1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-10-31 14:02:59 +00:00

product:: preliminary version (no turning)

This commit is contained in:
Zeno Rogue
2019-08-17 23:28:41 +02:00
parent f3dd779947
commit 6958cbcbd9
22 changed files with 349 additions and 116 deletions

View File

@@ -140,7 +140,7 @@ inline hyperpoint point2(ld x, ld y) { return hyperpoint(x,y,0,0); }
extern const hyperpoint C02, C03;
#define C0 (GDIM == 2 ? C02 : C03)
#define C0 (MDIM == 3 ? C02 : C03)
#endif
// basic functions and types
@@ -171,13 +171,14 @@ ld inverse_tanh(ld x) { return log((1+x)/(1-x)) / 2; } */
EX ld squar(ld x) { return x*x; }
EX int sig(int z) { return (sphere || sol || z<GDIM)?1:-1; }
EX int sig(int z) { return prod ? (z<2?1:-1) : (sphere || sol || z<GDIM)?1:-1; }
EX int curvature() {
switch(cgclass) {
case gcEuclid: return 0;
case gcHyperbolic: return -1;
case gcSphere: return 1;
case gcProduct: return PIU(curvature());
default: return 0;
}
}
@@ -187,6 +188,7 @@ EX ld sin_auto(ld x) {
case gcEuclid: return x;
case gcHyperbolic: return sinh(x);
case gcSphere: return sin(x);
case gcProduct: return PIU(sin_auto(x));
default: return x;
}
}
@@ -196,6 +198,7 @@ EX ld asin_auto(ld x) {
case gcEuclid: return x;
case gcHyperbolic: return asinh(x);
case gcSphere: return asin(x);
case gcProduct: return PIU(asin_auto(x));
default: return x;
}
}
@@ -204,6 +207,7 @@ EX ld acos_auto(ld x) {
switch(cgclass) {
case gcHyperbolic: return acosh(x);
case gcSphere: return acos(x);
case gcProduct: return PIU(acos_auto(x));
default: return x;
}
}
@@ -231,6 +235,7 @@ EX ld cos_auto(ld x) {
case gcEuclid: return 1;
case gcHyperbolic: return cosh(x);
case gcSphere: return cos(x);
case gcProduct: return PIU(cos_auto(x));
default: return 1;
}
}
@@ -240,6 +245,7 @@ EX ld tan_auto(ld x) {
case gcEuclid: return x;
case gcHyperbolic: return tanh(x);
case gcSphere: return tan(x);
case gcProduct: return PIU(tan_auto(x));
default: return 1;
}
}
@@ -249,6 +255,7 @@ EX ld atan_auto(ld x) {
case gcEuclid: return x;
case gcHyperbolic: return atanh(x);
case gcSphere: return atan(x);
case gcProduct: return PIU(atan_auto(x));
default: return x;
}
}
@@ -258,6 +265,7 @@ EX ld atan2_auto(ld y, ld x) {
case gcEuclid: return y/x;
case gcHyperbolic: return atanh(y/x);
case gcSphere: return atan2(y, x);
case gcProduct: return PIU(atan2_auto(y, x));
default: return y/x;
}
}
@@ -313,6 +321,11 @@ EX ld intval(const hyperpoint &h1, const hyperpoint &h2) {
return res;
}
EX ld quickdist(const hyperpoint &h1, const hyperpoint &h2) {
if(prod) return hdist(h1, h2);
return intval(h1, h2);
}
EX ld sqhypot_d(int d, const hyperpoint& h) {
ld sum = 0;
for(int i=0; i<d; i++) sum += h[i]*h[i];
@@ -324,9 +337,10 @@ EX ld hypot_d(int d, const hyperpoint& h) {
}
EX ld zlevel(const hyperpoint &h) {
if(translatable) return h[GDIM];
if(translatable) return h[LDIM];
else if(sphere) return sqrt(intval(h, Hypc));
else return (h[GDIM] < 0 ? -1 : 1) * sqrt(-intval(h, Hypc));
else if(prod) return log(sqrt(-intval(h, Hypc)));
else return (h[LDIM] < 0 ? -1 : 1) * sqrt(-intval(h, Hypc));
}
EX ld hypot_auto(ld x, ld y) {
@@ -344,6 +358,7 @@ EX ld hypot_auto(ld x, ld y) {
// move H back to the sphere/hyperboloid/plane
EX hyperpoint normalize(hyperpoint H) {
if(prod) return H;
ld Z = zlevel(H);
for(int c=0; c<MDIM; c++) H[c] /= Z;
return H;
@@ -351,11 +366,17 @@ EX hyperpoint normalize(hyperpoint H) {
// get the center of the line segment from H1 to H2
hyperpoint mid(const hyperpoint& H1, const hyperpoint& H2) {
