1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2024-12-29 19:40:35 +00:00

comments added to the new tes samples

This commit is contained in:
Zeno Rogue 2022-04-26 16:29:32 +02:00
parent b9c76d8162
commit 711fdf6c0d
3 changed files with 11 additions and 0 deletions

View File

@ -2,8 +2,13 @@
intslider(sides,3,3,MAX_EDGE)
h2.
# ideal_angle and ideal_edge produce appropriate values for the bracket format below
let(ia = ideal_angle(sides))
let(ie = ideal_edge(sides))
# ideal vertices can be specified as e1, [a1, e2, a2], e3
# this means that the edges e1 and e3 are extended until they meet (in an ideal or ultra-ideal point), eliminating e2
tile(0, [ia, ie, ia], *sides)
conway("(0 0)")

View File

@ -2,11 +2,15 @@
## You can change the values of sides and valence. Set sides to max to get infinite sides.
intslider(sides,6,3,MAX_EDGE+1)
intslider(valence,5,3,MAX_VALENCE)
# automatically choose e2, g2 or h2: arcmcurv returns negative for hyperbolic, positive for spherical
c2(arcmcurv(sides:^valence))
let(sides1=ifp(sides - MAX_EDGE, inf, sides))
distunit(arcmedge(sides1:^valence))
let(u = regangle(1, sides1))
# this copies u sides1 times, and also automatically sets the repeat value
# there is a special meaning where sides1 == inf
unittile(u,*sides1)
conway("(0 0)")

View File

@ -3,6 +3,8 @@ intslider(sides,3,3,MAX_EDGE)
slider(multiplier, 1.1, 1, 2)
h2.
# multiplier > 1 produces the appropriate parameters for ultraideal vertices
# this produces a Klein regular sides-gon with circumradius multiplier
let(ia = ideal_angle(sides, multiplier))
let(ie = ideal_edge(sides, multiplier))
tile(0, [ia, ie, ia], *sides)