gnss-sdr/src/algorithms/libs/rtklib/rtklib_rtkcmn.cc

5343 lines
170 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*!
* \file rtklib_rtkcmn.cc
* \brief rtklib common functions
* \authors <ul>
* <li> 2007-2013, T. Takasu
* <li> 2017, Javier Arribas
* <li> 2017, Carles Fernandez
* </ul>
*
* This is a derived work from RTKLIB http://www.rtklib.com/
* The original source code at https://github.com/tomojitakasu/RTKLIB is
* released under the BSD 2-clause license with an additional exclusive clause
* that does not apply here. This additional clause is reproduced below:
*
* " The software package includes some companion executive binaries or shared
* libraries necessary to execute APs on Windows. These licenses succeed to the
* original ones of these software. "
*
* Neither the executive binaries nor the shared libraries are required by, used
* or included in GNSS-SDR.
*
* -----------------------------------------------------------------------------
* Copyright (C) 2007-2013, T. Takasu
* Copyright (C) 2017, Javier Arribas
* Copyright (C) 2017, Carles Fernandez
* All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause
*
*----------------------------------------------------------------------------*/
#include "rtklib_rtkcmn.h"
#include <glog/logging.h>
#include <array>
#include <cassert>
#include <cstring>
#include <dirent.h>
#include <iomanip>
#include <sstream>
#include <string>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <vector>
const double GPST0[] = {1980, 1, 6, 0, 0, 0}; /* gps time reference */
const double GST0[] = {1999, 8, 22, 0, 0, 0}; /* galileo system time reference */
const double BDT0[] = {2006, 1, 1, 0, 0, 0}; /* beidou time reference */
static double timeoffset_ = 0.0;
double leaps[MAXLEAPS + 1][7] = {/* leap seconds (y,m,d,h,m,s,utc-gpst) */
{2017, 1, 1, 0, 0, 0, -18},
{2015, 7, 1, 0, 0, 0, -17},
{2012, 7, 1, 0, 0, 0, -16},
{2009, 1, 1, 0, 0, 0, -15},
{2006, 1, 1, 0, 0, 0, -14},
{1999, 1, 1, 0, 0, 0, -13},
{1997, 7, 1, 0, 0, 0, -12},
{1996, 1, 1, 0, 0, 0, -11},
{1994, 7, 1, 0, 0, 0, -10},
{1993, 7, 1, 0, 0, 0, -9},
{1992, 7, 1, 0, 0, 0, -8},
{1991, 1, 1, 0, 0, 0, -7},
{1990, 1, 1, 0, 0, 0, -6},
{1988, 1, 1, 0, 0, 0, -5},
{1985, 7, 1, 0, 0, 0, -4},
{1983, 7, 1, 0, 0, 0, -3},
{1982, 7, 1, 0, 0, 0, -2},
{1981, 7, 1, 0, 0, 0, -1},
{}};
const char *formatstrs[32] = {/* stream format strings */
"RTCM 2", /* 0 */
"RTCM 3", /* 1 */
"NovAtel OEM6", /* 2 */
"NovAtel OEM3", /* 3 */
"u-blox", /* 4 */
"Superstar II", /* 5 */
"Hemisphere", /* 6 */
"SkyTraq", /* 7 */
"GW10", /* 8 */
"Javad", /* 9 */
"NVS BINR", /* 10 */
"BINEX", /* 11 */
"Trimble RT17", /* 12 */
"Septentrio", /* 13 */
"CMR/CMR+", /* 14 */
"LEX Receiver", /* 15 */
