1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-12-24 01:00:25 +00:00

struct fpattern exported

This commit is contained in:
Zeno Rogue 2019-09-05 09:56:49 +02:00
parent 9647cbd47e
commit fedb170b55

View File

@ -31,41 +31,45 @@ struct fgeomextra {
extern int subpathid;
extern int subpathorder;
#define MWDIM (prod ? 3 : WDIM+1)
bool isprime(int n) {
for(int k=2; k<n; k++) if(n%k == 0) return false;
return true;
}
#if HDR
#define MWDIM (prod ? 3 : WDIM+1)
struct matrix {
int a[MAXMDIM][MAXMDIM];
int* operator [] (int k) { return a[k]; }
const int* operator [] (int k) const { return a[k]; }
bool operator == (const matrix& B) const {
for(int i=0; i<MWDIM; i++) for(int j=0; j<MWDIM; j++)
if(self[i][j] != B[i][j]) return false;
return true;
}
bool operator != (const matrix& B) const {
for(int i=0; i<MWDIM; i++) for(int j=0; j<MWDIM; j++)
if(self[i][j] != B[i][j]) return true;
return false;
}
bool operator < (const matrix& B) const {
for(int i=0; i<MWDIM; i++) for(int j=0; j<MWDIM; j++)
if(self[i][j] != B[i][j]) return self[i][j] < B[i][j];
return false;
}
};
#endif
bool operator == (const matrix& A, const matrix& B) {
for(int i=0; i<MWDIM; i++) for(int j=0; j<MWDIM; j++)
if(A[i][j] != B[i][j]) return false;
return true;
}
bool operator != (const matrix& A, const matrix& B) {
for(int i=0; i<MWDIM; i++) for(int j=0; j<MWDIM; j++)
if(A[i][j] != B[i][j]) return true;
return false;
}
bool operator < (const matrix& A, const matrix& B) {
for(int i=0; i<MWDIM; i++) for(int j=0; j<MWDIM; j++)
if(A[i][j] != B[i][j]) return A[i][j] < B[i][j];
return false;
}
int btspin(int id, int d) {
EX int btspin(int id, int d) {
return S7*(id/S7) + (id + d) % S7;
}
#if HDR
struct fpattern {
int Prime, wsquare, Field;
@ -217,12 +221,7 @@ struct fpattern {
return make_pair(gmul(a.first,b), a.second);
}
int order(const matrix& M) {
int cnt = 1;
matrix Po = M;
while(Po != Id) Po = mmul(Po, M), cnt++;
return cnt;
}
int order(const matrix& M);
string decodepath(int i) {
string s;
@ -237,154 +236,9 @@ struct fpattern {
int cs, sn, ch, sh;
int solve() {
for(int a=0; a<MWDIM; a++) for(int b=0; b<MWDIM; b++) Id[a][b] = a==b?1:0;
int solve();
if(!isprime(Prime)) {
return 1;
}
rotations = WDIM == 2 ? S7 : 4;
local_group = WDIM == 2 ? S7 : 24;
for(int pw=1; pw<3; pw++) {
if(pw>3) break;
Field = pw==1? Prime : Prime*Prime;
if(pw == 2) {
for(wsquare=1; wsquare<Prime; wsquare++) {
int roots = 0;
for(int a=0; a<Prime; a++) if((a*a)%Prime == wsquare) roots++;
if(!roots) break;
}
} else wsquare = 0;
#ifdef EASY
std::vector<int> sqrts(Prime, 0);
for(int k=1-Prime; k<Prime; k++) sqrts[sqr(k)] = k;
int fmax = Prime;
#else
std::vector<int> sqrts(Field);
for(int k=0; k<Field; k++) sqrts[sqr(k)] = k;
int fmax = Field;
#endif
if(Prime == 13 && wsquare && false) {
for(int i=0; i<Prime; i++) printf("%3d", sqrts[i]);
printf("\n");
}
R = P = X = Id;
X[1][1] = 0; X[2][2] = 0;
X[1][2] = 1; X[2][1] = Prime-1;
for(cs=0; cs<fmax; cs++) {
int sb = sub(1, sqr(cs));
sn = sqrts[sb];
R[0][0] = cs; R[1][1] = cs;
R[0][1] = sn; R[1][0] = sub(0, sn);
matrix Z = R;
for(int i=1; i<rotations; i++) {
if(Z == Id) goto nextcs;
Z = mmul(Z, R);
}
if(Z != Id) continue;
if(R[0][0] == 1) continue;
for(ch=2; ch<fmax; ch++) {
int chx = sub(mul(ch,ch), 1);
sh = sqrts[chx];
P[0][0] = sub(0, ch);
P[0][WDIM] = sub(0, sh);
P[1][1] = Prime-1;
