1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-25 16:37:00 +00:00

synt:: replaced the combinatorial building process with floating-point-based one for hyperbolic geometry too

This commit is contained in:
Zeno Rogue 2018-08-19 00:25:43 +02:00
parent b186b9d1bb
commit 7bae01c168
7 changed files with 128 additions and 391 deletions

View File

@ -208,7 +208,7 @@ heptagon *createAlternateMap(cell *c, int rad, hstate firststate, int special) {
alt->s = firststate;
alt->emeraldval = 0;
alt->zebraval = 0;
for(int i=0; i<MAX_EDGE; i++) alt->move(i) = NULL;
alt->c.clear();
alt->distance = 0;
alt->c7 = NULL;
alt->alt = alt;

View File

@ -349,9 +349,6 @@ namespace torusconfig {
}
}
int decodeId(heptagon* h);
heptagon* encodeId(int id);
int euclid_getvec(int dx, int dy) {
if(torus) return torusconfig::getvec(dx, dy);
else return pair_to_vec(dx, dy);

View File

@ -52,12 +52,10 @@ void precalc() {
int vertexdegree = S6/2;
ld fmin, fmax;
if(syntetic) {
synt::prepare();
return;
}
if(syntetic)
ginf[gSyntetic].cclass = gcHyperbolic;
if(euclid) {
if(euclid) {
// dynamicval<eGeometry> g(geometry, gNormal);
// precalc(); }
// for(int i=0; i<S84; i++) spinmatrix[i] = spin(i * M_PI / S42);
@ -175,6 +173,7 @@ void precalc() {
gp::compute_geometry();
irr::compute_geometry();
if(syntetic) synt::prepare();
}
transmatrix ddi(ld dir, ld dist) {

View File

@ -307,6 +307,41 @@ void virtualRebase(cell*& base, hyperpoint& h, bool tohex) {
virtualRebase(base, h, tohex, [] (const hyperpoint& h) { return h; });
}
// works only in geometries similar to the standard one, and only on heptagons
void virtualRebaseSimple(heptagon*& base, transmatrix& at) {
while(true) {
double currz = at[2][2];
heptagon *h = base;
heptagon *newbase = NULL;
transmatrix bestV;
for(int d=0; d<S7; d++) {
heptspin hs(h, d, false);
heptspin hs2 = hs + wstep;
transmatrix V2 = spin(-hs2.spin*2*M_PI/S7) * invheptmove[d] * at;
double newz = V2[2][2];
if(newz < currz) {
currz = newz;
bestV = V2;
newbase = hs2.at;
}
}
if(newbase) {
base = newbase;
at = bestV;
continue;
}
return;
}
}
double cellgfxdist(cell *c, int i) {
if(gp::on || irr::on) return hdist0(tC0(calc_relative_matrix(c->move(i), c, i)));
return nonbitrunc ? tessf * gp::scale : (c->type == 6 && (i&1)) ? hexhexdist : crossf;

View File

@ -3840,5 +3840,10 @@ namespace synt {
hyperpoint get_warp_corner(cell *c, int cid);
hyperpoint get_corner_position(cell *c, int cid, ld cf = 3);
int decodeId(heptagon* h);
heptagon* encodeId(int id);
void virtualRebaseSimple(heptagon*& base, transmatrix& at);
}