"RINEX", /* 16 */
"SP3", /* 17 */
"RINEX CLK", /* 18 */
"SBAS", /* 19 */
"NMEA 0183", /* 20 */
nullptr};
char obscodes[][3] = {
/* observation code strings */
"", "1C", "1P", "1W", "1Y", "1M", "1N", "1S", "1L", "1E", /* 0- 9 */
"1A", "1B", "1X", "1Z", "2C", "2D", "2S", "2L", "2X", "2P", /* 10-19 */
"2W", "2Y", "2M", "2N", "5I", "5Q", "5X", "7I", "7Q", "7X", /* 20-29 */
"6A", "6B", "6C", "6X", "6Z", "6S", "6L", "8L", "8Q", "8X", /* 30-39 */
"2I", "2Q", "6I", "6Q", "3I", "3Q", "3X", "1I", "1Q", "5A", /* 40-49 */
"5B", "5C", "9A", "9B", "9C", "9X", "", "", "", "" /* 50-59 */
};
unsigned char obsfreqs[] = {
/* 1:L1/E1, 2:L2/B1, 3:L5/E5a/L3, 4:L6/LEX/B3, 5:E5b/B2, 6:E5(a+b), 7:S */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0- 9 */
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, /* 10-19 */
2, 2, 2, 2, 3, 3, 3, 5, 5, 5, /* 20-29 */
4, 4, 4, 4, 4, 4, 4, 6, 6, 6, /* 30-39 */
2, 2, 4, 4, 3, 3, 3, 1, 1, 3, /* 40-49 */
3, 3, 7, 7, 7, 7, 0, 0, 0, 0 /* 50-59 */
};
char codepris[7][MAXFREQ][16] = {
/* code priority table */
/* L1/E1 L2/B1 L5/E5a/L3 L6/LEX/B3 E5b/B2 E5(a+b) S */
{"CPYWMNSL", "PYWCMNDSLX", "IQX", "", "", "", ""}, /* GPS */
{"PC", "PC", "IQX", "", "", "", ""}, /* GLO */
{"CABXZ", "", "IQX", "ABCXZ", "IQX", "IQX", ""}, /* GAL */
{"CSLXZ", "SLX", "IQX", "SLX", "", "", ""}, /* QZS */
{"C", "", "IQX", "", "", "", ""}, /* SBS */
{"IQX", "IQX", "IQX", "IQX", "IQX", "", ""}, /* BDS */
{"", "", "ABCX", "", "", "", "ABCX"} /* IRN */
};
fatalfunc_t *fatalfunc = nullptr; /* fatal callback function */
/* crc tables generated by util/gencrc ---------------------------------------*/
const uint16_t TBL_CR_C16[] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0};
const unsigned int TBL_CR_C24_Q[] = {
0x000000, 0x864CFB, 0x8AD50D, 0x0C99F6, 0x93E6E1, 0x15AA1A, 0x1933EC, 0x9F7F17,
0xA18139, 0x27CDC2, 0x2B5434, 0xAD18CF, 0x3267D8, 0xB42B23, 0xB8B2D5, 0x3EFE2E,
0xC54E89, 0x430272, 0x4F9B84, 0xC9D77F, 0x56A868, 0xD0E493, 0xDC7D65, 0x5A319E,
0x64CFB0, 0xE2834B, 0xEE1ABD, 0x685646, 0xF72951, 0x7165AA, 0x7DFC5C, 0xFBB0A7,
0x0CD1E9, 0x8A9D12, 0x8604E4, 0x00481F, 0x9F3708, 0x197BF3, 0x15E205, 0x93AEFE,
0xAD50D0, 0x2B1C2B, 0x2785DD, 0xA1C926, 0x3EB631, 0xB8FACA, 0xB4633C, 0x322FC7,
0xC99F60, 0x4FD39B, 0x434A6D, 0xC50696, 0x5A7981, 0xDC357A, 0xD0AC8C, 0x56E077,
0x681E59, 0xEE52A2, 0xE2CB54, 0x6487AF, 0xFBF8B8, 0x7DB443, 0x712DB5, 0xF7614E,
0x19A3D2, 0x9FEF29, 0x9376DF, 0x153A24, 0x8A4533, 0x0C09C8, 0x00903E, 0x86DCC5,
0xB822EB, 0x3E6E10, 0x32F7E6, 0xB4BB1D, 0x2BC40A, 0xAD88F1, 0xA11107, 0x275DFC,
0xDCED5B, 0x5AA1A0, 0x563856, 0xD074AD, 0x4F0BBA, 0xC94741, 0xC5DEB7, 0x43924C,
0x7D6C62, 0xFB2099, 0xF7B96F, 0x71F594, 0xEE8A83, 0x68C678, 0x645F8E, 0xE21375,
