mirror of
https://github.com/zenorogue/hyperrogue.git
synced 2025-01-01 13:00:57 +00:00
product:: preliminary version (no turning)
This commit is contained in:
parent
f3dd779947
commit
6958cbcbd9
@ -555,7 +555,7 @@ struct hrmap_archimedean : hrmap {
|
||||
}
|
||||
|
||||
if(euclid)
|
||||
alt = encodeId(pair_to_vec(int(T[0][GDIM]), int(T[1][GDIM])));
|
||||
alt = encodeId(pair_to_vec(int(T[0][LDIM]), int(T[1][LDIM])));
|
||||
|
||||
DEBB(DF_GEOM, ("look for: ", alt, " / ", T * C0));
|
||||
|
||||
|
@ -297,6 +297,8 @@ void display_data::set_projection(int ed) {
|
||||
shaderside_projection = true, glhr::new_shader_projection = glhr::shader_projection::standardH3, pers3 = true;
|
||||
if(GDIM == 3 && translatable && apply_models && pmodel == mdPerspective)
|
||||
shaderside_projection = true, glhr::new_shader_projection = glhr::shader_projection::standardR3, pers3 = true;
|
||||
if(GDIM == 3 && prod && apply_models && pmodel == mdPerspective)
|
||||
shaderside_projection = true, glhr::new_shader_projection = glhr::shader_projection::standardR3, pers3 = true;
|
||||
if(GDIM == 3 && apply_models && pmodel == mdGeodesic && sol)
|
||||
shaderside_projection = true, glhr::new_shader_projection = glhr::shader_projection::standardSolv, pers3 = true;
|
||||
if(GDIM == 3 && apply_models && pmodel == mdGeodesic && nil)
|
||||
|
@ -643,7 +643,7 @@ EX namespace binary {
|
||||
|
||||
// on which horocycle are we
|
||||
EX ld horo_level(hyperpoint h) {
|
||||
h /= (1 + h[GDIM]);
|
||||
h /= (1 + h[LDIM]);
|
||||
h[0] -= 1;
|
||||
h /= sqhypot_d(GDIM, h);
|
||||
h[0] += .5;
|
||||
@ -848,7 +848,7 @@ EX void virtualRebaseSimple(heptagon*& base, transmatrix& at) {
|
||||
|
||||
while(true) {
|
||||
|
||||
double currz = at[GDIM][GDIM];
|
||||
double currz = at[LDIM][LDIM];
|
||||
|
||||
heptagon *h = base;
|
||||
|
||||
@ -858,7 +858,7 @@ EX void virtualRebaseSimple(heptagon*& base, transmatrix& at) {
|
||||
|
||||
for(int d=0; d<S7; d++) {
|
||||
transmatrix V2 = itmatrix(h, d) * at;
|
||||
double newz = V2[GDIM][GDIM];
|
||||
double newz = V2[LDIM][LDIM];
|
||||
if(newz < currz) {
|
||||
currz = newz;
|
||||
bestV = V2;
|
||||
|
9
cell.cpp
9
cell.cpp
@ -146,8 +146,8 @@ EX cell *createMov(cell *c, int d) {
|
||||
}
|
||||
|
||||
if(c->move(d)) return c->move(d);
|
||||
PROD( else if(geometry == gProduct)
|
||||
product::find_cell_connection(c, d); )
|
||||
else if(geometry == gProduct)
|
||||
product::find_cell_connection(c, d);
|
||||
#if CAP_BT
|
||||
else if(penrose)
|
||||
kite::find_cell_connection(c, d);
|
||||
@ -263,11 +263,10 @@ EX void initcells() {
|
||||
|
||||
hrmap* res = callhandlers((hrmap*)nullptr, hooks_newmap);
|
||||
if(res) currentmap = res;
|
||||
else if(nonisotropic) currentmap = nisot::new_map();
|
||||
else if(nonisotropic || prod) currentmap = nisot::new_map();
|
||||
#if CAP_CRYSTAL
|
||||
else if(geometry == gCrystal) currentmap = crystal::new_map();
|
||||
#endif
|
||||
PROD( else if(geometry == gProduct) currentmap = product::new_map(); )
|
||||
#if CAP_ARCM
|
||||
else if(archimedean) currentmap = arcm::new_map();
|
||||
#endif
|
||||
@ -862,7 +861,7 @@ int ld_to_int(ld x) {
|
||||
|
||||
EX int pseudocoords(cell *c) {
|
||||
transmatrix T = arcm::archimedean_gmatrix[c->master].second;
|
||||
return pair_to_vec(ld_to_int(T[0][GDIM]), ld_to_int((spin(60*degree) * T)[0][GDIM]));
|
||||
return pair_to_vec(ld_to_int(T[0][LDIM]), ld_to_int((spin(60*degree) * T)[0][LDIM]));
|
||||
}
|
||||
|
||||
EX cdata *arcmCdata(cell *c) {
|
||||
|
@ -571,7 +571,7 @@ vector<geometryinfo> ginf = {
|
||||
{"kd2", "none", "kite-and-dart", "kd2", 4, 3, qPENROSE, gcEuclid, 0x48000, {{7, 7}}, eVariation::pure},
|
||||
{"kd3", "none", "kite-and-dart on horospheres", "kd3", 12, 3, qsBP, gcHyperbolic, 0x48200, {{7, 3}}, eVariation::pure},
|
||||
{"nil", "none", "Nil geometry", "nil", 8, 3, 0, gcNil, 0x48600, {{7, 5}}, eVariation::pure},
|
||||
//{"product","none", "product space", "product", 7, 3, 0, gcProduct, 0x48400, {{7, 3}}, eVariation::pure},
|
||||
{"product","none", "product space", "product", 7, 3, 0, gcProduct, 0x48400, {{7, 3}}, eVariation::pure},
|
||||
};
|
||||
|
||||
// bits: 9, 10, 15, 16, (reserved for later) 17, 18
|
||||
|
@ -214,10 +214,10 @@ enum eGeometry {
|
||||
gHoroTris, gHoroRec, gHoroHex,
|
||||
gField435, gField534,
|
||||
gBinary4, gSol,
|
||||
gKiteDart2, gKiteDart3, gNil, PROD2(gProduct,)
|
||||
gKiteDart2, gKiteDart3, gNil, gProduct,
|
||||
gGUARD};
|
||||
|
||||
enum eGeometryClass { gcHyperbolic, gcEuclid, gcSphere, gcSol, gcNil, PROD(gcProduct) };
|
||||
enum eGeometryClass { gcHyperbolic, gcEuclid, gcSphere, gcSol, gcNil, gcProduct };
|
||||
|
||||
enum class eVariation { bitruncated, pure, goldberg, irregular, dual };
|
||||
|
||||
|
@ -2742,7 +2742,7 @@ EX namespace sword {
|
||||
int s1 = neighborId(c1, c2);
|
||||
int s2 = neighborId(c2, c1);
|
||||
if(s1 < 0 || s2 < 0) return d;
|
||||
if(WDIM == 2) {
|
||||
if(WDIM == 2 || prod) {
|
||||
if(c1->c.mirror(s1))
|
||||
d.angle = ((s2*sword_angles/c2->type - d.angle + s1*sword_angles/c1->type) + sword_angles/2) % sword_angles;
|
||||
else
|
||||
|
@ -86,7 +86,7 @@ EX movedir vectodir(const hyperpoint& P) {
|
||||
for(int i=0; i<cwt.at->type; i++) {
|
||||
transmatrix T;
|
||||
if(compute_relamatrix((cwt+i).peek(), cwt.at, i, T)) {
|
||||
dirdist[i] = intval(U * T * C0, Centered * P);
|
||||
dirdist[i] = quickdist(U * T * C0, Centered * P);
|
||||
}
|
||||
//xspinpush0(-i * 2 * M_PI /cwt.at->type, .5), P);
|
||||
}
|
||||
@ -115,6 +115,8 @@ EX hyperpoint move_destination_vec(int d) {
|
||||
// else if(WDIM == 2 && pmodel == mdPerspective) return cspin(0, 2, d * M_PI/4) * tC0(pushone());
|
||||
// else if(WDIM == 2) return spin(-d * M_PI/4) * tC0(pushone());
|
||||
else if(d&1) return cspin(0, 1, d > 4 ? M_PI/2 : -M_PI/2) * tC0(pushone());
|
||||
else if(prod && d == 6) return zshift(C0, product::plevel);