View File

@ -2,42 +2,13 @@ namespace hr {
namespace synt {
int indent;
struct indenter {
indenter() { indent += 2; }
~indenter() { indent -= 2; }
};
void doindent() { fflush(stdout); for(int i=0; i<indent; i++) printf(" "); }
bool do_sdebug = false;
#define SDEBUG(x) if(do_sdebug) { doindent(); x; fflush(stdout); }
#define SDEBUG(x) if(debug_geometry) { doindent(); x; fflush(stdout); }
// Marek-snub
vector<int> faces = {3, 6, 6, 6};
vector<int> adj = {1, 0, 2, 3};
vector<bool> invert = {false, false, true, false};
/*
vector<int> faces = {3, 6, 6, 6};
vector<int> adj = {1, 0, 2, 3};
vector<bool> invert = {false, false, false, false};
*/
/*
vector<int> faces = {7, 6, 6};
vector<int> adj = {1, 0, 2};
vector<bool> invert = {false, false, false};
*/
/*
vector<int> faces = {8, 8, 8};
vector<int> adj = {0, 1, 2};
vector<bool> invert = {false, false, false};
*/
int repetition = 1;
int N;
@ -50,14 +21,6 @@ vector<vector<pair<ld, ld>>> triangles;
// 0, 2, ..., 2(N-1) = as in the symbol
// 2N = bitruncated tile
map<heptagon*, int> create_order;
map<heptagon*, transmatrix> syntetic_gmatrix;
int nextorder = 1;
static const int PRUNED = 100;
short& id_of(heptagon *h) {
return h->zebraval;
}
@ -74,27 +37,9 @@ int neighbors_of(heptagon *h) {
return isize(triangles[id_of(h)]);
}
// right_sibling_of(h) has the same distance ('right sibling'), then we have some at smaller or equal distance,
// parents_of(h) has the same distance again ('left sibling'), and then we have vertices at bigger distance,
// who are our 'children' except the rightmost one which is typically a child of the right sibling
short& right_sibling_of(heptagon *h) {
return h->fiftyval;
}
int parents_of(heptagon *h) {
return h->s;
}
int children_of(heptagon *h) {
return right_sibling_of(h) - 1 - parents_of(h);
}
ld edgelength;
vector<ld> inradius, circumradius, alphas;
extern void draw_debug_map(heptagon *h);
void draw_debug_map_exit(heptagon *h) { draw_debug_map(h); exit(1); }
vector<ld> inradius, circumradius, alphas;
void prepare() {
@ -248,6 +193,10 @@ void prepare() {
}
map<heptagon*, vector<pair<heptagon*, transmatrix> > > altmap;
map<heptagon*, pair<heptagon*, transmatrix>> syntetic_gmatrix;
void initialize(heptagon *h) {
/* initialize the root */
@ -256,336 +205,111 @@ void initialize(heptagon *h) {
id_of(h) = 0;
h->c7 = newCell(isize(adjacent[0]), h);
if(!hyperbolic) syntetic_gmatrix[h] = Id;
heptagon *alt = NULL;
if(sphere) celllister cl(h->c7, 1000, 1000000, NULL);
if(hyperbolic) {
dynamicval<eGeometry> g(geometry, gNormal);
alt = new heptagon;
alt->s = hsOrigin;
alt->emeraldval = 0;
alt->zebraval = 0;
alt->c.clear();
alt->distance = 0;
alt->c7 = NULL;
alt->alt = alt;
alt->cdata = NULL;
newAltMap(alt);
}
transmatrix T = xpush(.01241) * spin(1.4117) * xpush(0.1241) * Id;
syntetic_gmatrix[h] = make_pair(alt, T);
altmap[alt].emplace_back(h, T);
base_distlimit = 0;
celllister cl(h->c7, 1000, 200, NULL);
base_distlimit = cl.dists.back();
};
void verify_distance_delta(heptagon *h, int d, int delta) {
if(!h->move(d)) return;
if(h->move(d)->distance != h->distance + delta) {
SDEBUG( printf("ERROR: delta H%d.%d (%d/%d)\n", create_order[h], d, h->move(d)->distance, h->distance + delta); )
// exit(1);
}
}
void debug(heptagon *h) {
if(id_of(h) == PRUNED) return;
auto& p = adjacent[id_of(h)];
if(h->s == hsOrigin) {
for(int i=0; i<isize(p); i++) verify_distance_delta(h, i, 1);