0x15723B, 0x933EC0, 0x9FA736, 0x19EBCD, 0x8694DA, 0x00D821, 0x0C41D7, 0x8A0D2C,
0xB4F302, 0x32BFF9, 0x3E260F, 0xB86AF4, 0x2715E3, 0xA15918, 0xADC0EE, 0x2B8C15,
0xD03CB2, 0x567049, 0x5AE9BF, 0xDCA544, 0x43DA53, 0xC596A8, 0xC90F5E, 0x4F43A5,
0x71BD8B, 0xF7F170, 0xFB6886, 0x7D247D, 0xE25B6A, 0x641791, 0x688E67, 0xEEC29C,
0x3347A4, 0xB50B5F, 0xB992A9, 0x3FDE52, 0xA0A145, 0x26EDBE, 0x2A7448, 0xAC38B3,
0x92C69D, 0x148A66, 0x181390, 0x9E5F6B, 0x01207C, 0x876C87, 0x8BF571, 0x0DB98A,
0xF6092D, 0x7045D6, 0x7CDC20, 0xFA90DB, 0x65EFCC, 0xE3A337, 0xEF3AC1, 0x69763A,
0x578814, 0xD1C4EF, 0xDD5D19, 0x5B11E2, 0xC46EF5, 0x42220E, 0x4EBBF8, 0xC8F703,
0x3F964D, 0xB9DAB6, 0xB54340, 0x330FBB, 0xAC70AC, 0x2A3C57, 0x26A5A1, 0xA0E95A,
0x9E1774, 0x185B8F, 0x14C279, 0x928E82, 0x0DF195, 0x8BBD6E, 0x872498, 0x016863,
0xFAD8C4, 0x7C943F, 0x700DC9, 0xF64132, 0x693E25, 0xEF72DE, 0xE3EB28, 0x65A7D3,
0x5B59FD, 0xDD1506, 0xD18CF0, 0x57C00B, 0xC8BF1C, 0x4EF3E7, 0x426A11, 0xC426EA,
0x2AE476, 0xACA88D, 0xA0317B, 0x267D80, 0xB90297, 0x3F4E6C, 0x33D79A, 0xB59B61,
0x8B654F, 0x0D29B4, 0x01B042, 0x87FCB9, 0x1883AE, 0x9ECF55, 0x9256A3, 0x141A58,
0xEFAAFF, 0x69E604, 0x657FF2, 0xE33309, 0x7C4C1E, 0xFA00E5, 0xF69913, 0x70D5E8,
0x4E2BC6, 0xC8673D, 0xC4FECB, 0x42B230, 0xDDCD27, 0x5B81DC, 0x57182A, 0xD154D1,
0x26359F, 0xA07964, 0xACE092, 0x2AAC69, 0xB5D37E, 0x339F85, 0x3F0673, 0xB94A88,
0x87B4A6, 0x01F85D, 0x0D61AB, 0x8B2D50, 0x145247, 0x921EBC, 0x9E874A, 0x18CBB1,
0xE37B16, 0x6537ED, 0x69AE1B, 0xEFE2E0, 0x709DF7, 0xF6D10C, 0xFA48FA, 0x7C0401,
0x42FA2F, 0xC4B6D4, 0xC82F22, 0x4E63D9, 0xD11CCE, 0x575035, 0x5BC9C3, 0xDD8538};
extern "C"
{
void dgemm_(char *, char *, int *, int *, int *, double *, double *, int *, double *, int *, double *, double *, int *);
extern void dgetrf_(int *, int *, double *, int *, int *, int *);
extern void dgetri_(int *, double *, int *, int *, double *, int *, int *);
extern void dgetrs_(char *, int *, int *, double *, int *, int *, double *, int *, int *);
}
/* function prototypes -------------------------------------------------------*/
#ifdef IERS_MODEL
extern int gmf_(double *mjd, double *lat, double *lon, double *hgt, double *zd,
double *gmfh, double *gmfw);
#endif
/* fatal error ---------------------------------------------------------------*/
void fatalerr(const char *format, ...)
{
char msg[1024];
va_list ap;
va_start(ap, format);
vsnprintf(msg, sizeof(msg), format, ap);
va_end(ap);
fprintf(stderr, "%s", msg);
exit(-9);
}
/* satellite system+prn/slot number to satellite number ------------------------
* convert satellite system+prn/slot number to satellite number
* args : int sys I satellite system (SYS_GPS,SYS_GLO,...)
