen::kclassify_load_raw(args());
}
else if(argis("-somlistshown")) {
PHASE(3);
shift(); kohonen::klistsamples(args(), false, false);
}
else if(argis("-somlistbest")) {
PHASE(3);
shift(); kohonen::klistsamples(args(), true, false);
}
else if(argis("-somlistbestc")) {
PHASE(3);
shift(); kohonen::klistsamples(args(), true, true);
}
else if(argis("-somndist")) {
PHASE(3);
shift(); kohonen::neurondisttable(args());
}
else if(argis("-somshowbest")) {
showbestsamples();
}
else if(argis("-somverify")) {
start_game();
verify_crawlers();
}
else if(argis("-som-no-floor")) {
som_floor = waInvisibleFloor;
}
else if(argis("-somrestrict")) {
shift(); kohrestrict = argi();
}
else if(argis("-som-maxgroup")) {
shift(); max_group = argi();
}
else if(argis("-som-mingroup")) {
shift(); min_group = argi();
}
else if(argis("-som-fillgroups")) {
fillgroups();
}
else if(argis("-som-load-edges")) {
shift(); string edgename = args();
shift(); kohonen::load_edges(args(), edgename, 0);
}
else if(argis("-som-random-edges")) {
shift();
random_edges(argi());
}
else if(argis("-som-wtd")) {
for(int i=0; i<3; i++) {
shift();
whattodraw[i] = argi();
}
coloring();
}
else if(argis("-som-load-n-edges")) {
shift(); string edgename = args();
shift(); int n = argi();
shift(); kohonen::load_edges(args(), edgename, n);
}
else if(argis("-less-edges")) {
shift(); double d = argf();
for(auto t: edgetypes) t->visible_from *= d;
}
else if(argis("-som-save-compressed")) {
shift();
save_compressed(args());
}
else if(argis("-som-load-compressed")) {
shift();
load_compressed(args());
}
else return 1;
return 0;
}
auto hooks = addHook(hooks_args, 100, readArgs);
#endif
bool turn(int delta) {
kohonen::steps(), timetowait = 0;
return false;
// shmup::pc[0]->rebase();
}
bool kohonen_color(int& c2, string& lab, FILE *f) {
if(c2 == '+') {
int known_id = kohonen::showsample(lab);
c2 = fgetc(f);
if(c2 == '@') {
legend.push_back(known_id);
return true;
}
}
return false;
}
void clear() {
if(data.empty()) return;
printf("clearing Kohonen...\n");
sample_vdata_id.clear();
colnames.clear();
weights.clear();
net.clear();
whowon.clear();
scc.clear();
bdiffs.clear();
bids.clear();
bdiffn.clear();
state = 0;
}
auto hooks4 = addHook(hooks_clearmemory, 100, clear)
+ addHook(hooks_configfile, 100, [] {
param_f(precise_placement, "koh_placement")
-> editable(0, 2, .2, "precise placement", "0 = make all visible, 1 = place ideally, n = place 1/n of the distance from center to ideal placement", 'p')
-> set_reaction([] { if((state & KS_NEURONS) && (state & KS_SAMPLES)) distribute_neurons(); });
param_b(show_rings, "som_show_rings");
param_b(animate_once, "som_animate_once");
param_b(animate_loop, "som_animate_loop");
param_b(animate_dispersion, "som_animate_dispersion");
param_f(analyze_each, "som_analyze_each");
param_i(heatmap_width, "som_heatmap_width");
param_f(dispersion_precision, "som_dispersion")
-> set_reaction([] { state &=~ KS_DISPERSION; });
});
bool mark(cell *c) {
initialize_neurons();
distfrom = getNeuronSlow(c);
coloring();
return true;
}
void analyzer() {
if(t < last_analyze_step - analyze_each) analyze();
}
void initialize_rv() {
if(state & KS_ROGUEVIZ) return;
init(RV_GRAPH | RV_HAVE_WEIGHT);
state |= KS_ROGUEVIZ;
rv_hook(hooks_frame, 50, levelline::draw);
rv_hook(hooks_mouseover, 100, describe_cell);
rv_hook(shmup::hooks_turn, 100, turn);
rv_hook(rogueviz::hooks_rvmenu, 100, showMenu);
rv_hook(hooks_readcolor, 100, kohonen_color);
rv_hook(hooks_drawcell, 100, coloring_3d);
rv_hook(anims::hooks_anim, 100, analyzer);
rv_hook(hooks_prestats, 25, draw_heatmap);
}
}
}