|
||||
else if(prod && d == 2) return zshift(C0, -product::plevel);
|
||||
else return cspin(0, 2, d * M_PI/4) * tC0(pushone());
|
||||
}
|
||||
|
||||
@ -907,7 +909,7 @@ EX void handle_event(SDL_Event& ev) {
|
||||
vid.xposition += (mousex - lmousex) * 1. / current_display->scrsize,
|
||||
vid.yposition += (mousey - lmousey) * 1. / current_display->scrsize;
|
||||
}
|
||||
else if(mouseh[GDIM] < 50 && mouseoh[GDIM] < 50) {
|
||||
else if(mouseh[LDIM] < 50 && mouseoh[LDIM] < 50) {
|
||||
panning(mouseoh, mouseh);
|
||||
}
|
||||
}
|
||||
|
17
drawing.cpp
17
drawing.cpp
@ -656,7 +656,7 @@ EX ld scale_at(const transmatrix& T) {
|
||||
EX ld linewidthat(const hyperpoint& h) {
|
||||
if(!(vid.antialias & AA_LINEWIDTH)) return 1;
|
||||
else if(hyperbolic && pmodel == mdDisk && vid.alpha == 1 && !ISWEB) {
|
||||
double dz = h[GDIM];
|
||||
double dz = h[LDIM];
|
||||
if(dz < 1 || abs(dz-current_display->scrdist) < 1e-6) return 1;
|
||||
else {
|
||||
double dx = sqrt(dz * dz - 1);
|
||||
@ -893,6 +893,21 @@ void debug_this() { }
|
||||
void dqi_poly::draw() {
|
||||
if(flags & POLY_DEBUG) debug_this();
|
||||
|
||||
if(prod && vid.usingGL && pmodel == mdPerspective && (current_display->set_all(global_projection), shaderside_projection)) {
|
||||
auto npoly = *this;
|
||||
glcoords.clear();
|
||||
for(int i=0; i<cnt; i++)
|
||||
glcoords.push_back(glhr::pointtogl(product::where(V * glhr::gltopoint( (*tab)[offset+i]))));
|
||||
|
||||
npoly.offset = 0;
|
||||
npoly.tab = &glcoords;
|
||||
npoly.V = Id;
|
||||
set_width(1);
|
||||
npoly.gldraw();
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
dynamicval<ld> bs(hr::band_shift, band_shift);
|
||||
if(!hyperbolic && among(pmodel, mdPolygonal, mdPolynomial)) {
|
||||
bool any = false;
|
||||
|
@ -617,7 +617,7 @@ EX namespace euclid3 {
|
||||
tmatrix.resize(S7);
|
||||
for(int i=0; i<S7; i++) tmatrix[i] = Id;
|
||||
for(int i=0; i<S7; i++) for(int j=0; j<3; j++)
|
||||
tmatrix[i][j][GDIM] = getcoord(shifttable[i])[j];
|
||||
tmatrix[i][j][LDIM] = getcoord(shifttable[i])[j];
|
||||
camelot_center = NULL;
|
||||
build_torus3();
|
||||
}
|
||||
@ -1195,7 +1195,7 @@ EX namespace euclid3 {
|
||||
#endif
|
||||
|
||||
EX ld matrixnorm(const transmatrix& Mat) {
|
||||
return Mat[0][GDIM] * Mat[0][GDIM] + Mat[1][GDIM] * Mat[1][GDIM] + Mat[2][GDIM] * Mat[2][GDIM];
|
||||
return Mat[0][LDIM] * Mat[0][LDIM] + Mat[1][LDIM] * Mat[1][LDIM] + Mat[2][LDIM] * Mat[2][LDIM];
|
||||
}
|
||||
|
||||
void hrmap_euclid_any::draw() {
|
||||
|
@ -224,7 +224,7 @@ void geometry_information::bshape2(hpcshape& sh, PPR prio, int shapeid, matrixli
|
||||
int mapped = 0;
|
||||
for(auto& m: matrices) {
|
||||
hyperpoint z = m.first * h;
|
||||
if(z[0] > -1e-5 && z[1] > -1e-5 && z[GDIM] > -1e-5) {
|
||||
if(z[0] > -1e-5 && z[1] > -1e-5 && z[LDIM] > -1e-5) {
|
||||
nh = m.second[r] * z, mapped++;
|
||||
}
|
||||
}
|
||||
|
@ -811,9 +811,9 @@ EX void showEuclideanMenu() {
|
||||
dialog::addSelItem(XLAT("Curvature"), XLAT("Nil"), 0);
|
||||
break;
|
||||
|
||||
PROD( case gcProduct:
|
||||
case gcProduct:
|
||||
dialog::addSelItem(XLAT("Curvature"), XLAT("Product"), 0);
|
||||
break; )
|
||||
break;
|
||||
}
|
||||
|
||||
dialog::display();
|
||||
|
@ -10,14 +10,14 @@ namespace hr {
|
||||
transmatrix &ggmatrix(cell *c);
|
||||
|
||||
void fixelliptic(transmatrix& at) {
|
||||
if(elliptic && at[GDIM][GDIM] < 0) {
|
||||
if(elliptic && at[LDIM][LDIM] < 0) {
|
||||
for(int i=0; i<MDIM; i++) for(int j=0; j<MDIM; j++)
|
||||
at[i][j] = -at[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
void fixelliptic(hyperpoint& h) {
|
||||
if(elliptic && h[GDIM] < 0)
|
||||
if(elliptic && h[LDIM] < 0)
|
||||
for(int i=0; i<MDIM; i++) h[i] = -h[i];
|
||||
}
|
||||
|
||||
@ -155,7 +155,7 @@ transmatrix hrmap_standard::relative_matrix(cell *c2, cell *c1, const hyperpoint
|
||||
|
||||
EX transmatrix &ggmatrix(cell *c) {
|
||||
transmatrix& t = gmatrix[c];
|
||||
if(t[GDIM][GDIM] == 0) {
|
||||
if(t[LDIM][LDIM] == 0) {
|
||||
if(euwrap && centerover.at && masterless)
|
||||
t = calc_relative_matrix(c, centerover.at, C0);
|
||||
else if(masterless && WDIM == 2) {
|
||||
@ -352,7 +352,7 @@ EX void virtualRebaseSimple(heptagon*& base, transmatrix& at) {
|
||||
|
||||
while(true) {
|
||||
|
||||
double currz = at[GDIM][GDIM];
|
||||
double currz = at[LDIM][LDIM];
|
||||
|
||||
heptagon *h = base;
|
||||
|
||||
@ -364,7 +364,7 @@ EX void virtualRebaseSimple(heptagon*& base, transmatrix& at) {
|
||||
heptspin hs(h, d, false);
|
||||
heptspin hs2 = hs + wstep;
|
||||
transmatrix V2 = spin(-hs2.spin*2*M_PI/S7) * cgi.invheptmove[d] * at;
|
||||
double newz = V2[GDIM][GDIM];
|
||||
double newz = V2[LDIM][LDIM];
|
||||
if(newz < currz) {
|
||||
currz = newz;
|
||||
bestV = V2;
|
||||
|
26
graph.cpp
26
graph.cpp
@ -349,12 +349,14 @@ double hexshiftat(cell *c) {
|
||||
}
|
||||
|
||||
EX transmatrix ddspin(cell *c, int d, ld bonus IS(0)) {
|
||||
if(prod) return PIU( ddspin(c, d, bonus) );
|
||||
if(WDIM == 3 && d < c->type) return rspintox(tC0(calc_relative_matrix(c->cmove(d), c, C0))) * cspin(2, 0, bonus);
|
||||
if(WDIM == 2 && (binarytiling || penrose) && d < c->type) return spin(bonus) * rspintox(nearcorner(c, d));
|
||||
return spin(displayspin(c, d) + bonus - hexshiftat(c));
|
||||
}
|
||||
|
||||
EX transmatrix iddspin(cell *c, int d, ld bonus IS(0)) {
|
||||
if(prod) return PIU( iddspin(c, d, bonus) );
|
||||
if(WDIM == 3 && d < c->type) return cspin(0, 2, bonus) * spintox(tC0(calc_relative_matrix(c->cmove(d), c, C0)));
|
||||
if(WDIM == 2 && (binarytiling || penrose) && d < c->type) return spin(bonus) * spintox(nearcorner(c, d));
|
||||
return spin(hexshiftat(c) - displayspin(c, d) + bonus);
|
||||
@ -5018,7 +5020,7 @@ void drawcell_in_radar(cell *c, transmatrix V) {
|
||||
|
||||
EX void drawcell(cell *c, transmatrix V, int spinv, bool mirrored) {
|
||||