}
else {
int first = h->s + 1;
verify_distance_delta(h, 0, -1);
verify_distance_delta(h, first-2, -1);
verify_distance_delta(h, first-1, 0);
verify_distance_delta(h, isize(p)-1, 0);
for(int d=first; d<isize(p)-1; d++) verify_distance_delta(h, d, 1);
for(int d=0; d<isize(p); d++) if(h->move(d)) {
auto& p = adjacent[id_of(h)];
auto uv = p[(parent_index_of(h) + d) % isize(p)];
if(neighbors_of(h->move(d)) != isize(adjacent[uv.first])) {
SDEBUG( printf("neighbors mismatch at H%d.%d->H%d: is %d expected %d\n", create_order[h], d, create_order[h->move(d)], neighbors_of(h->move(d)), isize(adjacent[uv.first])); )
draw_debug_map_exit(h);
}
}
}
}
transmatrix adjcell_matrix(heptagon *h, int d);
heptagon *build_child(heptagon *parent, int d, int id, int pindex) {
indenter ind;
auto h = buildHeptagon1(new heptagon, parent, d, hstate(1), 0);
create_order[h] = nextorder++;
SDEBUG( printf("NEW %p.%d ~ %p.0\n", parent, d, h); )
id_of(h) = id;
parent_index_of(h) = pindex;
int nei = neighbors_of(h);
right_sibling_of(h) = nei - 1;
h->distance = parent->distance + 1;
h->c7 = newCell(nei, h);
SDEBUG( printf("H%d.%d/%d ~ H%d.0/%d (state=1/NEW,id=%d,pindex=%d,distance=%d)\n", create_order[parent], d, neighbors_of(parent), create_order[h], neighbors_of(h), id, pindex, h->distance); )
if(!hyperbolic) syntetic_gmatrix[h] = syntetic_gmatrix[parent] * adjcell_matrix(parent, d);
else { debug(h); debug(parent); }
h->distance = parent->distance + 1;
return h;
}
void connectHeptagons(heptagon *h, int i, heptspin hs) {
if(id_of(h) == PRUNED) { h->move(i) = h; return; }
if(id_of(hs.at) == PRUNED) { hs.at->move(i) = hs.at; return; }
indenter ind;
SDEBUG( printf("H%d.%d/%d ~ H%d.%d/%d (state=%d,id=%d,pindex=%d,distance=%d)\n", create_order[h], i, neighbors_of(h), create_order[hs.at], hs.spin, neighbors_of(hs.at),
hs.at->s, id_of(hs.at), parent_index_of(hs.at), hs.at->distance); )
SDEBUG( printf("OLD %p.%d ~ %p.%d\n", h, i, hs.at, hs.spin); )
if(h->move(i) == hs.at && h->c.spin(i) == hs.spin) {
SDEBUG( printf("WARNING: already connected\n"); )
return;
}
if(h->move(i)) {
SDEBUG( printf("ERROR: already connected left to: H%d not H%d\n", create_order[h->move(i)], create_order[hs.at]); )
draw_debug_map_exit(h);
SDEBUG( printf("ERROR: already connected left\n"); )
exit(1);
}
if(hs.peek()) {
SDEBUG( printf("ERROR: already connected right to: H%d not H%d\n", create_order[hs.peek()], create_order[h]); )
draw_debug_map_exit(h);
// exit(1);
SDEBUG( printf("ERROR: already connected right\n"); )
exit(1);
}
h->c.connect(i, hs);
if(hyperbolic) {
debug(h);
debug(hs.at);
}
}
int prune(heptagon*& h) {
if(!h) return 0;
int result = 1;
int n = neighbors_of(h);
auto h0 = h;
SDEBUG( printf("pruning: H%d\n", create_order[h0]); )
for(int i=0; i<n; i++)
if(h0->move(i)) {
if(h0->c.spin(i) == 0)
result += prune(h0->move(i));
else {
h0->move(i)->move(h0->c.spin(i)) = NULL;
h0->move(i) = NULL;
}
}
id_of(h0) = PRUNED;
/*
delete h0->c7;
delete h0;
*/
return result;
}
void mayprune(heptagon *hleft, heptagon *hright) {
if(children_of(hleft) >= 1 && children_of(hright) >= 1)
if(hleft->move(right_sibling_of(hleft) - 1) != hright->move(parents_of(hright)+1)) {
SDEBUG( printf("pruning extra children after contraction\n"); )
prune(hleft->move(right_sibling_of(hleft) - 1));
prune(hright->move(parents_of(hright)+1));
}
}
void contract(heptagon *h) {
if(id_of(h) == PRUNED) return;