* int prn I satellite prn/slot number
* return : satellite number (0:error)
*-----------------------------------------------------------------------------*/
int satno(int sys, int prn)
{
if (prn <= 0)
{
return 0;
}
switch (sys)
{
case SYS_GPS:
if (prn < MINPRNGPS || MAXPRNGPS < prn)
{
return 0;
}
return prn - MINPRNGPS + 1;
case SYS_GLO:
if (prn < MINPRNGLO || MAXPRNGLO < prn)
{
return 0;
}
return NSATGPS + prn - MINPRNGLO + 1;
case SYS_GAL:
if (prn < MINPRNGAL || MAXPRNGAL < prn)
{
return 0;
}
return NSATGPS + NSATGLO + prn - MINPRNGAL + 1;
case SYS_QZS:
if (prn < MINPRNQZS || MAXPRNQZS < prn)
{
return 0;
}
return NSATGPS + NSATGLO + NSATGAL + prn - MINPRNQZS + 1;
case SYS_BDS:
if (MAXPRNBDS < prn)
{
return 0;
}
return NSATGPS + NSATGLO + NSATGAL + NSATQZS + prn - MINPRNBDS + 1;
case SYS_IRN:
if (MAXPRNIRN < prn)
{
return 0;
}
return NSATGPS + NSATGLO + NSATGAL + NSATQZS + NSATBDS + prn - MINPRNIRN + 1;
case SYS_LEO:
if (MAXPRNLEO < prn)
{
return 0;
}
return NSATGPS + NSATGLO + NSATGAL + NSATQZS + NSATBDS + NSATIRN +
prn - MINPRNLEO + 1;
case SYS_SBS:
if (prn < MINPRNSBS || MAXPRNSBS < prn)
{
return 0;
}
return NSATGPS + NSATGLO + NSATGAL + NSATQZS + NSATBDS + NSATIRN + NSATLEO +
prn - MINPRNSBS + 1;
}
return 0;
}
/* satellite number to satellite system ----------------------------------------
* convert satellite number to satellite system
* args : int sat I satellite number (1-MAXSAT)
* int *prn IO satellite prn/slot number (NULL: no output)
* return : satellite system (SYS_GPS,SYS_GLO,...)
*-----------------------------------------------------------------------------*/
int satsys(int sat, int *prn)
{
int sys = SYS_NONE;
if (sat <= 0 || MAXSAT < sat)
{
sat = 0;
}
else if (sat <= NSATGPS)
{
sys = SYS_GPS;
sat += MINPRNGPS - 1;
}
else if ((sat -= NSATGPS) <= NSATGLO)
{
sys = SYS_GLO;
sat += MINPRNGLO - 1;
}
else if ((sat -= NSATGLO) <= NSATGAL)
{
sys = SYS_GAL;
sat += MINPRNGAL - 1;
}
else if ((sat -= NSATGAL) <= NSATQZS)
{
sys = SYS_QZS;
sat += MINPRNQZS - 1;
}
else if ((sat -= NSATQZS) <= NSATBDS)
{
sys = SYS_BDS;
sat += MINPRNBDS - 1;
}
else if ((sat -= NSATBDS) <= NSATIRN)
{
sys = SYS_IRN;
sat += MINPRNIRN - 1;
}
else if ((sat -= NSATIRN) <= NSATLEO)
{
sys = SYS_LEO;
sat += MINPRNLEO - 1;
}
else if ((sat -= NSATLEO) <= NSATSBS)
{
sys = SYS_SBS;
sat += MINPRNSBS - 1;
}
else
{
sat = 0;
}
if (prn)
{
*prn = sat;
}
return sys;
}
/* satellite id to satellite number --------------------------------------------
* convert satellite id to satellite number
* args : char *id I satellite id (nn,Gnn,Rnn,Enn,Jnn,Cnn,Inn or Snn)
* return : satellite number (0: error)
* notes : 120-142 and 193-199 are also recognized as sbas and qzss
*-----------------------------------------------------------------------------*/
int satid2no(const char *id)
{
int sys;
int prn;
char code;
if (sscanf(id, "%d", &prn) == 1)
{
if (MINPRNGPS <= prn && prn <= MAXPRNGPS)
{
sys = SYS_GPS;
}
else if (MINPRNSBS <= prn && prn <= MAXPRNSBS)
{
sys = SYS_SBS;
}