|
||||
PROD( if(product::pmap) { product::drawcell_stack(c, V, spinv, mirrored); return; } )
|
||||
if(product::pmap) { product::drawcell_stack(c, V, spinv, mirrored); return; }
|
||||
|
||||
cells_drawn++;
|
||||
|
||||
@ -5037,10 +5039,10 @@ EX void drawcell(cell *c, transmatrix V, int spinv, bool mirrored) {
|
||||
if(!inmirrorcount) {
|
||||
transmatrix& gm = gmatrix[c];
|
||||
orig =
|
||||
gm[GDIM][GDIM] == 0 ? true :
|
||||
gm[LDIM][LDIM] == 0 ? true :
|
||||
euwrap ? hdist0(tC0(gm)) >= hdist0(tC0(V)) :
|
||||
sphereflipped() ? fabs(gm[GDIM][GDIM]-1) <= fabs(V[GDIM][GDIM]-1) :
|
||||
fabs(gm[GDIM][GDIM]-1) >= fabs(V[GDIM][GDIM]-1) - 1e-8;
|
||||
sphereflipped() ? fabs(gm[LDIM][LDIM]-1) <= fabs(V[LDIM][LDIM]-1) :
|
||||
fabs(gm[LDIM][LDIM]-1) >= fabs(V[LDIM][LDIM]-1) - 1e-8;
|
||||
|
||||
if(orig) gm = V;
|
||||
}
|
||||
@ -5142,7 +5144,7 @@ EX void drawcell(cell *c, transmatrix V, int spinv, bool mirrored) {
|
||||
}
|
||||
|
||||
if(!masterless) {
|
||||
double dfc = euclid ? intval(tC0(V), C0) : V[GDIM][GDIM];
|
||||
double dfc = euclid ? intval(tC0(V), C0) : V[LDIM][LDIM];
|
||||
|
||||
if(dfc < centdist) {
|
||||
centdist = dfc;
|
||||
@ -6001,12 +6003,12 @@ EX void drawcell(cell *c, transmatrix V, int spinv, bool mirrored) {
|
||||
ld b = vid.binary_width * log(2) / 2;
|
||||
const ld l = log(2) / 2;
|
||||
switch(a) {
|
||||
case 0: if(V[0][GDIM] >= b) continue; break;
|
||||
case 1: if(V[1][GDIM] >= b) continue; break;
|
||||
case 2: case 3: if (pmodel == mdPerspective && V[2][GDIM] >= l) continue; break;
|
||||
case 4: if(V[0][GDIM] <= -b) continue; break;
|
||||
case 5: if(V[1][GDIM] <= -b) continue; break;
|
||||
case 6: case 7: if (pmodel == mdPerspective && V[2][GDIM] <= -l) continue; break;
|
||||
case 0: if(V[0][LDIM] >= b) continue; break;
|
||||
case 1: if(V[1][LDIM] >= b) continue; break;
|
||||
case 2: case 3: if (pmodel == mdPerspective && V[2][LDIM] >= l) continue; break;
|
||||
case 4: if(V[0][LDIM] <= -b) continue; break;
|
||||
case 5: if(V[1][LDIM] <= -b) continue; break;
|
||||
case 6: case 7: if (pmodel == mdPerspective && V[2][LDIM] <= -l) continue; break;
|
||||
}
|
||||
}
|
||||
if(qfi.fshape && wmescher) {
|
||||
@ -7140,7 +7142,7 @@ EX ld wall_radar(cell *c, transmatrix T, ld max) {
|
||||
|
||||
EX void make_actual_view() {
|
||||
sphereflip = Id;
|
||||
if(sphereflipped()) sphereflip[GDIM][GDIM] = -1;
|
||||
if(sphereflipped()) sphereflip[LDIM][LDIM] = -1;
|
||||
actual_view_transform = sphereflip;
|
||||
if(vid.yshift && WDIM == 2) actual_view_transform = ypush(vid.yshift) * actual_view_transform;
|
||||
#if MAXMDIM >= 4
|
||||
|
6
hyper.h
6
hyper.h
@ -124,6 +124,7 @@ void addMessage(string s, char spamtype = 0);
|
||||
#define sphere (cgclass == gcSphere)
|
||||
#define sol (cgclass == gcSol)
|
||||
#define nil (cgclass == gcNil)
|
||||
#define prod (cgclass == gcProduct)
|
||||
#define hyperbolic (cgclass == gcHyperbolic)
|
||||
#define nonisotropic (sol || nil)
|
||||
#define translatable (euclid || nonisotropic)
|
||||
@ -325,10 +326,11 @@ extern videopar vid;
|
||||
#if MAXMDIM == 3
|
||||
#define WDIM 2
|
||||
#else
|
||||
#define WDIM ((geometry >= gBinary3 && geometry != gBinary4 && geometry != gKiteDart2 PROD(&& geometry != gProduct)) ? 3 : 2)
|
||||
#define WDIM ((geometry >= gBinary3 && geometry != gBinary4 && geometry != gKiteDart2) ? 3 : 2)
|
||||
#endif
|
||||
#define GDIM (vid.always3 ? 3 : WDIM)
|
||||
#define MDIM (GDIM+1)
|
||||
#define MDIM (prod ? 3 : GDIM+1)
|
||||
#define LDIM (MDIM-1)
|
||||
|
||||
#define self (*this)
|
||||
|
||||
|
105
hyperpoint.cpp
105
hyperpoint.cpp
@ -140,7 +140,7 @@ inline hyperpoint point2(ld x, ld y) { return hyperpoint(x,y,0,0); }
|
||||
|
||||
extern const hyperpoint C02, C03;
|
||||
|
||||
#define C0 (GDIM == 2 ? C02 : C03)
|
||||
#define C0 (MDIM == 3 ? C02 : C03)
|
||||
#endif
|
||||
|
||||
// basic functions and types
|
||||
@ -171,13 +171,14 @@ ld inverse_tanh(ld x) { return log((1+x)/(1-x)) / 2; } */
|
||||
|
||||
EX ld squar(ld x) { return x*x; }
|
||||
|
||||
EX int sig(int z) { return (sphere || sol || z<GDIM)?1:-1; }
|
||||
EX int sig(int z) { return prod ? (z<2?1:-1) : (sphere || sol || z<GDIM)?1:-1; }
|
||||
|
||||
EX int curvature() {
|
||||
switch(cgclass) {
|
||||
case gcEuclid: return 0;
|
||||
case gcHyperbolic: return -1;
|
||||
case gcSphere: return 1;
|
||||
case gcProduct: return PIU(curvature());
|
||||
default: return 0;
|
||||
}
|
||||
}
|
||||
@ -187,6 +188,7 @@ EX ld sin_auto(ld x) {
|
||||
case gcEuclid: return x;
|
||||
case gcHyperbolic: return sinh(x);
|
||||
case gcSphere: return sin(x);
|
||||
case gcProduct: return PIU(sin_auto(x));
|
||||
default: return x;
|
||||
}
|
||||
}
|
||||
@ -196,6 +198,7 @@ EX ld asin_auto(ld x) {
|
||||
case gcEuclid: return x;
|
||||
case gcHyperbolic: return asinh(x);
|
||||
case gcSphere: return asin(x);
|
||||
case gcProduct: return PIU(asin_auto(x));
|
||||
default: return x;
|
||||
}
|
||||
}
|
||||
@ -204,6 +207,7 @@ EX ld acos_auto(ld x) {
|
||||
switch(cgclass) {
|
||||
case gcHyperbolic: return acosh(x);
|
||||
case gcSphere: return acos(x);
|
||||
case gcProduct: return PIU(acos_auto(x));
|
||||
default: return x;
|
||||
}
|
||||
}
|
||||
@ -231,6 +235,7 @@ EX ld cos_auto(ld x) {
|
||||
case gcEuclid: return 1;
|
||||
case gcHyperbolic: return cosh(x);
|
||||
case gcSphere: return cos(x);
|
||||
case gcProduct: return PIU(cos_auto(x));
|
||||
default: return 1;
|
||||
}
|
||||
}
|
||||
@ -240,6 +245,7 @@ EX ld tan_auto(ld x) {
|
||||
case gcEuclid: return x;
|
||||
case gcHyperbolic: return tanh(x);
|
||||
case gcSphere: return tan(x);
|
||||
case gcProduct: return PIU(tan_auto(x));
|
||||
default: return 1;
|
||||
}
|
||||
}
|
||||
@ -249,6 +255,7 @@ EX ld atan_auto(ld x) {
|
||||
case gcEuclid: return x;
|
||||
case gcHyperbolic: return atanh(x);
|
||||
case gcSphere: return atan(x);
|
||||