switch(children_of(h)) {
case 0: {
SDEBUG( printf("handling contraction (0) at H%d\n", create_order[h]); )
heptspin right = heptspin(h, right_sibling_of(h)) + wstep + 1;
heptspin left = heptspin(h, parents_of(h)) + wstep - 1;
connectHeptagons(right.at, right.spin, left);
right.at->s++;
right_sibling_of(left.at)--;
mayprune(left.at, right.at);
contract(right.at);
contract(left.at);
break;
}
case -1: {
SDEBUG( printf("handling contraction (-1) at H%d\n", create_order[h]); )
indenter ind2;
heptspin hs0(h, neighbors_of(h)-1);
heptspin hs = hs0;
hs = hs + 1 + wstep + 1;
while(hs.spin == neighbors_of(hs.at) - 1) {
SDEBUG( printf("hsr at H%d.%d/%d (%d parents)\n", create_order[hs.at], hs.spin, neighbors_of(hs.at), parents_of(hs.at)); )
hs = hs + wstep + 1;
}
SDEBUG( printf("hsr at H%d.%d/%d (%d parents)\n", create_order[hs.at], hs.spin, neighbors_of(hs.at), parents_of(hs.at)); )
heptspin correct = hs + wstep;
SDEBUG( printf("correct is: H%d.%d/%d (%d parents)\n", create_order[correct.at], correct.spin, neighbors_of(correct.at), parents_of(correct.at)); )
heptspin hsl = hs0;
correct = correct+1; correct.at->s++;
connectHeptagons(hsl.at, hsl.spin, correct);
hsl = hsl - 1 + wstep - 1;
while(true) {
SDEBUG( printf("hsl at %d.%d/%d (%d parents)\n", create_order[hsl.at], hsl.spin, neighbors_of(hsl.at), parents_of(hsl.at)); )
if(hsl.spin == parents_of(hsl.at)) {
SDEBUG(printf("go left\n"))
hsl = hsl + wstep - 1;
}
else if(hsl.peek() && hsl.peek() != correct.at) {
SDEBUG(printf("prune\n");)
if(neighbors_of(hsl.peek()) != neighbors_of(correct.at)) {
SDEBUG(printf("neighbors mismatch while pruning %d -> %d\n",
neighbors_of(hsl.peek()),
neighbors_of(correct.at)
);)
draw_debug_map_exit(correct.at);
}
prune(hsl.peek());
}
else if(hsl.peek() == NULL) {
correct = correct+1; correct.at->s++;
SDEBUG( printf("connect\n") )
connectHeptagons(hsl.at, hsl.spin, correct);
}
else if(hsl.spin == parents_of(hsl.at)+1) {
SDEBUG( printf("single child so go left\n") )
hsl = hsl - 1 + wstep - 1;
}
else { SDEBUG( printf("ready\n"); ) break; }
}
contract(correct.at);
break;
}
case -2: {
SDEBUG( printf("ERROR: contraction (-2) not handled\n"); )
break;
}
}
if(!sphere) for(int i=0; i<neighbors_of(h); i++) if(!h->move(i)) {
auto uv = adjacent[id_of(h)][(parent_index_of(h) + i) % neighbors_of(h)];
if(isize(adjacent[uv.first]) < 5 && hyperbolic) {
SDEBUG( printf("prebuilding weak neighbor\n") )
createStep(h, i);
}
}
}
void build_siblings(heptagon *h, int x) {
for(int i=right_sibling_of(h); i<neighbors_of(h); i++) createStep(h, i);
for(int i=0; i<=parents_of(h); i++) createStep(h, i);
}
pair<int, int>& get_adj(heptagon *h, int cid);
pair<ld, ld>& get_triangle(heptagon *h, int cid);
pair<ld, ld>& get_triangle(const pair<int, int>& p, int delta = 0);
void create_adjacent(heptagon *h, int d) {
if(!hyperbolic) {
SDEBUG( printf("%p.%d ~ ?\n", h, d); )
SDEBUG( printf("h=%d dist=%d d=%d/%d s=%d id=%d pindex=%d\n",
create_order[h], h->distance, d, neighbors_of(h), h->s, id_of(h), parent_index_of(h)); )
indenter ind2;
auto& t1 = get_triangle(h, d);
auto& t1 = get_triangle(h, d);
// * spin(-tri[id][pi+i].first) * xpush(t.second) * pispin * spin(tri[id'][p'+d'].first)
// * spin(-tri[id][pi+i].first) * xpush(t.second) * pispin * spin(tri[id'][p'+d'].first)
auto& p = syntetic_gmatrix[h];
transmatrix T = syntetic_gmatrix[h] * spin(-t1.first) * xpush(t1.second);
heptagon *alt = p.first;