P[WDIM][0] = sh;
P[WDIM][WDIM] = ch;
matrix Z1 = mmul(P, R);
matrix Z = Z1;
for(int i=1; i<S3; i++) {
if(Z == Id) goto nextch;
Z = mmul(Z, Z1);
}
if(Z == Id) return 0;
nextch: ;
}
nextcs: ;
}
}
return 2;
}
void build() {
for(int i=0; i<isize(qpaths); i++) {
matrix M = strtomatrix(qpaths[i]);
qcoords.push_back(M);
printf("Solved %s as matrix of order %d\n", qpaths[i].c_str(), order(M));
}
matcode.clear(); matrices.clear();
add(Id);
if(isize(matrices) != local_group) { printf("Error: rotation crash #1 (%d)\n", isize(matrices)); exit(1); }
connections.clear();
for(int i=0; i<(int)matrices.size(); i++) {
matrix M = matrices[i];
matrix PM = mmul(P, M);
add(PM);
if(isize(matrices) % local_group) { printf("Error: rotation crash (%d)\n", isize(matrices)); exit(1); }
if(!matcode.count(PM)) { printf("Error: not marked\n"); exit(1); }
connections.push_back(matcode[PM]);
}
DEBB(DF_FIELD, ("Computing inverses...\n"));
int N = isize(matrices);
DEBB(DF_FIELD, ("Number of heptagons: %d\n", N));
if(WDIM == 3) return;
rrf.resize(N); rrf[0] = S7-1;
for(int i=0; i<N; i++)
rrf[btspin(i,1)] = btspin(rrf[i], 1),
rrf[connections[i]] = connections[rrf[i]];
rpf.resize(N); rpf[0] = S7;
for(int i=0; i<N; i++)
rpf[btspin(i,1)] = btspin(rpf[i], 1),
rpf[connections[i]] = connections[rpf[i]];
inverses.resize(N);
inverses[0] = 0;
for(int i=0; i<N; i++) // inverses[i] = gpow(i, N-1);
inverses[btspin(i,1)] = rrf[inverses[i]], // btspin(inverses[i],6),
inverses[connections[i]] = rpf[inverses[i]];
int errs = 0;
for(int i=0; i<N; i++) if(gmul(i, inverses[i])) errs++;
if(errs) printf("errs = %d\n", errs);
if(0) for(int i=0; i<isize(matrices); i++) {
printf("%5d/%4d", connections[i], inverses[i]);
if(i%S7 == S7-1) printf("\n");
}
DEBB(DF_FIELD, ("Built.\n"));
}
void build();
static const int MAXDIST = 120;
@ -395,265 +249,14 @@ struct fpattern {
int distflower0;
vector<eItem> markers;
int getdist(pair<int,bool> a, vector<char>& dists);
int getdist(pair<int,bool> a, pair<int,bool> b);
int dijkstra(vector<char>& dists, vector<int> indist[MAXDIST]);
void analyze();
int getdist(pair<int,bool> a, vector<char>& dists) {
if(!a.second) return dists[a.first];
int m = MAXDIST;
int ma = dists[a.first];
int mb = dists[connections[btspin(a.first, 3)]];
int mc = dists[connections[btspin(a.first, 4)]];
m = min(m, 1 + ma);
m = min(m, 1 + mb);
m = min(m, 1 + mc);
if(m <= 2 && ma+mb+mc <= m*3-2) return m-1; // special case
m = min(m, 2 + dists[connections[btspin(a.first, 2)]]);
m = min(m, 2 + dists[connections[btspin(a.first, 5)]]);
m = min(m, 2 + dists[connections[btspin(connections[btspin(a.first, 3)], 5)]]);
return m;
}
int getdist(pair<int,bool> a, pair<int,bool> b) {
if(a.first == b.first) return a.second == b.second ? 0 : 1;
if(b.first) a.first = gmul(a.first, inverses[b.first]), b.first = 0;
return getdist(a, b.second ? disthex : disthep);
}
int maxdist, otherpole, circrad, wallid, wallorder, riverid;
int dijkstra(vector<char>& dists, vector<int> indist[MAXDIST]) {
int N = connections.size();
dists.resize(N);
for(int i=0; i<N; i++) dists[i] = MAXDIST-1;
int maxd = 0;
for(int i=0; i<MAXDIST; i++) while(!indist[i].empty()) {
int at = indist[i].back();
indist[i].pop_back();
if(dists[at] <= i) continue;
maxd = i;
dists[at] = i;
for(int q=0; q<S7; q++) {
dists[at] = i;
if(PURE) // todo-variation: PURE here?