case gcProduct: return PIU(atan_auto(x));
|
||||
default: return x;
|
||||
}
|
||||
}
|
||||
@ -258,6 +265,7 @@ EX ld atan2_auto(ld y, ld x) {
|
||||
case gcEuclid: return y/x;
|
||||
case gcHyperbolic: return atanh(y/x);
|
||||
case gcSphere: return atan2(y, x);
|
||||
case gcProduct: return PIU(atan2_auto(y, x));
|
||||
default: return y/x;
|
||||
}
|
||||
}
|
||||
@ -313,6 +321,11 @@ EX ld intval(const hyperpoint &h1, const hyperpoint &h2) {
|
||||
return res;
|
||||
}
|
||||
|
||||
EX ld quickdist(const hyperpoint &h1, const hyperpoint &h2) {
|
||||
if(prod) return hdist(h1, h2);
|
||||
return intval(h1, h2);
|
||||
}
|
||||
|
||||
EX ld sqhypot_d(int d, const hyperpoint& h) {
|
||||
ld sum = 0;
|
||||
for(int i=0; i<d; i++) sum += h[i]*h[i];
|
||||
@ -324,9 +337,10 @@ EX ld hypot_d(int d, const hyperpoint& h) {
|
||||
}
|
||||
|
||||
EX ld zlevel(const hyperpoint &h) {
|
||||
if(translatable) return h[GDIM];
|
||||
if(translatable) return h[LDIM];
|
||||
else if(sphere) return sqrt(intval(h, Hypc));
|
||||
else return (h[GDIM] < 0 ? -1 : 1) * sqrt(-intval(h, Hypc));
|
||||
else if(prod) return log(sqrt(-intval(h, Hypc)));
|
||||
else return (h[LDIM] < 0 ? -1 : 1) * sqrt(-intval(h, Hypc));
|
||||
}
|
||||
|
||||
EX ld hypot_auto(ld x, ld y) {
|
||||
@ -344,6 +358,7 @@ EX ld hypot_auto(ld x, ld y) {
|
||||
|
||||
// move H back to the sphere/hyperboloid/plane
|
||||
EX hyperpoint normalize(hyperpoint H) {
|
||||
if(prod) return H;
|
||||
ld Z = zlevel(H);
|
||||
for(int c=0; c<MDIM; c++) H[c] /= Z;
|
||||
return H;
|
||||
@ -351,11 +366,17 @@ EX hyperpoint normalize(hyperpoint H) {
|
||||
|
||||
// get the center of the line segment from H1 to H2
|
||||
hyperpoint mid(const hyperpoint& H1, const hyperpoint& H2) {
|
||||
if(prod) {
|
||||
auto d1 = product_decompose(H1);
|
||||
auto d2 = product_decompose(H2);
|
||||
return zshift(PIU( mid(d1.second, d2.second) ), (d1.first + d2.first) / 2);
|
||||
}
|
||||
return normalize(H1 + H2);
|
||||
}
|
||||
|
||||
// like mid, but take 3D into account
|
||||
EX hyperpoint midz(const hyperpoint& H1, const hyperpoint& H2) {
|
||||
if(prod) return mid(H1, H2);
|
||||
hyperpoint H3 = H1 + H2;
|
||||
|
||||
ld Z = 2;
|
||||
@ -394,15 +415,15 @@ EX transmatrix random_spin() {
|
||||
|
||||
EX transmatrix eupush(ld x, ld y) {
|
||||
transmatrix T = Id;
|
||||
T[0][GDIM] = x;
|
||||
T[1][GDIM] = y;
|
||||
T[0][LDIM] = x;
|
||||
T[1][LDIM] = y;
|
||||
return T;
|
||||
}
|
||||
|
||||
EX transmatrix eupush(hyperpoint h) {
|
||||
if(nonisotropic) return nisot::translate(h);
|
||||
transmatrix T = Id;
|
||||
for(int i=0; i<GDIM; i++) T[i][GDIM] = h[i];
|
||||
for(int i=0; i<GDIM; i++) T[i][LDIM] = h[i];
|
||||
return T;
|
||||
}
|
||||
|
||||
@ -430,9 +451,9 @@ EX transmatrix cpush(int cid, ld alpha) {
|
||||
transmatrix T = Id;
|
||||
if(nonisotropic)
|
||||
return eupush3(cid == 0 ? alpha : 0, cid == 1 ? alpha : 0, cid == 2 ? alpha : 0);
|
||||
T[GDIM][GDIM] = T[cid][cid] = cos_auto(alpha);
|
||||
T[cid][GDIM] = sin_auto(alpha);
|
||||
T[GDIM][cid] = -curvature() * sin_auto(alpha);
|
||||
T[LDIM][LDIM] = T[cid][cid] = cos_auto(alpha);
|
||||
T[cid][LDIM] = sin_auto(alpha);
|
||||
T[LDIM][cid] = -curvature() * sin_auto(alpha);
|
||||
return T;
|
||||
}
|
||||
|
||||
@ -550,7 +571,7 @@ EX transmatrix rspintoc(const hyperpoint& H, int t, int f) {
|
||||
|
||||
// rotate the hyperbolic plane around C0 such that H[1] == 0 and H[0] >= 0
|
||||
EX transmatrix spintox(const hyperpoint& H) {
|
||||
if(GDIM == 2) return spintoc(H, 0, 1);
|
||||
if(GDIM == 2 || prod) return spintoc(H, 0, 1);
|
||||
transmatrix T1 = spintoc(H, 0, 1);
|
||||
return spintoc(T1*H, 0, 2) * T1;
|
||||
}
|
||||
@ -572,7 +593,7 @@ EX transmatrix build_matrix(hyperpoint h1, hyperpoint h2, hyperpoint h3, hyperpo
|
||||
|
||||
// reverse of spintox(H)
|
||||
EX transmatrix rspintox(const hyperpoint& H) {
|
||||
if(GDIM == 2) return rspintoc(H, 0, 1);
|
||||
if(GDIM == 2 || prod) return rspintoc(H, 0, 1);
|
||||
transmatrix T1 = spintoc(H, 0, 1);
|
||||
return rspintoc(H, 0, 1) * rspintoc(T1*H, 0, 2);
|
||||
}
|
||||
@ -580,16 +601,16 @@ EX transmatrix rspintox(const hyperpoint& H) {
|
||||
// for H such that H[1] == 0, this matrix pushes H to C0
|
||||
EX transmatrix pushxto0(const hyperpoint& H) {
|
||||
transmatrix T = Id;
|
||||
T[0][0] = +H[GDIM]; T[0][GDIM] = -H[0];
|
||||
T[GDIM][0] = curvature() * H[0]; T[GDIM][GDIM] = +H[GDIM];
|
||||
T[0][0] = +H[LDIM]; T[0][LDIM] = -H[0];
|
||||
T[LDIM][0] = curvature() * H[0]; T[LDIM][LDIM] = +H[LDIM];
|
||||
return T;
|
||||
}
|
||||
|
||||
// reverse of pushxto0(H)
|
||||
EX transmatrix rpushxto0(const hyperpoint& H) {
|
||||
transmatrix T = Id;
|
||||
T[0][0] = +H[GDIM]; T[0][GDIM] = H[0];
|
||||
T[GDIM][0] = -curvature() * H[0]; T[GDIM][GDIM] = +H[GDIM];
|
||||
T[0][0] = +H[LDIM]; T[0][LDIM] = H[0];
|
||||
T[LDIM][0] = -curvature() * H[0]; T[LDIM][LDIM] = +H[LDIM];
|
||||
return T;
|
||||
}
|
||||
|
||||
@ -597,17 +618,21 @@ EX transmatrix ggpushxto0(const hyperpoint& H, ld co) {
|
||||
if(translatable) {
|
||||
return eupush(co * H);
|
||||
}
|
||||
if(prod) {
|
||||
auto d = product_decompose(H);
|
||||
return mscale(PIU(ggpushxto0(d.second, co)), exp(d.first * co));
|
||||
}
|
||||
transmatrix res = Id;
|
||||
if(sqhypot_d(GDIM, H) < 1e-12) return res;
|
||||
ld fac = (H[GDIM]-1) / sqhypot_d(GDIM, H);
|
||||
ld fac = (H[LDIM]-1) / sqhypot_d(GDIM, H);
|
||||
for(int i=0; i<GDIM; i++)
|
||||
for(int j=0; j<GDIM; j++)
|
||||
res[i][j] += H[i] * H[j] * fac;
|
||||
|
||||
for(int d=0; d<GDIM; d++)
|
||||
res[d][GDIM] = co * H[d],
|
||||
res[GDIM][d] = -curvature() * co * H[d];
|
||||
res[GDIM][GDIM] = H[GDIM];
|
||||
res[d][LDIM] = co * H[d],
|
||||
res[LDIM][d] = -curvature() * co * H[d];
|
||||
res[LDIM][LDIM] = H[LDIM];
|
||||
|
||||
return res;
|
||||
}
|
||||
@ -626,6 +651,7 @@ EX transmatrix rgpushxto0(const hyperpoint& H) {
