From 711fdf6c0dadd19f921ea398b18cee7385355045 Mon Sep 17 00:00:00 2001 From: Zeno Rogue Date: Tue, 26 Apr 2022 16:29:32 +0200 Subject: [PATCH] comments added to the new tes samples --- tessellations/sample/inf.tes | 5 +++++ tessellations/sample/regular.tes | 4 ++++ tessellations/sample/ultratriangle.tes | 2 ++ 3 files changed, 11 insertions(+) diff --git a/tessellations/sample/inf.tes b/tessellations/sample/inf.tes index 916d40f6..c83f9c11 100644 --- a/tessellations/sample/inf.tes +++ b/tessellations/sample/inf.tes @@ -2,8 +2,13 @@ intslider(sides,3,3,MAX_EDGE) h2. +# ideal_angle and ideal_edge produce appropriate values for the bracket format below let(ia = ideal_angle(sides)) let(ie = ideal_edge(sides)) + +# ideal vertices can be specified as e1, [a1, e2, a2], e3 +# this means that the edges e1 and e3 are extended until they meet (in an ideal or ultra-ideal point), eliminating e2 + tile(0, [ia, ie, ia], *sides) conway("(0 0)") diff --git a/tessellations/sample/regular.tes b/tessellations/sample/regular.tes index 3c7e940d..a7ccac36 100644 --- a/tessellations/sample/regular.tes +++ b/tessellations/sample/regular.tes @@ -2,11 +2,15 @@ ## You can change the values of sides and valence. Set sides to max to get infinite sides. intslider(sides,6,3,MAX_EDGE+1) intslider(valence,5,3,MAX_VALENCE) + +# automatically choose e2, g2 or h2: arcmcurv returns negative for hyperbolic, positive for spherical c2(arcmcurv(sides:^valence)) let(sides1=ifp(sides - MAX_EDGE, inf, sides)) distunit(arcmedge(sides1:^valence)) let(u = regangle(1, sides1)) +# this copies u sides1 times, and also automatically sets the repeat value +# there is a special meaning where sides1 == inf unittile(u,*sides1) conway("(0 0)") diff --git a/tessellations/sample/ultratriangle.tes b/tessellations/sample/ultratriangle.tes index 4a0be77c..32020c9c 100644 --- a/tessellations/sample/ultratriangle.tes +++ b/tessellations/sample/ultratriangle.tes @@ -3,6 +3,8 @@ intslider(sides,3,3,MAX_EDGE) slider(multiplier, 1.1, 1, 2) h2. +# multiplier > 1 produces the appropriate parameters for ultraideal vertices +# this produces a Klein regular sides-gon with circumradius multiplier let(ia = ideal_angle(sides, multiplier)) let(ie = ideal_edge(sides, multiplier)) tile(0, [ia, ie, ia], *sides)