mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2024-12-20 23:50:27 +00:00
comments added to the new tes samples
This commit is contained in:
parent
b9c76d8162
commit
711fdf6c0d
@ -2,8 +2,13 @@
|
|||||||
intslider(sides,3,3,MAX_EDGE)
|
intslider(sides,3,3,MAX_EDGE)
|
||||||
h2.
|
h2.
|
||||||
|
|
||||||
|
# ideal_angle and ideal_edge produce appropriate values for the bracket format below
|
||||||
let(ia = ideal_angle(sides))
|
let(ia = ideal_angle(sides))
|
||||||
let(ie = ideal_edge(sides))
|
let(ie = ideal_edge(sides))
|
||||||
|
|
||||||
|
# ideal vertices can be specified as e1, [a1, e2, a2], e3
|
||||||
|
# this means that the edges e1 and e3 are extended until they meet (in an ideal or ultra-ideal point), eliminating e2
|
||||||
|
|
||||||
tile(0, [ia, ie, ia], *sides)
|
tile(0, [ia, ie, ia], *sides)
|
||||||
|
|
||||||
conway("(0 0)")
|
conway("(0 0)")
|
||||||
|
@ -2,11 +2,15 @@
|
|||||||
## You can change the values of sides and valence. Set sides to max to get infinite sides.
|
## You can change the values of sides and valence. Set sides to max to get infinite sides.
|
||||||
intslider(sides,6,3,MAX_EDGE+1)
|
intslider(sides,6,3,MAX_EDGE+1)
|
||||||
intslider(valence,5,3,MAX_VALENCE)
|
intslider(valence,5,3,MAX_VALENCE)
|
||||||
|
|
||||||
|
# automatically choose e2, g2 or h2: arcmcurv returns negative for hyperbolic, positive for spherical
|
||||||
c2(arcmcurv(sides:^valence))
|
c2(arcmcurv(sides:^valence))
|
||||||
|
|
||||||
let(sides1=ifp(sides - MAX_EDGE, inf, sides))
|
let(sides1=ifp(sides - MAX_EDGE, inf, sides))
|
||||||
|
|
||||||
distunit(arcmedge(sides1:^valence))
|
distunit(arcmedge(sides1:^valence))
|
||||||
let(u = regangle(1, sides1))
|
let(u = regangle(1, sides1))
|
||||||
|
# this copies u sides1 times, and also automatically sets the repeat value
|
||||||
|
# there is a special meaning where sides1 == inf
|
||||||
unittile(u,*sides1)
|
unittile(u,*sides1)
|
||||||
conway("(0 0)")
|
conway("(0 0)")
|
||||||
|
@ -3,6 +3,8 @@ intslider(sides,3,3,MAX_EDGE)
|
|||||||
slider(multiplier, 1.1, 1, 2)
|
slider(multiplier, 1.1, 1, 2)
|
||||||
h2.
|
h2.
|
||||||
|
|
||||||
|
# multiplier > 1 produces the appropriate parameters for ultraideal vertices
|
||||||
|
# this produces a Klein regular sides-gon with circumradius multiplier
|
||||||
let(ia = ideal_angle(sides, multiplier))
|
let(ia = ideal_angle(sides, multiplier))
|
||||||
let(ie = ideal_edge(sides, multiplier))
|
let(ie = ideal_edge(sides, multiplier))
|
||||||
tile(0, [ia, ie, ia], *sides)
|
tile(0, [ia, ie, ia], *sides)
|
||||||
|
Loading…
Reference in New Issue
Block a user