|
||||
|
||||
EX void fixmatrix(transmatrix& T) {
|
||||
if(nonisotropic) ; // T may be inverse... do not do that
|
||||
else if(prod) ;
|
||||
else if(euclid) {
|
||||
for(int x=0; x<GDIM; x++) for(int y=0; y<=x; y++) {
|
||||
ld dp = 0;
|
||||
@ -635,8 +661,8 @@ EX void fixmatrix(transmatrix& T) {
|
||||
|
||||
for(int z=0; z<GDIM; z++) T[z][x] -= dp * T[z][y];
|
||||
}
|
||||
for(int x=0; x<GDIM; x++) T[GDIM][x] = 0;
|
||||
T[GDIM][GDIM] = 1;
|
||||
for(int x=0; x<GDIM; x++) T[LDIM][x] = 0;
|
||||
T[LDIM][LDIM] = 1;
|
||||
}
|
||||
else for(int x=0; x<MDIM; x++) for(int y=0; y<=x; y++) {
|
||||
ld dp = 0;
|
||||
@ -734,20 +760,29 @@ EX transmatrix inverse(const transmatrix& T) {
|
||||
}
|
||||
}
|
||||
|
||||
EX pair<ld, hyperpoint> product_decompose(hyperpoint h) {
|
||||
ld z = zlevel(h);
|
||||
return make_pair(z, mscale(h, exp(-z)));
|
||||
}
|
||||
|
||||
// distance between mh and 0
|
||||
EX ld hdist0(const hyperpoint& mh) {
|
||||
switch(cgclass) {
|
||||
case gcHyperbolic:
|
||||
if(mh[GDIM] < 1) return 0;
|
||||
return acosh(mh[GDIM]);
|
||||
if(mh[LDIM] < 1) return 0;
|
||||
return acosh(mh[LDIM]);
|
||||
case gcEuclid: {
|
||||
return hypot_d(GDIM, mh);
|
||||
}
|
||||
case gcSphere: {
|
||||
ld res = mh[GDIM] >= 1 ? 0 : mh[GDIM] <= -1 ? M_PI : acos(mh[GDIM]);
|
||||
ld res = mh[LDIM] >= 1 ? 0 : mh[LDIM] <= -1 ? M_PI : acos(mh[LDIM]);
|
||||
if(elliptic && res > M_PI/2) res = M_PI-res;
|
||||
return res;
|
||||
}
|
||||
case gcProduct: {
|
||||
auto d1 = product_decompose(mh);
|
||||
return hypot(PIU(hdist0(d1.second)), d1.first);
|
||||
}
|
||||
default:
|
||||
return hypot_d(GDIM, mh);
|
||||
}
|
||||
@ -779,6 +814,11 @@ EX ld hdist(const hyperpoint& h1, const hyperpoint& h2) {
|
||||
return 2 * asinh(sqrt(iv) / 2);
|
||||
case gcSphere:
|
||||
return 2 * asin_auto_clamp(sqrt(iv) / 2);
|
||||
case gcProduct: {
|
||||
auto d1 = product_decompose(h1);
|
||||
auto d2 = product_decompose(h2);
|
||||
return hypot(PIU(hdist(d1.second, d2.second)), d1.first - d2.first);
|
||||
}
|
||||
default:
|
||||
if(iv < 0) return 0;
|
||||
return sqrt(iv);
|
||||
@ -786,7 +826,7 @@ EX ld hdist(const hyperpoint& h1, const hyperpoint& h2) {
|
||||
}
|
||||
|
||||
EX hyperpoint mscale(const hyperpoint& t, double fac) {
|
||||
if(GDIM == 3) return cpush(2, fac) * t;
|
||||
if(GDIM == 3 && !prod) return cpush(2, fac) * t;
|
||||
hyperpoint res;
|
||||
for(int i=0; i<MDIM; i++)
|
||||
res[i] = t[i] * fac;
|
||||
@ -794,8 +834,8 @@ EX hyperpoint mscale(const hyperpoint& t, double fac) {
|
||||
}
|
||||
|
||||
EX transmatrix mscale(const transmatrix& t, double fac) {
|
||||
if(GDIM == 3) {
|
||||
// if(pmodel == mdFlatten) { transmatrix u = t; u[2][GDIM] -= fac; return u; }
|
||||
if(GDIM == 3 && !prod) {
|
||||
// if(pmodel == mdFlatten) { transmatrix u = t; u[2][LDIM] -= fac; return u; }
|
||||
return t * cpush(2, fac);
|
||||
}
|
||||
transmatrix res;
|
||||
@ -816,7 +856,7 @@ EX transmatrix xyzscale(const transmatrix& t, double fac, double facz) {
|
||||
for(int i=0; i<MDIM; i++) for(int j=0; j<GDIM; j++)
|
||||
res[i][j] = t[i][j] * fac;
|
||||
for(int i=0; i<MDIM; i++)
|
||||
res[i][GDIM] = t[i][GDIM] * facz;
|
||||
res[i][LDIM] = t[i][LDIM] * facz;
|
||||
return res;
|
||||
}
|
||||
|
||||
@ -870,6 +910,7 @@ EX hyperpoint orthogonal_of_C0(hyperpoint h0, hyperpoint h1, hyperpoint h2) {
|
||||
|
||||
EX hyperpoint zshift(hyperpoint x, ld z) {
|
||||
if(GDIM == 3 && WDIM == 2) return rgpushxto0(x) * cpush0(2, z);
|
||||
else if(prod) return mscale(x, exp(z));
|
||||
else return mscale(x, z);
|
||||
}
|
||||
|
||||
@ -931,14 +972,14 @@ EX transmatrix transpose(transmatrix T) {
|
||||
#if HDR
|
||||
inline hyperpoint cpush0(int c, ld x) {
|
||||
hyperpoint h = Hypc;
|
||||
h[GDIM] = cos_auto(x);
|
||||
h[LDIM] = cos_auto(x);
|
||||
h[c] = sin_auto(x);
|
||||
return h;
|
||||
}
|
||||
|
||||
inline hyperpoint xspinpush0(ld alpha, ld x) {
|
||||
hyperpoint h = Hypc;
|
||||
h[GDIM] = cos_auto(x);
|
||||
h[LDIM] = cos_auto(x);
|
||||
h[0] = sin_auto(x) * cos(alpha);
|
||||
h[1] = sin_auto(x) * -sin(alpha);
|
||||
return h;
|
||||
@ -950,7 +991,7 @@ inline hyperpoint ypush0(ld x) { return cpush0(1, x); }
|
||||
// T * C0, optimized
|
||||
inline hyperpoint tC0(const transmatrix &T) {
|
||||
hyperpoint z;
|
||||
for(int i=0; i<MDIM; i++) z[i] = T[i][GDIM];
|
||||
for(int i=0; i<MDIM; i++) z[i] = T[i][LDIM];
|
||||
return z;
|
||||
}
|
||||
#endif
|
||||
|
84
hypgraph.cpp
84
hypgraph.cpp
@ -66,7 +66,7 @@ hyperpoint perspective_to_space(hyperpoint h, ld alpha, eGeometryClass gc) {
|
||||
hyperpoint H;
|
||||
H[0] = hx * (hz+vid.alpha);
|
||||
H[1] = hy * (hz+vid.alpha);
|
||||
H[GDIM] = hz;
|
||||
H[LDIM] = hz;
|
||||
|
||||
return H;
|
||||
}
|
||||
@ -74,7 +74,7 @@ hyperpoint perspective_to_space(hyperpoint h, ld alpha, eGeometryClass gc) {
|
||||
hyperpoint space_to_perspective(hyperpoint z, ld alpha = vid.alpha);
|
||||
|
||||
hyperpoint space_to_perspective(hyperpoint z, ld alpha) {
|
||||
ld s = 1 / (alpha + z[GDIM]);
|
||||
ld s = 1 / (alpha + z[LDIM]);
|
||||
z[0] *= s;
|
||||
z[1] *= s;
|
||||
if(GDIM == 3) {
|
||||
@ -103,7 +103,7 @@ EX hyperpoint gethyper(ld x, ld y) {
|
||||
|
||||
void ballmodel(hyperpoint& ret, double alpha, double d, double zl) {
|
||||
hyperpoint H = ypush(vid.camera) * xpush(d) * ypush(zl) * C0;
|
||||
ld tzh = vid.ballproj + H[GDIM];
|
||||
ld tzh = vid.ballproj + H[LDIM];
|
||||
ld ax = H[0] / tzh;
|
||||
ld ay = H[1] / tzh;
|
||||
|
||||
@ -166,7 +166,7 @@ ld find_zlev(hyperpoint& H) {
|
||||
}
|
||||
|
||||
ld get_tz(hyperpoint H) {
|
||||
ld tz = euclid ? (1+vid.alpha) : vid.alpha+H[GDIM];
|
||||
ld tz = euclid ? (1+vid.alpha) : vid.alpha+H[LDIM];
|
||||
if(tz < BEHIND_LIMIT && tz > -BEHIND_LIMIT) tz = BEHIND_LIMIT;
|
||||
return tz;
|
||||
}
|
||||
@ -201,8 +201,8 @@ template<class T> void makeband(hyperpoint H, hyperpoint& ret, const T& f) {