indist[i+1].push_back(connections[at]);
else {
indist[i+2].push_back(connections[at]);
indist[i+3].push_back(connections[btspin(connections[at], 2)]);
}
at = btspin(at, 1);
}
}
return maxd;
}
void analyze() {
if(WDIM == 3) return;
DEBB(DF_FIELD, ("variation = %d\n", int(variation)));
int N = connections.size();
markers.resize(N);
vector<int> indist[MAXDIST];
indist[0].push_back(0);
int md0 = dijkstra(disthep, indist);
indist[1].push_back(0);
indist[1].push_back(connections[3]);
indist[1].push_back(connections[4]);
indist[2].push_back(connections[btspin(connections[3], 5)]);
indist[2].push_back(connections[2]);
indist[2].push_back(connections[5]);
int md1 = dijkstra(disthex, indist);
maxdist = max(md0, md1);
otherpole = 0;
for(int i=0; i<N; i+=S7) {
int mp = 0;
for(int q=0; q<S7; q++) if(disthep[connections[i+q]] < disthep[i]) mp++;
if(mp == S7) {
bool eq = true;
for(int q=0; q<S7; q++) if(disthep[connections[i+q]] != disthep[connections[i]]) eq = false;
if(eq) {
// for(int q=0; q<S7; q++) printf("%3d", disthep[connections[i+q]]);
// printf(" (%2d) at %d\n", disthep[i], i);
if(disthep[i] > disthep[otherpole]) otherpole = i;
// for(int r=0; r<S7; r++) {
// printf("Matrix: "); for(int a=0; a<3; a++) for(int b=0; b<3; b++)
// printf("%4d", matrices[i+r][a][b]); printf("\n");
// }
}
}
}
circrad = 99;
for(int i=0; i<N; i++) for(int u=2; u<4; u++) if(disthep[i] < circrad)
if(disthep[connections[i]] < disthep[i] && disthep[connections[btspin(i,u)]] < disthep[i])
circrad = disthep[i];
DEBB(DF_FIELD, ("maxdist = %d otherpole = %d circrad = %d\n", maxdist, otherpole, circrad));
matrix PRRR = strtomatrix("PRRR");
matrix PRRPRRRRR = strtomatrix("PRRPRRRRR");
matrix PRRRP = strtomatrix("PRRRP");
matrix PRP = strtomatrix("PRP");
matrix PR = strtomatrix("PR");
matrix Wall = strtomatrix("RRRPRRRRRPRRRP");
wallorder = order(Wall);
wallid = matcode[Wall];
DEBB(DF_FIELD, ("wall order = %d\n", wallorder));
#define SETDIST(X, d, it) {int c = matcode[X]; indist[d].push_back(c); if(it == itNone) ; else if(markers[c] && markers[c] != it) markers[c] = itBuggy; else markers[c] = it; }
matrix W = Id;
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itAmethyst)
W = mmul(W, Wall);
}
W = P;
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itEmerald)
W = mmul(W, Wall);
}
int walldist = dijkstra(distwall, indist);
DEBB(DF_FIELD, ("wall dist = %d\n", walldist));
W = strtomatrix("RRRRPR");
for(int j=0; j<wallorder; j++) {
W = mmul(W, Wall);
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itNone)
SETDIST(mmul(PRRR, W), 1, itNone)
W = mmul(Wall, W);
}
}
dijkstra(distwall2, indist);
int rpushid = matcode[PRRPRRRRR];
riverid = 0;
for(int i=0; i<N; i++) {
int j = i;
int ipush = gmul(rpushid, i);
for(int k=0; k<wallorder; k++) {
if(ipush == j) {
DEBB(DF_FIELD, ("River found at %d:%d\n", i, k));
riverid = i;
goto riveridfound;
}
j = gmul(j, wallid);
}
}
riveridfound: ;
W = strtomatrix("RRRRPR");
for(int j=0; j<wallorder; j++) {
W = mmul(W, Wall);
for(int i=0; i<wallorder; i++) {
if(i == 7) SETDIST(W, 0, itCoast)
if(i == 3) SETDIST(mmul(PRRRP, W), 0, itWhirlpool)
W = mmul(Wall, W);
}
}
dijkstra(PURE ? distriver : distflower, indist);
W = matrices[riverid];
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itStatue)
W = mmul(W, Wall);
}
W = mmul(P, W);