if(prod) {
auto d1 = product_decompose(H1);
auto d2 = product_decompose(H2);
return zshift(PIU( mid(d1.second, d2.second) ), (d1.first + d2.first) / 2);
}
return normalize(H1 + H2);
}
// like mid, but take 3D into account
EX hyperpoint midz(const hyperpoint& H1, const hyperpoint& H2) {
if(prod) return mid(H1, H2);
hyperpoint H3 = H1 + H2;
ld Z = 2;
@@ -394,15 +415,15 @@ EX transmatrix random_spin() {
EX transmatrix eupush(ld x, ld y) {
transmatrix T = Id;
T[0][GDIM] = x;
T[1][GDIM] = y;
T[0][LDIM] = x;
T[1][LDIM] = y;
return T;
}
EX transmatrix eupush(hyperpoint h) {
if(nonisotropic) return nisot::translate(h);
transmatrix T = Id;
for(int i=0; i<GDIM; i++) T[i][GDIM] = h[i];
for(int i=0; i<GDIM; i++) T[i][LDIM] = h[i];
return T;
}
@@ -430,9 +451,9 @@ EX transmatrix cpush(int cid, ld alpha) {
transmatrix T = Id;
if(nonisotropic)
return eupush3(cid == 0 ? alpha : 0, cid == 1 ? alpha : 0, cid == 2 ? alpha : 0);
T[GDIM][GDIM] = T[cid][cid] = cos_auto(alpha);
T[cid][GDIM] = sin_auto(alpha);
T[GDIM][cid] = -curvature() * sin_auto(alpha);
T[LDIM][LDIM] = T[cid][cid] = cos_auto(alpha);
T[cid][LDIM] = sin_auto(alpha);
T[LDIM][cid] = -curvature() * sin_auto(alpha);
return T;
}
@@ -550,7 +571,7 @@ EX transmatrix rspintoc(const hyperpoint& H, int t, int f) {
// rotate the hyperbolic plane around C0 such that H[1] == 0 and H[0] >= 0
EX transmatrix spintox(const hyperpoint& H) {
if(GDIM == 2) return spintoc(H, 0, 1);
if(GDIM == 2 || prod) return spintoc(H, 0, 1);
transmatrix T1 = spintoc(H, 0, 1);
return spintoc(T1*H, 0, 2) * T1;
}
@@ -572,7 +593,7 @@ EX transmatrix build_matrix(hyperpoint h1, hyperpoint h2, hyperpoint h3, hyperpo
// reverse of spintox(H)
EX transmatrix rspintox(const hyperpoint& H) {
if(GDIM == 2) return rspintoc(H, 0, 1);
if(GDIM == 2 || prod) return rspintoc(H, 0, 1);
transmatrix T1 = spintoc(H, 0, 1);
return rspintoc(H, 0, 1) * rspintoc(T1*H, 0, 2);
}
@@ -580,16 +601,16 @@ EX transmatrix rspintox(const hyperpoint& H) {
// for H such that H[1] == 0, this matrix pushes H to C0
EX transmatrix pushxto0(const hyperpoint& H) {
transmatrix T = Id;
T[0][0] = +H[GDIM]; T[0][GDIM] = -H[0];
T[GDIM][0] = curvature() * H[0]; T[GDIM][GDIM] = +H[GDIM];
T[0][0] = +H[LDIM]; T[0][LDIM] = -H[0];
T[LDIM][0] = curvature() * H[0]; T[LDIM][LDIM] = +H[LDIM];
return T;
}
// reverse of pushxto0(H)
EX transmatrix rpushxto0(const hyperpoint& H) {
transmatrix T = Id;
T[0][0] = +H[GDIM]; T[0][GDIM] = H[0];
T[GDIM][0] = -curvature() * H[0]; T[GDIM][GDIM] = +H[GDIM];
T[0][0] = +H[LDIM]; T[0][LDIM] = H[0];
T[LDIM][0] = -curvature() * H[0]; T[LDIM][LDIM] = +H[LDIM];
return T;
}
@@ -597,17 +618,21 @@ EX transmatrix ggpushxto0(const hyperpoint& H, ld co) {
if(translatable) {
return eupush(co * H);
}
if(prod) {
auto d = product_decompose(H);
return mscale(PIU(ggpushxto0(d.second, co)), exp(d.first * co));
}
transmatrix res = Id;
if(sqhypot_d(GDIM, H) < 1e-12) return res;
ld fac = (H[GDIM]-1) / sqhypot_d(GDIM, H);
ld fac = (H[LDIM]-1) / sqhypot_d(GDIM, H);
for(int i=0; i<GDIM; i++)
for(int j=0; j<GDIM; j++)
res[i][j] += H[i] * H[j] * fac;
for(int d=0; d<GDIM; d++)
res[d][GDIM] = co * H[d],
res[GDIM][d] = -curvature() * co * H[d];
res[GDIM][GDIM] = H[GDIM];
res[d][LDIM] = co * H[d],
res[LDIM][d] = -curvature() * co * H[d];
res[LDIM][LDIM] = H[LDIM];
return res;
}
@@ -626,6 +651,7 @@ EX transmatrix rgpushxto0(const hyperpoint& H) {
EX void fixmatrix(transmatrix& T) {
if(nonisotropic) ; // T may be inverse... do not do that