else if (MINPRNQZS <= prn && prn <= MAXPRNQZS)
{
sys = SYS_QZS;
}
else
{
return 0;
}
return satno(sys, prn);
}
if (sscanf(id, "%c%d", &code, &prn) < 2)
{
return 0;
}
switch (code)
{
case 'G':
sys = SYS_GPS;
prn += MINPRNGPS - 1;
break;
case 'R':
sys = SYS_GLO;
prn += MINPRNGLO - 1;
break;
case 'E':
sys = SYS_GAL;
prn += MINPRNGAL - 1;
break;
case 'J':
sys = SYS_QZS;
prn += MINPRNQZS - 1;
break;
case 'C':
sys = SYS_BDS;
prn += MINPRNBDS - 1;
break;
case 'I':
sys = SYS_IRN;
prn += MINPRNIRN - 1;
break;
case 'L':
sys = SYS_LEO;
prn += MINPRNLEO - 1;
break;
case 'S':
sys = SYS_SBS;
prn += 100;
break;
default:
return 0;
}
if (prn <= 0 || prn > MAXSAT)
{
return 0;
}
return satno(sys, prn);
}
/* satellite number to satellite id --------------------------------------------
* convert satellite number to satellite id
* args : int sat I satellite number
* char *id O satellite id (Gnn,Rnn,Enn,Jnn,Cnn,Inn or nnn)
* return : none
*-----------------------------------------------------------------------------*/
std::string satno2id(int sat)
{
std::ostringstream ss;
ss << std::setfill('0'); // all PRNs are 0-filled
std::string prefix;
int width = 2;
int prn;
switch (satsys(sat, &prn))
{
case SYS_GPS:
prefix = "G";
prn = prn - MINPRNGPS + 1;
break;
case SYS_GLO:
prefix = "R";
prn = prn - MINPRNGLO + 1;
break;
case SYS_GAL:
prefix = "E";
prn = prn - MINPRNGAL + 1;
break;
case SYS_QZS:
prefix = "J";
prn = prn - MINPRNQZS + 1;
break;
case SYS_BDS:
prefix = "C";
prn = prn - MINPRNBDS + 1;
break;
case SYS_IRN:
prefix = "I";
prn = prn - MINPRNIRN + 1;
break;
case SYS_LEO:
prefix = "L";
prn = prn - MINPRNLEO + 1;
break;
case SYS_SBS:
width = 3;
break;
}
ss << prefix << std::setw(width) << prn;
return ss.str();
}
/* test excluded satellite -----------------------------------------------------
* test excluded satellite
* args : int sat I satellite number
* int svh I sv health flag
* prcopt_t *opt I processing options (NULL: not used)
* return : status (1:excluded,0:not excluded)
*-----------------------------------------------------------------------------*/
int satexclude(int sat, int svh, const prcopt_t *opt)
{
int sys = satsys(sat, nullptr);
if (svh < 0)
{
trace(3, "ephemeris unavailable: sat=%3d svh=%02X\n", sat, svh);
return 1; /* ephemeris unavailable */
}
if (opt)
{
if (opt->exsats[sat - 1] == 1)
{
trace(3, "excluded satellite: sat=%3d svh=%02X\n", sat, svh);
return 1; /* excluded satellite */
}
if (opt->exsats[sat - 1] == 2)
{
return 0; /* included satellite */
}
if (!(sys & opt->navsys))
{
trace(3, "unselected sat sys: sat=%3d svh=%02X\n", sat, svh);
return 1; /* unselected sat sys */
}
}
if (sys == SYS_QZS)
{
svh &= 0xFE; /* mask QZSS LEX health */
}
if (svh)
{
trace(3, "unhealthy satellite: sat=%3d svh=%02X\n", sat, svh);
return 1;
}
return 0;
}
/* test SNR mask ---------------------------------------------------------------
* test SNR mask
* args : int base I rover or base-station (0:rover,1:base station)
* int freq I frequency (0:L1,1:L2,2:L3,...)