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itSapphire)
W = mmul(W, Wall);
}
W = mmul(PRP, matrices[riverid]);
for(int i=0; i<wallorder; i++) {
SETDIST(W, 1, itShard)
W = mmul(W, Wall);
}
W = mmul(PR, matrices[riverid]);
for(int i=0; i<wallorder; i++) {
SETDIST(W, 1, itGold)
W = mmul(W, Wall);
}
int riverdist = dijkstra(PURE ? distflower : distriver, indist);
DEBB(DF_FIELD, ("river dist = %d\n", riverdist));
for(int i=0; i<isize(currfp.matrices); i++)
if(currfp.distflower[i] == 0) {
distflower0 = currfp.inverses[i]+1;
break;
}
if(!PURE) {
W = matrices[riverid];
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itStatue)
W = mmul(W, Wall);
}
W = mmul(PR, matrices[riverid]);
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itGold)
W = mmul(W, Wall);
}
W = mmul(P, matrices[riverid]);
for(int i=0; i<wallorder; i++) {
SETDIST(W, 1, itSapphire)
W = mmul(W, Wall);
}
dijkstra(distriverleft, indist);
W = mmul(PRP, matrices[riverid]);
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itShard)
W = mmul(W, Wall);
}
W = mmul(P, matrices[riverid]);
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itSapphire)
W = mmul(W, Wall);
}
W = matrices[riverid];
for(int i=0; i<wallorder; i++) {
SETDIST(W, 1, itStatue)
W = mmul(W, Wall);
}
dijkstra(distriverright, indist);
}
else {
W = strtomatrix("RRRRPR");
for(int j=0; j<wallorder; j++) {
W = mmul(W, Wall);
for(int i=0; i<wallorder; i++) {
if(i == 7) SETDIST(W, 0, itCoast)
W = mmul(Wall, W);
}
}
dijkstra(distriverleft, indist);
W = strtomatrix("RRRRPR");
for(int j=0; j<wallorder; j++) {
W = mmul(W, Wall);
for(int i=0; i<wallorder; i++) {
if(i == 3) SETDIST(mmul(PRRRP, W), 0, itWhirlpool)
W = mmul(Wall, W);
}
}
dijkstra(distriverright, indist);
}
DEBB(DF_FIELD, ("wall-river distance = %d\n", distwall[riverid]));
DEBB(DF_FIELD, ("river-wall distance = %d\n", distriver[0]));
}
bool easy(int i) {
return i < Prime || !(i % Prime);
}
@ -676,17 +279,421 @@ struct fpattern {
init(p);
}
void findsubpath() {
int N = isize(matrices);
for(int i=1; i<N; i++)
if(gpow(i, Prime) == 0) {
subpathid = i;
subpathorder = Prime;
DEBB(DF_FIELD, ("Subpath found: %s\n", decodepath(i).c_str()));
return;
}
}
void findsubpath();
};
#endif
int fpattern::solve() {
for(int a=0; a<MWDIM; a++) for(int b=0; b<MWDIM; b++) Id[a][b] = a==b?1:0;
if(!isprime(Prime)) {
return 1;
}
rotations = WDIM == 2 ? S7 : 4;
local_group = WDIM == 2 ? S7 : 24;
for(int pw=1; pw<3; pw++) {
if(pw>3) break;
Field = pw==1? Prime : Prime*Prime;
if(pw == 2) {
for(wsquare=1; wsquare<Prime; wsquare++) {
int roots = 0;
for(int a=0; a<Prime; a++) if((a*a)%Prime == wsquare) roots++;
if(!roots) break;
}
} else wsquare = 0;
#ifdef EASY
std::vector<int> sqrts(Prime, 0);
for(int k=1-Prime; k<Prime; k++) sqrts[sqr(k)] = k;
int fmax = Prime;
#else
std::vector<int> sqrts(Field);
for(int k=0; k<Field; k++) sqrts[sqr(k)] = k;
int fmax = Field;
#endif
if(Prime == 13 && wsquare && false) {
for(int i=0; i<Prime; i++) printf("%3d", sqrts[i]);
printf("\n");
}
R = P = X = Id;
X[1][1] = 0; X[2][2] = 0;
X[1][2] = 1; X[2][1] = Prime-1;
for(cs=0; cs<fmax; cs++) {
int sb = sub(1, sqr(cs));
sn = sqrts[sb];
R[0][0] = cs; R[1][1] = cs;
R[0][1] = sn; R[1][0] = sub(0, sn);
matrix Z = R;
for(int i=1; i<rotations; i++) {
if(Z == Id) goto nextcs;
Z = mmul(Z, R);
}