for(auto gm: syntetic_gmatrix) if(intval(gm.second * C0, T * C0) < 1e-6) {
SDEBUG( printf("cell found\n"); )
for(int d2=0; d2<gm.first->c7->type; d2++) {
auto& t2 = get_triangle(gm.first, d2);
transmatrix T1 = T * spin(M_PI + t2.first);
if(intval(T1 * xpush(1) * C0, gm.second * xpush(1) * C0) < 1e-6) {
connectHeptagons(h, d, heptspin(gm.first, d2));
return;
}
}
SDEBUG( printf("but rotation not found\n"));
}
build_child(h, d, get_adj(h, d).first, get_adj(h, d).second);
return;
}
if(id_of(h) == PRUNED) { h->move(d) = h; return; }
if(indent >= 200) draw_debug_map_exit(h);
indenter ind;
int nei = neighbors_of(h);
transmatrix T = p.second * spin(-t1.first) * xpush(t1.second);
if(h->s == 0) {
auto& p = adjacent[id_of(h)];
for(int i=0; i<nei; i++)
build_child(h, i, p[i].first, p[i].second);
for(int i=0; i<nei; i++) {
heptagon *h1 = h->move(i);
heptagon *h2 = h->move((i+nei-1)%nei);
connectHeptagons(h1, 1, heptspin(h2, isize(adjacent[id_of(h2)])-1));
}
if(hyperbolic) {
dynamicval<eGeometry> g(geometry, gNormal);
virtualRebaseSimple(alt, T);
}
else {
int first = h->s + 1;
SDEBUG( printf("h=%d dist=%d d=%d/%d s=%d id=%d pindex=%d\n",
create_order[h], h->distance, d, nei, h->s, id_of(h), parent_index_of(h)); )
indenter ind2;
// these vertices are not children (or possibly contractions)
if(d < first || d > right_sibling_of(h))
connectHeptagons(h, d, heptspin(h, d-1) + wstep - 1 + wstep - 1);
else if(d == right_sibling_of(h)) {
connectHeptagons(h, d, heptspin(h, 0) + wstep + 1 + wstep + 1);
}
else {
build_siblings(h, 10);
build_siblings(h, -10);
if(h->move(d)) return;
heptspin hs(h, d);
// make sure no contractions on the left
heptspin hsl(h, d);
int steps = 0;
while(hsl.spin == parents_of(hsl.at) + 1 && steps < 100) {
hsl = hsl - 1 + wstep - 1;
steps++;
}
if(steps == 100) {
SDEBUG( printf("generating top\n"); )
auto uv = adjacent[id_of(hs.at)][(parent_index_of(hs.at) + hs.spin) % neighbors_of(hs.at)];
heptagon *newchild = build_child(hs.at, hs.spin, uv.first, uv.second);
hs = hs - 1 + wstep - 1;
while(hs.at != h) {
newchild->s++;
connectHeptagons(hs.at, hs.spin, heptspin(newchild, newchild->s-1));
hs = hs - 1 + wstep - 1;
}
if(euclid)
alt = encodeId(pair_to_vec(int(T[0][2]), int(T[1][2])));
SDEBUG( printf("look for: %p / %s\n", alt, display(T * C0)); )
for(auto& p: altmap[alt]) if(intval(p.second * C0, T * C0) < 1e-6) {
SDEBUG( printf("cell found: %p\n", p.first); )
for(int d2=0; d2<p.first->c7->type; d2++) {
auto& t2 = get_triangle(p.first, d2);
transmatrix T1 = T * spin(M_PI + t2.first);
SDEBUG( printf("compare: %s", display(T1 * xpush(1) * C0)); )
SDEBUG( printf(":: %s\n", display(p.second * xpush(1) * C0)); )
if(intval(T1 * xpush(1) * C0, p.second * xpush(1) * C0) < 1e-6) {
connectHeptagons(h, d, heptspin(p.first, d2));
return;
}
// while trying to generate the last child, go right
while(true) {
if(h->move(d)) {
SDEBUG( printf("solved itself\n"); )
return;
}
SDEBUG( printf("going right at H%d.%d/%d parents = %d\n", create_order[hs.at], hs.spin, neighbors_of(hs.at), parents_of(hs.at)); )
if(id_of(hs.at) == PRUNED) { create_adjacent(h, d); return; }
// rightmost child
if(hs.spin == right_sibling_of(hs.at) - 1)
hs = hs + 1 + wstep + 1;
else if(children_of(hs.at) <= 0) {
SDEBUG( printf("unexpected situation\n"); )
create_adjacent(h, d);
return;
}
else break;
}
auto uv = adjacent[id_of(hs.at)][(parent_index_of(hs.at) + hs.spin) % neighbors_of(hs.at)];