|
||||
y = asin_auto(H[1]);
|
||||
x = asin_auto_clamp(H[0] / cos_auto(y));
|
||||
if(sphere) {
|
||||
if(H[GDIM] < 0 && x > 0) x = M_PI - x;
|
||||
else if(H[GDIM] < 0 && x <= 0) x = -M_PI - x;
|
||||
if(H[LDIM] < 0 && x > 0) x = M_PI - x;
|
||||
else if(H[LDIM] < 0 && x <= 0) x = -M_PI - x;
|
||||
}
|
||||
x += band_shift;
|
||||
hypot_zlev(zlev, y, yf, zf);
|
||||
@ -495,9 +495,9 @@ EX void applymodel(hyperpoint H, hyperpoint& ret) {
|
||||
case mdFisheye: {
|
||||
ld zlev = find_zlev(H);
|
||||
H = space_to_perspective(H);
|
||||
H[GDIM] = zlev;
|
||||
H[LDIM] = zlev;
|
||||
ret = H / sqrt(1 + sqhypot_d(GDIM+1, H));
|
||||
if(GDIM == 3) ret[GDIM] = zlev;
|
||||
if(GDIM == 3) ret[LDIM] = zlev;
|
||||
break;
|
||||
}
|
||||
|
||||
@ -866,11 +866,11 @@ EX bool behindsphere(const hyperpoint& h) {
|
||||
if(mdBandAny()) return false;
|
||||
|
||||
if(vid.alpha > 1) {
|
||||
if(h[GDIM] > -1/vid.alpha) return true;
|
||||
if(h[LDIM] > -1/vid.alpha) return true;
|
||||
}
|
||||
|
||||
if(vid.alpha <= 1) {
|
||||
if(h[GDIM] < .2-vid.alpha) return true;
|
||||
if(h[LDIM] < .2-vid.alpha) return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
@ -948,12 +948,16 @@ EX bool invalid_matrix(const transmatrix T) {
|
||||
for(int i=0; i<GDIM; i++) for(int j=0; j<GDIM; j++)
|
||||
if(std::isnan(T[i][j]) || T[i][j] > 1e8 || T[i][j] < -1e8 || std::isinf(T[i][j]))
|
||||
return true;
|
||||
for(int i=0; i<GDIM; i++) for(int j=0; j<GDIM; j++) if(T[i][j] > .5 || T[i][j] < -.5) return false;
|
||||
if(prod) {
|
||||
for(int i=0; i<GDIM; i++) for(int j=0; j<GDIM; j++) if(abs(T[i][j]) > 1e-6) return false;
|
||||
}
|
||||
else
|
||||
for(int i=0; i<GDIM; i++) for(int j=0; j<GDIM; j++) if(T[i][j] > .5 || T[i][j] < -.5) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
EX bool invalid_point(const hyperpoint h) {
|
||||
return std::isnan(h[GDIM]) || h[GDIM] > 1e8 || std::isinf(h[GDIM]);
|
||||
return std::isnan(h[LDIM]) || h[LDIM] > 1e8 || std::isinf(h[LDIM]);
|
||||
}
|
||||
|
||||
EX bool in_smart_range(const transmatrix& T) {
|
||||
@ -1175,25 +1179,25 @@ int mindx=-7, mindy=-7, maxdx=7, maxdy=7;
|
||||
|
||||
EX transmatrix eumove(ld x, ld y) {
|
||||
transmatrix Mat = Id;
|
||||
Mat[GDIM][GDIM] = 1;
|
||||
Mat[LDIM][LDIM] = 1;
|
||||
|
||||
if(a4) {
|
||||
Mat[0][GDIM] += x * cgi.crossf;
|
||||
Mat[1][GDIM] += y * cgi.crossf;
|
||||
Mat[0][LDIM] += x * cgi.crossf;
|
||||
Mat[1][LDIM] += y * cgi.crossf;
|
||||
}
|
||||
else {
|
||||
Mat[0][GDIM] += (x + y * .5) * cgi.crossf;
|
||||
// Mat[GDIM][0] += (x + y * .5) * cgi.crossf;
|
||||
Mat[1][GDIM] += y * q3 /2 * cgi.crossf;
|
||||
// Mat[GDIM][1] += y * q3 /2 * cgi.crossf;
|
||||
Mat[0][LDIM] += (x + y * .5) * cgi.crossf;
|
||||
// Mat[LDIM][0] += (x + y * .5) * cgi.crossf;
|
||||
Mat[1][LDIM] += y * q3 /2 * cgi.crossf;
|
||||
// Mat[LDIM][1] += y * q3 /2 * cgi.crossf;
|
||||
}
|
||||
|
||||
ld v = a4 ? 1 : q3;
|
||||
|
||||
while(Mat[0][GDIM] <= -16384 * cgi.crossf) Mat[0][GDIM] += 32768 * cgi.crossf;
|
||||
while(Mat[0][GDIM] >= 16384 * cgi.crossf) Mat[0][GDIM] -= 32768 * cgi.crossf;
|
||||
while(Mat[1][GDIM] <= -16384 * v * cgi.crossf) Mat[1][GDIM] += 32768 * v * cgi.crossf;
|
||||
while(Mat[1][GDIM] >= 16384 * v * cgi.crossf) Mat[1][GDIM] -= 32768 * v * cgi.crossf;
|
||||
while(Mat[0][LDIM] <= -16384 * cgi.crossf) Mat[0][LDIM] += 32768 * cgi.crossf;
|
||||
while(Mat[0][LDIM] >= 16384 * cgi.crossf) Mat[0][LDIM] -= 32768 * cgi.crossf;
|
||||
while(Mat[1][LDIM] <= -16384 * v * cgi.crossf) Mat[1][LDIM] += 32768 * v * cgi.crossf;
|
||||
while(Mat[1][LDIM] >= 16384 * v * cgi.crossf) Mat[1][LDIM] -= 32768 * v * cgi.crossf;
|
||||
return Mat;
|
||||
}
|
||||
|
||||
@ -1320,7 +1324,7 @@ EX void centerpc(ld aspd) {
|
||||
}
|
||||
#endif
|
||||
hyperpoint H = inverse(actual_view_transform) * tC0(T);
|
||||
ld R = zero_d(GDIM, H) ? 0 : hdist0(H);
|
||||
ld R = (zero_d(GDIM, H) && !prod) ? 0 : hdist0(H);
|
||||
if(R < 1e-9) {
|
||||
// either already centered or direction unknown
|
||||
/* if(playerfoundL && playerfoundR) {
|
||||
@ -1338,12 +1342,20 @@ EX void centerpc(ld aspd) {
|
||||
if(aspd > R) aspd = R;
|
||||
|
||||
for(int i=0; i<GDIM; i++)
|
||||
View[i][GDIM] -= H[i] * aspd / R;
|
||||
View[i][LDIM] -= H[i] * aspd / R;
|
||||
|
||||
}
|
||||
|
||||
else {
|
||||
aspd *= (1+R+(shmup::on?1:0));
|
||||
|
||||
if(prod) {
|
||||
auto d = product_decompose(H);
|
||||
ld dist = -d.first / R * aspd;
|
||||
if(abs(dist) > abs(d.first)) dist = -d.first;
|
||||
View = mscale(View, exp(dist));
|
||||
aspd *= sqrt(R*R - d.first * d.first) / R;
|
||||
}
|
||||
|
||||
if(R < aspd) {
|
||||
View = solmul(gpushxto0(H), View);
|
||||
@ -1363,6 +1375,14 @@ EX void optimizeview() {
|
||||
if(subscreens::split(optimizeview)) return;
|
||||
if(dual::split(optimizeview)) return;
|
||||
|
||||
if(prod) {
|
||||
ld z = zlevel(tC0(View));
|
||||
View = mscale(View, exp(-z));
|
||||
product::in_underlying_geometry(optimizeview);
|
||||
View = mscale(View, exp(z));
|
||||
return;
|
||||
}
|
||||
|
||||
#if CAP_ANIMATIONS
|
||||
if(centerover.at && inmirror(centerover.at)) {
|
||||
anims::reflect_view();
|
||||
@ -1375,7 +1395,7 @@ EX void optimizeview() {
|
||||
|
||||
transmatrix TB = Id;
|
||||
|
||||
if(0) ;
|
||||
if(false) ;
|
||||
|
||||
#if CAP_BT || CAP_ARCM || MAXMDIM == 4
|
||||
else if(binarytiling || archimedean || penrose || WDIM == 3) {
|
||||
@ -1408,7 +1428,7 @@ EX void optimizeview() {
|
||||
ld trot = -i * M_PI * 2 / (S7+.0);
|
||||
transmatrix T = i < 0 ? Id : spin(trot) * xpush(cgi.tessf) * pispin;
|
||||
hyperpoint H = View * tC0(T);
|
||||
if(H[GDIM] < best) best = H[GDIM], turn = i, TB = T;
|
||||
if(H[LDIM] < best) best = H[LDIM], turn = i, TB = T;
|
||||
}
|
||||
|
||||
if(turn >= 0) {
|
||||
@ -1665,7 +1685,7 @@ void queuestraight(hyperpoint X, int style, color_t lc, color_t fc, PPR p) {
|
||||
EX void draw_boundary(int w) {