if(Z != Id) continue;
if(R[0][0] == 1) continue;
for(ch=2; ch<fmax; ch++) {
int chx = sub(mul(ch,ch), 1);
sh = sqrts[chx];
P[0][0] = sub(0, ch);
P[0][WDIM] = sub(0, sh);
P[1][1] = Prime-1;
P[WDIM][0] = sh;
P[WDIM][WDIM] = ch;
matrix Z1 = mmul(P, R);
matrix Z = Z1;
for(int i=1; i<S3; i++) {
if(Z == Id) goto nextch;
Z = mmul(Z, Z1);
}
if(Z == Id) return 0;
nextch: ;
}
nextcs: ;
}
}
return 2;
}
int fpattern::order(const matrix& M) {
int cnt = 1;
matrix Po = M;
while(Po != Id) Po = mmul(Po, M), cnt++;
return cnt;
}
void fpattern::build() {
for(int i=0; i<isize(qpaths); i++) {
matrix M = strtomatrix(qpaths[i]);
qcoords.push_back(M);
printf("Solved %s as matrix of order %d\n", qpaths[i].c_str(), order(M));
}
matcode.clear(); matrices.clear();
add(Id);
if(isize(matrices) != local_group) { printf("Error: rotation crash #1 (%d)\n", isize(matrices)); exit(1); }
connections.clear();
for(int i=0; i<(int)matrices.size(); i++) {
matrix M = matrices[i];
matrix PM = mmul(P, M);
add(PM);
if(isize(matrices) % local_group) { printf("Error: rotation crash (%d)\n", isize(matrices)); exit(1); }
if(!matcode.count(PM)) { printf("Error: not marked\n"); exit(1); }
connections.push_back(matcode[PM]);
}
DEBB(DF_FIELD, ("Computing inverses...\n"));
int N = isize(matrices);
DEBB(DF_FIELD, ("Number of heptagons: %d\n", N));
if(WDIM == 3) return;
rrf.resize(N); rrf[0] = S7-1;
for(int i=0; i<N; i++)
rrf[btspin(i,1)] = btspin(rrf[i], 1),
rrf[connections[i]] = connections[rrf[i]];
rpf.resize(N); rpf[0] = S7;
for(int i=0; i<N; i++)
rpf[btspin(i,1)] = btspin(rpf[i], 1),
rpf[connections[i]] = connections[rpf[i]];
inverses.resize(N);
inverses[0] = 0;
for(int i=0; i<N; i++) // inverses[i] = gpow(i, N-1);
inverses[btspin(i,1)] = rrf[inverses[i]], // btspin(inverses[i],6),
inverses[connections[i]] = rpf[inverses[i]];
int errs = 0;
for(int i=0; i<N; i++) if(gmul(i, inverses[i])) errs++;
if(errs) printf("errs = %d\n", errs);
if(0) for(int i=0; i<isize(matrices); i++) {
printf("%5d/%4d", connections[i], inverses[i]);
if(i%S7 == S7-1) printf("\n");
}
DEBB(DF_FIELD, ("Built.\n"));
}
int fpattern::getdist(pair<int,bool> a, vector<char>& dists) {
if(!a.second) return dists[a.first];
int m = MAXDIST;
int ma = dists[a.first];
int mb = dists[connections[btspin(a.first, 3)]];
int mc = dists[connections[btspin(a.first, 4)]];
m = min(m, 1 + ma);
m = min(m, 1 + mb);
m = min(m, 1 + mc);
if(m <= 2 && ma+mb+mc <= m*3-2) return m-1; // special case
m = min(m, 2 + dists[connections[btspin(a.first, 2)]]);
m = min(m, 2 + dists[connections[btspin(a.first, 5)]]);
m = min(m, 2 + dists[connections[btspin(connections[btspin(a.first, 3)], 5)]]);
return m;
}
int fpattern::getdist(pair<int,bool> a, pair<int,bool> b) {
if(a.first == b.first) return a.second == b.second ? 0 : 1;
if(b.first) a.first = gmul(a.first, inverses[b.first]), b.first = 0;
return getdist(a, b.second ? disthex : disthep);
}
int fpattern::dijkstra(vector<char>& dists, vector<int> indist[MAXDIST]) {
int N = connections.size();
dists.resize(N);
for(int i=0; i<N; i++) dists[i] = MAXDIST-1;
int maxd = 0;
for(int i=0; i<MAXDIST; i++) while(!indist[i].empty()) {
int at = indist[i].back();
indist[i].pop_back();
if(dists[at] <= i) continue;
maxd = i;
dists[at] = i;
for(int q=0; q<S7; q++) {
dists[at] = i;
if(PURE) // todo-variation: PURE here?