heptagon *newchild = build_child(hs.at, hs.spin, uv.first, uv.second);
bool add_parent = false;
while(true) {
if(id_of(hs.at) == PRUNED) { create_adjacent(h, d); return; }
SDEBUG( printf("going left at H%d.%d/%d parents = %d\n", create_order[hs.at], hs.spin, neighbors_of(hs.at), parents_of(hs.at)); )
// add parent
if(hs.spin > parents_of(hs.at) && add_parent) {
SDEBUG( printf("add parent\n"); )
newchild->s++;
connectHeptagons(hs.at, hs.spin, heptspin(newchild, newchild->s-1));
add_parent = false;
}
// childless
if(children_of(hs.at) <= 0) {
SDEBUG( printf("unexpected situation v2\n"); )
create_adjacent(h, d);
return;
}
// lefmost child
else if(hs.spin == parents_of(hs.at)+1) {
SDEBUG( printf("(leftmost child)\n"); )
hs = hs - 1 + wstep - 1;
add_parent = true;
}
// no more parents
else break;
}
contract(newchild);
}
SDEBUG( printf("but rotation not found\n"));
}
debug(h);
auto& t2 = get_triangle(get_adj(h, d));
transmatrix T1 = T * spin(M_PI + t2.first);
heptagon *hnew = build_child(h, d, get_adj(h, d).first, get_adj(h, d).second);
altmap[alt].emplace_back(hnew, T1);
syntetic_gmatrix[hnew] = make_pair(alt, T1);
}
set<heptagon*> visited;
@ -613,6 +337,10 @@ pair<int, int>& get_adj(const pair<int, int>& p, int delta = 0) {
return adjacent[p.first][(p.second + delta) % isize(adjacent[p.first])];
}
pair<ld, ld>& get_triangle(const pair<int, int>& p, int delta) {
return triangles[p.first][(p.second + delta) % isize(adjacent[p.first])];
}
transmatrix adjcell_matrix(heptagon *h, int d) {
auto& t1 = get_triangle(h, d);
@ -621,8 +349,6 @@ transmatrix adjcell_matrix(heptagon *h, int d) {
int d2 = h->c.spin(d);
auto& t2 = get_triangle(h2, d2);
// * spin(-tri[id][pi+i].first) * xpush(t.second) * pispin * spin(tri[id'][p'+d'].first)
return spin(-t1.first) * xpush(t1.second) * spin(M_PI + t2.first);
}
@ -726,53 +452,17 @@ int readArgs() {
showstartmenu = false;
shift(); parse_symbol(args());
}
else if(argis("-sd")) do_sdebug = true;
else if(argis("-sdeb")) { PHASE(3); draw_debug_map(cwt.at->master); }
else if(argis("-dgeom")) debug_geometry = true;
else return 1;
return 0;
}
#endif
map<heptagon*, transmatrix> debugmap;
void add_to_debug(heptagon *h, transmatrix T) {
debugmap[h] = T;
for(int i=0; i<neighbors_of(h); i++)
if(h->move(i) && h->c.spin(i) == 0 && h->move(i)->s != hsOrigin)
add_to_debug(h->move(i), T * adjcell_matrix(h, i));
}
void draw_debug_map(heptagon *h) {
debugmap.clear();
while(h->s != hsOrigin) h = h->move(0);
add_to_debug(h, Id);
svg::render("syntetic-debug.svg", [] () {
ptds.clear();
for(auto p: debugmap) {
heptagon *h = p.first;
queuestr(p.second*C0, vid.yres/50, its(create_order[h]) + "/" + its(h->c7->mpdist), 0xFF000000);
for(int i=0; i<neighbors_of(h); i++) {
if(h->move(i))
queueline(p.second*C0, debugmap[h->move(i)]*C0,
i == parents_of(h) ? 0xFF0000FF :
i == right_sibling_of(h) ? 0x800000FF :
i == 0 ? 0x008000FF :
0x000000FF);
}
}
hr::drawqueue();
});
exit(1);
}
#if CAP_COMMANDLINE
auto hook =
addHook(hooks_args, 100, readArgs);
#endif
}
}

View File

@ -133,4 +133,15 @@ bool appears(const string& haystack, const string& needle) {
return haystack.find(needle) != string::npos;
}
/* indenter */
int current_indentation;
struct indenter {
indenter() { current_indentation += 2; }
~indenter() { current_indentation -= 2; }
};
void doindent() { for(int i=0; i<current_indentation; i++) printf(" "); }
}