* double el I elevation angle (rad)
* double snr I C/N0 (dBHz)
* snrmask_t *mask I SNR mask
* return : status (1:masked,0:unmasked)
*-----------------------------------------------------------------------------*/
int testsnr(int base, int freq, double el, double snr,
const snrmask_t *mask)
{
double minsnr;
double a;
int i;
if (!mask->ena[base] || freq < 0 || freq >= NFREQ)
{
return 0;
}
a = (el * R2D + 5.0) / 10.0;
i = static_cast<int>(floor(a));
a -= i;
if (i < 1)
{
minsnr = mask->mask[freq][0];
}
else if (i > 8)
{
minsnr = mask->mask[freq][8];
}
else
{
minsnr = (1.0 - a) * mask->mask[freq][i - 1] + a * mask->mask[freq][i];
}
return snr < minsnr;
}
/* obs type string to obs code -------------------------------------------------
* convert obs code type string to obs code
* args : char *str I obs code string ("1C","1P","1Y",...)
* int *freq IO frequency (1:L1,2:L2,3:L5,4:L6,5:L7,6:L8,0:err)
* (NULL: no output)
* return : obs code (CODE_???)
* notes : obs codes are based on reference [6] and qzss extension
*-----------------------------------------------------------------------------*/
unsigned char obs2code(const char *obs, int *freq)
{
int i;
if (freq)
{
*freq = 0;
}
for (i = 1; *obscodes[i]; i++)
{
if (strcmp(obscodes[i], obs) != 0)
{
continue;
}
if (freq)
{
*freq = obsfreqs[i];
}
return static_cast<unsigned char>(i);
}
return CODE_NONE;
}
/* obs code to obs code string -------------------------------------------------
* convert obs code to obs code string
* args : unsigned char code I obs code (CODE_???)
* int *freq IO frequency (NULL: no output)
* (1:L1/E1, 2:L2/B1, 3:L5/E5a/L3, 4:L6/LEX/B3,
5:E5b/B2, 6:E5(a+b), 7:S)
* return : obs code string ("1C","1P","1P",...)
* notes : obs codes are based on reference [6] and qzss extension
*-----------------------------------------------------------------------------*/
char *code2obs(unsigned char code, int *freq)
{
if (freq)
{
*freq = 0;
}
if (code <= CODE_NONE || MAXCODE < code)
{
return const_cast<char *>("");
}
if (freq)
{
*freq = obsfreqs[code];
}
return obscodes[code];
}
/* set code priority -----------------------------------------------------------
* set code priority for multiple codes in a frequency
* args : int sys I system (or of SYS_???)
* int freq I frequency (1:L1,2:L2,3:L5,4:L6,5:L7,6:L8,7:L9)
* char *pri I priority of codes (series of code characters)
* (higher priority precedes lower)
* return : none
*-----------------------------------------------------------------------------*/
void setcodepri(int sys, int freq, const char *pri)
{
trace(3, "setcodepri : sys=%d freq=%d pri=%s\n", sys, freq, pri);
if (freq <= 0 || MAXFREQ < freq)
{
return;
}
if (strlen(pri) < 17)
{
if (sys & SYS_GPS)
{
std::strncpy(codepris[0][freq - 1], pri, 16);
codepris[0][freq - 1][15] = '\0';
}
if (sys & SYS_GLO)
{
std::strncpy(codepris[1][freq - 1], pri, 16);
codepris[1][freq - 1][15] = '\0';
}
if (sys & SYS_GAL)
{
std::strncpy(codepris[2][freq - 1], pri, 16);
codepris[2][freq - 1][15] = '\0';
}
if (sys & SYS_QZS)
{
std::strncpy(codepris[3][freq - 1], pri, 16);
codepris[3][freq - 1][15] = '\0';
}
if (sys & SYS_SBS)
{
std::strncpy(codepris[4][freq - 1], pri, 16);
codepris[4][freq - 1][15] = '\0';
}
if (sys & SYS_BDS)
{
std::strncpy(codepris[5][freq - 1], pri, 16);
codepris[5][freq - 1][15] = '\0';
}
if (sys & SYS_IRN)
{
std::strncpy(codepris[6][freq - 1], pri, 16);
codepris[6][freq - 1][15] = '\0';
}
}
else
{
trace(1, "pri array is too long");
}
}
/* get code priority -----------------------------------------------------------
* get code priority for multiple codes in a frequency
* args : int sys I system (SYS_???)
* unsigned char code I obs code (CODE_???)