indist[i+1].push_back(connections[at]);
else {
indist[i+2].push_back(connections[at]);
indist[i+3].push_back(connections[btspin(connections[at], 2)]);
}
at = btspin(at, 1);
}
}
return maxd;
}
void fpattern::analyze() {
if(WDIM == 3) return;
DEBB(DF_FIELD, ("variation = %d\n", int(variation)));
int N = connections.size();
markers.resize(N);
vector<int> indist[MAXDIST];
indist[0].push_back(0);
int md0 = dijkstra(disthep, indist);
indist[1].push_back(0);
indist[1].push_back(connections[3]);
indist[1].push_back(connections[4]);
indist[2].push_back(connections[btspin(connections[3], 5)]);
indist[2].push_back(connections[2]);
indist[2].push_back(connections[5]);
int md1 = dijkstra(disthex, indist);
maxdist = max(md0, md1);
otherpole = 0;
for(int i=0; i<N; i+=S7) {
int mp = 0;
for(int q=0; q<S7; q++) if(disthep[connections[i+q]] < disthep[i]) mp++;
if(mp == S7) {
bool eq = true;
for(int q=0; q<S7; q++) if(disthep[connections[i+q]] != disthep[connections[i]]) eq = false;
if(eq) {
// for(int q=0; q<S7; q++) printf("%3d", disthep[connections[i+q]]);
// printf(" (%2d) at %d\n", disthep[i], i);
if(disthep[i] > disthep[otherpole]) otherpole = i;
// for(int r=0; r<S7; r++) {
// printf("Matrix: "); for(int a=0; a<3; a++) for(int b=0; b<3; b++)
// printf("%4d", matrices[i+r][a][b]); printf("\n");
// }
}
}
}
circrad = 99;
for(int i=0; i<N; i++) for(int u=2; u<4; u++) if(disthep[i] < circrad)
if(disthep[connections[i]] < disthep[i] && disthep[connections[btspin(i,u)]] < disthep[i])
circrad = disthep[i];
DEBB(DF_FIELD, ("maxdist = %d otherpole = %d circrad = %d\n", maxdist, otherpole, circrad));
matrix PRRR = strtomatrix("PRRR");
matrix PRRPRRRRR = strtomatrix("PRRPRRRRR");
matrix PRRRP = strtomatrix("PRRRP");
matrix PRP = strtomatrix("PRP");
matrix PR = strtomatrix("PR");
matrix Wall = strtomatrix("RRRPRRRRRPRRRP");
wallorder = order(Wall);
wallid = matcode[Wall];
DEBB(DF_FIELD, ("wall order = %d\n", wallorder));
#define SETDIST(X, d, it) {int c = matcode[X]; indist[d].push_back(c); if(it == itNone) ; else if(markers[c] && markers[c] != it) markers[c] = itBuggy; else markers[c] = it; }
matrix W = Id;
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itAmethyst)
W = mmul(W, Wall);
}
W = P;
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itEmerald)
W = mmul(W, Wall);
}
int walldist = dijkstra(distwall, indist);
DEBB(DF_FIELD, ("wall dist = %d\n", walldist));
W = strtomatrix("RRRRPR");
for(int j=0; j<wallorder; j++) {
W = mmul(W, Wall);
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itNone)
SETDIST(mmul(PRRR, W), 1, itNone)
W = mmul(Wall, W);
}
}
dijkstra(distwall2, indist);
int rpushid = matcode[PRRPRRRRR];
riverid = 0;
for(int i=0; i<N; i++) {
int j = i;
int ipush = gmul(rpushid, i);
for(int k=0; k<wallorder; k++) {
if(ipush == j) {
DEBB(DF_FIELD, ("River found at %d:%d\n", i, k));
riverid = i;
goto riveridfound;
}
j = gmul(j, wallid);
}
}
riveridfound: ;