|
||||
|
||||
if(w == 1) return;
|
||||
if(nonisotropic || euclid) return;
|
||||
if(nonisotropic || euclid || prod) return;
|
||||
|
||||
dynamicval<ld> lw(vid.linewidth, vid.linewidth * vid.multiplier_ring);
|
||||
|
||||
@ -1864,7 +1884,7 @@ EX void draw_boundary(int w) {
|
||||
|
||||
EX ld band_shift = 0;
|
||||
EX void fix_the_band(transmatrix& T) {
|
||||
if(((mdinf[pmodel].flags & mf::uses_bandshift) && T[GDIM][GDIM] > 1e6) || (sphere && pmodel == mdSpiral)) {
|
||||
if(((mdinf[pmodel].flags & mf::uses_bandshift) && T[LDIM][LDIM] > 1e6) || (sphere && pmodel == mdSpiral)) {
|
||||
hyperpoint H = tC0(T);
|
||||
find_zlev(H);
|
||||
models::apply_orientation(H[0], H[1]);
|
||||
@ -1872,8 +1892,8 @@ EX void fix_the_band(transmatrix& T) {
|
||||
ld y = asin_auto(H[1]);
|
||||
ld x = asin_auto_clamp(H[0] / cos_auto(y));
|
||||
if(sphere) {
|
||||
if(H[GDIM] < 0 && x > 0) x = M_PI - x;
|
||||
else if(H[GDIM] < 0 && x <= 0) x = -M_PI - x;
|
||||
if(H[LDIM] < 0 && x > 0) x = M_PI - x;
|
||||
else if(H[LDIM] < 0 && x <= 0) x = -M_PI - x;
|
||||
}
|
||||
band_shift += x;
|
||||
T = xpush(-x) * T;
|
||||
@ -1936,7 +1956,7 @@ bool limited_generation(cell *c) {
|
||||
|
||||
EX bool do_draw(cell *c, const transmatrix& T) {
|
||||
|
||||
PROD( if(product::pmap) return product::in_actual([&] { return do_draw(product::get_at(c, product::plevel), T); }); )
|
||||
if(product::pmap) return product::in_actual([&] { return do_draw(product::get_at(c, product::plevel), T); });
|
||||
if(WDIM == 3) {
|
||||
if(cells_drawn > vid.cells_drawn_limit) return false;
|
||||
if(nil && pmodel == mdGeodesic) {
|
||||
|
@ -41,8 +41,8 @@ vector<cellinfo> cells;
|
||||
|
||||
ld inner(hyperpoint h1, hyperpoint h2) {
|
||||
return
|
||||
hyperbolic ? h1[GDIM] * h2[GDIM] - h1[0] * h2[0] - h1[1] * h2[1] :
|
||||
h1[GDIM] * h2[GDIM] + h1[0] * h2[0] + h1[1] * h2[1];
|
||||
hyperbolic ? h1[LDIM] * h2[LDIM] - h1[0] * h2[0] - h1[1] * h2[1] :
|
||||
h1[LDIM] * h2[LDIM] + h1[0] * h2[0] + h1[1] * h2[1];
|
||||
}
|
||||
|
||||
hyperpoint circumscribe(hyperpoint a, hyperpoint b, hyperpoint c) {
|
||||
@ -71,7 +71,7 @@ hyperpoint circumscribe(hyperpoint a, hyperpoint b, hyperpoint c) {
|
||||
h = h - c * inner(h, c);
|
||||
}
|
||||
|
||||
if(h[GDIM] < 0) h[0] = -h[0], h[1] = -h[1], h[GDIM] = -h[GDIM];
|
||||
if(h[LDIM] < 0) h[0] = -h[0], h[1] = -h[1], h[LDIM] = -h[LDIM];
|
||||
|
||||
ld i = inner(h, h);
|
||||
if(i > 0) h /= sqrt(i);
|
||||
@ -328,7 +328,7 @@ bool step(int delta) {
|
||||
hyperpoint best_h;
|
||||
for(int k=0; k<isize(cells); k++) if(k != i && k != j && k != oldj) {
|
||||
hyperpoint h = circumscribe(C0, p1.jpoints[j], p1.jpoints[k]);
|
||||
if(h[GDIM] < 0) continue;
|
||||
if(h[LDIM] < 0) continue;
|
||||
if(!clockwise(t, h)) continue;
|
||||
if(best_k == -1)
|
||||
best_k = k, best_h = h;
|
||||
@ -839,7 +839,7 @@ bool save_map(const string& fname) {
|
||||
println(f, origcells);
|
||||
for(auto i: cells_of_heptagon[h->master]) if(cells[i].generation == 0) {
|
||||
auto &ci = cells[i];
|
||||
println(f, spaced(ci.p[0], ci.p[1], ci.p[GDIM]));
|
||||
println(f, spaced(ci.p[0], ci.p[1], ci.p[LDIM]));
|
||||
}
|
||||
}
|
||||
return true;
|
||||
|
139
nonisotropic.cpp
139
nonisotropic.cpp
@ -19,7 +19,7 @@ EX namespace nisot {
|
||||
|
||||
EX transmatrix translate(hyperpoint h) {
|
||||
transmatrix T = Id;
|
||||
for(int i=0; i<GDIM; i++) T[i][GDIM] = h[i];
|
||||
for(int i=0; i<GDIM; i++) T[i][LDIM] = h[i];
|
||||
if(sol) {
|
||||
T[0][0] = exp(-h[2]);
|
||||
T[1][1] = exp(+h[2]);
|
||||
@ -541,6 +541,136 @@ EX namespace nilv {
|
||||
}
|
||||
EX }
|
||||
|
||||
EX namespace product {
|
||||
|
||||
EX eGeometry underlying;
|
||||
EX geometry_information *underlying_cgip;
|
||||
|
||||
void configure() {
|
||||
check_cgi();
|
||||
cgi.prepare_basics();
|
||||
underlying = geometry;
|
||||
underlying_cgip = cgip;
|
||||
geometry = gProduct;
|
||||
ginf[gProduct] = ginf[underlying];
|
||||
ginf[gProduct].sides += 2;
|
||||
ginf[gProduct].cclass = gcProduct;
|
||||
ginf[gProduct].flags |= qEXPERIMENTAL;
|
||||
pmodel = mdPerspective;
|
||||
}
|
||||
|
||||
EX ld plevel = 1;
|
||||
|
||||
hrmap *pmap;
|
||||
geometry_information *pcgip;
|
||||
|
||||
template<class T> auto in_actual(const T& t) {
|
||||
dynamicval<eGeometry> g(geometry, gProduct);
|
||||
dynamicval<geometry_information*> gc(cgip, pcgip);
|
||||
dynamicval<hrmap*> gu(currentmap, pmap);
|
||||
dynamicval<hrmap*> gup(pmap, NULL);
|
||||
return t();
|
||||
}
|
||||
|
||||
struct hrmap_product : hrmap {
|
||||
|
||||
hrmap *underlying_map;
|
||||
|
||||
map<pair<cell*, int>, cell*> at;
|
||||
map<cell*, pair<cell*, int>> where;
|
||||
|
||||
heptagon *getOrigin() override { return underlying_map->getOrigin(); }
|
||||
|
||||
template<class T> auto in_underlying(const T& t) {
|
||||
pcgip = cgip; pmap = this;
|
||||
dynamicval<eGeometry> g(geometry, underlying);
|
||||
dynamicval<geometry_information*> gc(cgip, underlying_cgip);
|
||||
dynamicval<hrmap*> gu(currentmap, underlying_map);
|
||||
return t();
|
||||
}
|
||||
|
||||
cell *getCell(cell *u, int h) {
|
||||
cell*& c = at[{u, h}];
|
||||
if(!c) { c = newCell(u->type+2, u->master); where[c] = {u, h}; }
|
||||
return c;
|
||||
}
|
||||
|
||||
cell* gamestart() override { return getCell(underlying_map->gamestart(), 0); }
|
||||
|
||||
transmatrix relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hint) override {
|
||||
return in_underlying([&] { return calc_relative_matrix(where[c2].first, where[c1].first, point_hint); }) * mscale(Id, exp(plevel * (where[c2].second - where[c1].second)));
|
||||
}
|
||||
|
||||
hrmap_product() {
|
||||
in_underlying([this] { initcells(); underlying_map = currentmap; });
|
||||
}
|
||||
|
||||
void draw() override {
|
||||
in_underlying([this] { currentmap->draw(); });
|
||||
}
|
||||
};
|
||||
|
||||
cell *get_at(cell *base, int level) {