else if(prod) ;
else if(euclid) {
for(int x=0; x<GDIM; x++) for(int y=0; y<=x; y++) {
ld dp = 0;
@@ -635,8 +661,8 @@ EX void fixmatrix(transmatrix& T) {
for(int z=0; z<GDIM; z++) T[z][x] -= dp * T[z][y];
}
for(int x=0; x<GDIM; x++) T[GDIM][x] = 0;
T[GDIM][GDIM] = 1;
for(int x=0; x<GDIM; x++) T[LDIM][x] = 0;
T[LDIM][LDIM] = 1;
}
else for(int x=0; x<MDIM; x++) for(int y=0; y<=x; y++) {
ld dp = 0;
@@ -734,20 +760,29 @@ EX transmatrix inverse(const transmatrix& T) {
}
}
EX pair<ld, hyperpoint> product_decompose(hyperpoint h) {
ld z = zlevel(h);
return make_pair(z, mscale(h, exp(-z)));
}
// distance between mh and 0
EX ld hdist0(const hyperpoint& mh) {
switch(cgclass) {
case gcHyperbolic:
if(mh[GDIM] < 1) return 0;
return acosh(mh[GDIM]);
if(mh[LDIM] < 1) return 0;
return acosh(mh[LDIM]);
case gcEuclid: {
return hypot_d(GDIM, mh);
}
case gcSphere: {
ld res = mh[GDIM] >= 1 ? 0 : mh[GDIM] <= -1 ? M_PI : acos(mh[GDIM]);
ld res = mh[LDIM] >= 1 ? 0 : mh[LDIM] <= -1 ? M_PI : acos(mh[LDIM]);
if(elliptic && res > M_PI/2) res = M_PI-res;
return res;
}
case gcProduct: {
auto d1 = product_decompose(mh);
return hypot(PIU(hdist0(d1.second)), d1.first);
}
default:
return hypot_d(GDIM, mh);
}
@@ -779,6 +814,11 @@ EX ld hdist(const hyperpoint& h1, const hyperpoint& h2) {
return 2 * asinh(sqrt(iv) / 2);
case gcSphere:
return 2 * asin_auto_clamp(sqrt(iv) / 2);
case gcProduct: {
auto d1 = product_decompose(h1);
auto d2 = product_decompose(h2);
return hypot(PIU(hdist(d1.second, d2.second)), d1.first - d2.first);
}
default:
if(iv < 0) return 0;
return sqrt(iv);
@@ -786,7 +826,7 @@ EX ld hdist(const hyperpoint& h1, const hyperpoint& h2) {
}
EX hyperpoint mscale(const hyperpoint& t, double fac) {
if(GDIM == 3) return cpush(2, fac) * t;
if(GDIM == 3 && !prod) return cpush(2, fac) * t;
hyperpoint res;
for(int i=0; i<MDIM; i++)
res[i] = t[i] * fac;
@@ -794,8 +834,8 @@ EX hyperpoint mscale(const hyperpoint& t, double fac) {
}
EX transmatrix mscale(const transmatrix& t, double fac) {
if(GDIM == 3) {
// if(pmodel == mdFlatten) { transmatrix u = t; u[2][GDIM] -= fac; return u; }
if(GDIM == 3 && !prod) {
// if(pmodel == mdFlatten) { transmatrix u = t; u[2][LDIM] -= fac; return u; }
return t * cpush(2, fac);
}
transmatrix res;
@@ -816,7 +856,7 @@ EX transmatrix xyzscale(const transmatrix& t, double fac, double facz) {
for(int i=0; i<MDIM; i++) for(int j=0; j<GDIM; j++)
res[i][j] = t[i][j] * fac;
for(int i=0; i<MDIM; i++)
res[i][GDIM] = t[i][GDIM] * facz;
res[i][LDIM] = t[i][LDIM] * facz;
return res;
}
@@ -870,6 +910,7 @@ EX hyperpoint orthogonal_of_C0(hyperpoint h0, hyperpoint h1, hyperpoint h2) {
EX hyperpoint zshift(hyperpoint x, ld z) {
if(GDIM == 3 && WDIM == 2) return rgpushxto0(x) * cpush0(2, z);
else if(prod) return mscale(x, exp(z));
else return mscale(x, z);
}
@@ -931,14 +972,14 @@ EX transmatrix transpose(transmatrix T) {
#if HDR
inline hyperpoint cpush0(int c, ld x) {
hyperpoint h = Hypc;
h[GDIM] = cos_auto(x);
h[LDIM] = cos_auto(x);
h[c] = sin_auto(x);
return h;
}
inline hyperpoint xspinpush0(ld alpha, ld x) {
hyperpoint h = Hypc;
h[GDIM] = cos_auto(x);
h[LDIM] = cos_auto(x);
h[0] = sin_auto(x) * cos(alpha);
h[1] = sin_auto(x) * -sin(alpha);
return h;
@@ -950,7 +991,7 @@ inline hyperpoint ypush0(ld x) { return cpush0(1, x); }
// T * C0, optimized
inline hyperpoint tC0(const transmatrix &T) {
hyperpoint z;
for(int i=0; i<MDIM; i++) z[i] = T[i][GDIM];
for(int i=0; i<MDIM; i++) z[i] = T[i][LDIM];
return z;
}
#endif