W = strtomatrix("RRRRPR");
for(int j=0; j<wallorder; j++) {
W = mmul(W, Wall);
for(int i=0; i<wallorder; i++) {
if(i == 7) SETDIST(W, 0, itCoast)
if(i == 3) SETDIST(mmul(PRRRP, W), 0, itWhirlpool)
W = mmul(Wall, W);
}
}
dijkstra(PURE ? distriver : distflower, indist);
W = matrices[riverid];
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itStatue)
W = mmul(W, Wall);
}
W = mmul(P, W);
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itSapphire)
W = mmul(W, Wall);
}
W = mmul(PRP, matrices[riverid]);
for(int i=0; i<wallorder; i++) {
SETDIST(W, 1, itShard)
W = mmul(W, Wall);
}
W = mmul(PR, matrices[riverid]);
for(int i=0; i<wallorder; i++) {
SETDIST(W, 1, itGold)
W = mmul(W, Wall);
}
int riverdist = dijkstra(PURE ? distflower : distriver, indist);
DEBB(DF_FIELD, ("river dist = %d\n", riverdist));
for(int i=0; i<isize(currfp.matrices); i++)
if(currfp.distflower[i] == 0) {
distflower0 = currfp.inverses[i]+1;
break;
}
if(!PURE) {
W = matrices[riverid];
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itStatue)
W = mmul(W, Wall);
}
W = mmul(PR, matrices[riverid]);
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itGold)
W = mmul(W, Wall);
}
W = mmul(P, matrices[riverid]);
for(int i=0; i<wallorder; i++) {
SETDIST(W, 1, itSapphire)
W = mmul(W, Wall);
}
dijkstra(distriverleft, indist);
W = mmul(PRP, matrices[riverid]);
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itShard)
W = mmul(W, Wall);
}
W = mmul(P, matrices[riverid]);
for(int i=0; i<wallorder; i++) {
SETDIST(W, 0, itSapphire)
W = mmul(W, Wall);
}
W = matrices[riverid];
for(int i=0; i<wallorder; i++) {
SETDIST(W, 1, itStatue)
W = mmul(W, Wall);
}
dijkstra(distriverright, indist);
}
else {
W = strtomatrix("RRRRPR");
for(int j=0; j<wallorder; j++) {
W = mmul(W, Wall);
for(int i=0; i<wallorder; i++) {
if(i == 7) SETDIST(W, 0, itCoast)
W = mmul(Wall, W);
}
}
dijkstra(distriverleft, indist);
W = strtomatrix("RRRRPR");
for(int j=0; j<wallorder; j++) {
W = mmul(W, Wall);
for(int i=0; i<wallorder; i++) {
if(i == 3) SETDIST(mmul(PRRRP, W), 0, itWhirlpool)
W = mmul(Wall, W);
}
}
dijkstra(distriverright, indist);
}
DEBB(DF_FIELD, ("wall-river distance = %d\n", distwall[riverid]));
DEBB(DF_FIELD, ("river-wall distance = %d\n", distriver[0]));
}
int fpattern::orderstats() {
int N = isize(matrices);
@ -713,6 +720,16 @@ int fpattern::orderstats() {
return ordsample[Prime];
}
void fpattern::findsubpath() {
int N = isize(matrices);
for(int i=1; i<N; i++)
if(gpow(i, Prime) == 0) {
subpathid = i;
subpathorder = Prime;
DEBB(DF_FIELD, ("Subpath found: %s\n", decodepath(i).c_str()));
return;
}
}
fpattern fp43(43);
@ -747,7 +764,8 @@ void info() {
printf("cases found = %d (%d hard)\n", cases, hard);
}
fpattern current_quotient_field(0), fp_invalid(0);
EX fpattern current_quotient_field = fpattern(0);
EX fpattern fp_invalid = fpattern(0);
bool quotient_field_changed;
EX struct fpattern& getcurrfp() {