|
||||
return ((hrmap_product*)currentmap)->getCell(base, level);
|
||||
}
|
||||
|
||||
void drawcell_stack(cell *c, transmatrix V, int spinv, bool mirrored) {
|
||||
in_actual([&] { for(int z=-5; z<=5; z++) drawcell(get_at(c, z), V * mscale(Id, exp(plevel * z)), spinv, mirrored); });
|
||||
}
|
||||
|
||||
void find_cell_connection(cell *c, int d) {
|
||||
auto m = (hrmap_product*)currentmap;
|
||||
if(d >= c->type - 2) {
|
||||
cell *c1 = get_at(m->where[c].first, m->where[c].second + (d == c->type-1 ? 1 : -1));
|
||||
c->c.connect(d, c1, c1->type - 3 + c->type - d, false);
|
||||
}
|
||||
else {
|
||||
auto cu = m->where[c].first;
|
||||
auto cu1 = m->in_underlying([&] { return cu->cmove(d); });
|
||||
cell *c1 = get_at(cu1, m->where[c].second);
|
||||
c->c.connect(d, c1, cu->c.spin(d), cu->c.mirror(d));
|
||||
}
|
||||
}
|
||||
|
||||
EX hyperpoint get_corner(cell *c, int i, ld z) {
|
||||
dynamicval<eGeometry> g(geometry, underlying);
|
||||
dynamicval<geometry_information*> gc(cgip, underlying_cgip);
|
||||
return mscale(get_corner_position(c, i), exp(plevel * z/2));
|
||||
}
|
||||
|
||||
EX hyperpoint where(hyperpoint h) {
|
||||
hyperpoint res;
|
||||
res[2] = zlevel(h);
|
||||
h = mscale(h, exp(-res[2]));
|
||||
ld r = hypot_d(2, h);
|
||||
if(r < 1e-6 || h[2] < 1) {
|
||||
res[0] = h[0];
|
||||
res[1] = h[1];
|
||||
}
|
||||
else {
|
||||
r = acosh(h[2]) / r;
|
||||
res[0] = h[0] * r;
|
||||
res[1] = h[1] * r;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
EX void in_underlying_map(const reaction_t& f) {
|
||||
((hrmap_product*)currentmap)->in_underlying(f);
|
||||
}
|
||||
|
||||
#if HDR
|
||||
template<class T> auto in_underlying_geometry(const T& f) {
|
||||
dynamicval<eGeometry> g(geometry, underlying);
|
||||
dynamicval<geometry_information*> gc(cgip, underlying_cgip);
|
||||
return f();
|
||||
}
|
||||
|
||||
#define PIU(x) hr::product::in_underlying_geometry([&] { return (x); })
|
||||
#endif
|
||||
|
||||
EX }
|
||||
|
||||
EX namespace nisot {
|
||||
|
||||
EX hyperpoint christoffel(const hyperpoint at, const hyperpoint velocity, const hyperpoint transported) {
|
||||
@ -657,6 +787,7 @@ EX namespace nisot {
|
||||
EX hrmap *new_map() {
|
||||
if(sol) return new solv::hrmap_sol;
|
||||
if(nil) return new nilv::hrmap_nil;
|
||||
if(geometry == gProduct) return new product::hrmap_product;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -686,6 +817,12 @@ EX namespace nisot {
|
||||
pmodel = mdPerspective;
|
||||
return 0;
|
||||
}
|
||||
else if(argis("-product")) {
|
||||
PHASEFROM(2);
|
||||
stop_game();
|
||||
product::configure();
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
});
|
||||
|
||||
|
18
polygons.cpp
18
polygons.cpp
@ -718,6 +718,7 @@ void geometry_information::make_wall(int id, vector<hyperpoint> vertices, vector
|
||||
hyperpoint h = center + v1 * x + v2 * y;
|
||||
if(nil && (x || y))
|
||||
h = nilv::on_geodesic(center, nilv::on_geodesic(v1+center, v2+center, y / (x+y)), x + y);
|
||||
if(prod) { hpcpush(h); return; }
|
||||
if(sol || !binarytiling) { hpcpush(normalize(h)); return; }
|
||||
hyperpoint res = binary::parabolic3(h[0], h[1]) * xpush0(yy*h[2]);
|
||||
hpcpush(res);
|
||||
@ -729,6 +730,7 @@ void geometry_information::make_wall(int id, vector<hyperpoint> vertices, vector
|
||||
int STEP = vid.texture_step;
|
||||
for(int a=0; a<n; a++) for(int y=0; y<STEP; y++) {
|
||||
hyperpoint h = (vertices[a] * (STEP-y) + vertices[(a+1)%n] * y)/STEP;
|
||||
if(prod) { hpcpush(h); continue; }
|
||||
if(nil)
|
||||
h = nilv::on_geodesic(vertices[a], vertices[(a+1)%n], y * 1. / STEP);
|
||||
if(sol || !binarytiling) { hpcpush(normalize(h)); continue; }
|
||||
@ -852,6 +854,20 @@ void geometry_information::create_wall3d() {
|
||||
make_wall(12, {point3(3*h,r3,z), point3(0,2*r3,z), point3(-3*h,r3,z)});
|
||||
make_wall(13, {point3(3*h,r3,z), point3(3*h,-r3,z), point3(0,-2*r3,z), point3(-3*h,-r3,z), point3(-3*h,r3,z)});
|
||||
}
|
||||
|
||||
if(prod) {
|
||||
cell model;
|
||||
model.type = S7-2;
|
||||
for(int i=0; i<S7-2; i++)
|
||||
make_wall(i, {product::get_corner(&model, i, -1), product::get_corner(&model, i, +1), product::get_corner(&model, i+1, +1), product::get_corner(&model, i+1, -1)});
|
||||
for(int a: {0,1}) {
|
||||
vector<hyperpoint> l;
|
||||
int z = a ? 1 : -1;
|
||||
for(int i=0; i<S7-2; i++)
|
||||
l.push_back(product::get_corner(&model, i, z));
|
||||
make_wall(S7-2+a, l);
|
||||
}
|
||||
}
|
||||
|
||||
if(GDIM == 3 && euclid && S7 == 6) {
|
||||
for(int w=0; w<6; w++) {
|
||||
@ -907,7 +923,7 @@ void geometry_information::create_wall3d() {
|
||||
}
|
||||
}
|
||||
|
||||
if(GDIM == 3 && !euclid && !binarytiling && !nil) {
|
||||
if(GDIM == 3 && !euclid && !binarytiling && !nil && !prod) {
|
||||
reg3::generate();
|
||||
int facesize = isize(reg3::cellshape) / S7;
|
||||
for(int w=0; w<S7; w++) {
|
||||
|
4
rug.cpp
4
rug.cpp
@ -326,7 +326,7 @@ EX rugpoint *addRugpoint(hyperpoint h, double dist) {
|
||||
|
||||
else {
|
||||
m->flat = h;
|
||||
ld hd = h[GDIM];
|
||||
ld hd = h[LDIM];
|
||||
for(int d=GDIM; d<rugdim; d++)
|
||||
m->flat[d] = (hd - .99) * (rand() % 1000 - rand() % 1000) / 1000;
|
||||
}
|
||||
@ -997,7 +997,7 @@ bincode acd_bin(ld x) {
|
||||
|
||||
bincode get_bincode(hyperpoint h) {
|
||||
switch(ginf[gwhere].cclass) {
|
||||
case gcEuclid: case gcSol: case gcNil: PROD( case gcProduct: )
|
||||
case gcEuclid: case gcSol: case gcNil: case gcProduct:
|
||||
return acd_bin(h[0]) + acd_bin(h[1]) * sY + acd_bin(h[2]) * sZ;
|
||||
case gcHyperbolic:
|
||||
return acd_bin(hypot_d(3, h));
|
||||
|
@ -512,7 +512,4 @@ union SDL_Event;
|
||||
#define CAP_MEMORY_RESERVE (!ISMOBILE && !ISWEB)
|
||||
#endif
|
||||
|
||||
#define PROD(x) /* unimplemented */
|
||||
#define PROD2(x,y) /* unimplemented */
|
||||
|
||||
#undef TRANSPARENT
|
||||
|
Loading…
Reference in New Issue
Block a user