* char *opt I code options (NULL:no option)
* return : priority (15:highest-1:lowest,0:error)
*-----------------------------------------------------------------------------*/
int getcodepri(int sys, unsigned char code, const char *opt)
{
const char *p;
const char *optstr;
char *obs;
char str[8] = "";
int i;
int j;
switch (sys)
{
case SYS_GPS:
i = 0;
optstr = "-GL%2s";
break;
case SYS_GLO:
i = 1;
optstr = "-RL%2s";
break;
case SYS_GAL:
i = 2;
optstr = "-EL%2s";
break;
case SYS_QZS:
i = 3;
optstr = "-JL%2s";
break;
case SYS_SBS:
i = 4;
optstr = "-SL%2s";
break;
case SYS_BDS:
i = 5;
optstr = "-CL%2s";
break;
case SYS_IRN:
i = 6;
optstr = "-IL%2s";
break;
default:
return 0;
}
obs = code2obs(code, &j);
/* parse code options */
for (p = opt; p && (p = strchr(p, '-')); p++)
{
if (sscanf(p, optstr, str) < 1 || str[0] != obs[0])
{
continue;
}
return str[1] == obs[1] ? 15 : 0;
}
/* search code priority */
return (p = strchr(codepris[i][j - 1], obs[1])) ? 14 - static_cast<int>(p - codepris[i][j - 1]) : 0;
}
/* extract unsigned/signed bits ------------------------------------------------
* extract unsigned/signed bits from byte data
* args : unsigned char *buff I byte data
* int pos I bit position from start of data (bits)
* int len I bit length (bits) (len <= 32)
* return : extracted unsigned/signed bits
*-----------------------------------------------------------------------------*/
unsigned int getbitu(const unsigned char *buff, int pos, int len)
{
unsigned int bits = 0;
int i;
for (i = pos; i < pos + len; i++)
{
bits = (bits << 1) + ((buff[i / 8] >> (7 - i % 8)) & 1U);
}
return bits;
}
int getbits(const unsigned char *buff, int pos, int len)
{
unsigned int bits = getbitu(buff, pos, len);
if (len <= 0 || 32 <= len || !(bits & (1U << (len - 1))))
{
return static_cast<int>(bits);
}
return static_cast<int>(bits | (~0U << len)); /* extend sign */
}
/* set unsigned/signed bits ----------------------------------------------------
* set unsigned/signed bits to byte data
* args : unsigned char *buff IO byte data
* int pos I bit position from start of data (bits)
* int len I bit length (bits) (len <= 32)
* (unsigned) int I unsigned/signed data
* return : none
*-----------------------------------------------------------------------------*/
void setbitu(unsigned char *buff, int pos, int len, unsigned int data)
{
unsigned int mask = 1U << (len - 1);
int i;
if (len <= 0 || 32 < len)
{
return;
}
for (i = pos; i < pos + len; i++, mask >>= 1)
{
if (data & mask)
{
buff[i / 8] |= 1U << (7 - i % 8);
}
else
{
buff[i / 8] &= ~(1U << (7 - i % 8));
}
}
}
void setbits(unsigned char *buff, int pos, int len, int data)
{
if (data < 0)
{
data |= 1 << (len - 1);
}
else
{
data &= ~(1 << (len - 1)); /* set sign bit */
}
setbitu(buff, pos, len, static_cast<unsigned int>(data));
}
/* crc-32 parity ---------------------------------------------------------------
* compute crc-32 parity for novatel raw
* args : unsigned char *buff I data
* int len I data length (bytes)
* return : crc-32 parity
* notes : see NovAtel OEMV firmware manual 1.7 32-bit CRC
*-----------------------------------------------------------------------------*/
unsigned int rtk_crc32(const unsigned char *buff, int len)
{
unsigned int crc = 0;
int i;
int j;
trace(4, "rtk_crc32: len=%d\n", len);
for (i = 0; i < len; i++)
{
crc ^= buff[i];
for (j = 0; j < 8; j++)
{
if (crc & 1)
{
crc = (crc >> 1) ^ POLYCRC32;
}
else
{
crc >>= 1;
}
}
}
return crc;
}
/* crc-24q parity --------------------------------------------------------------
* compute crc-24q parity for sbas, rtcm3
* args : unsigned char *buff I data
* int len I data length (bytes)
* return : crc-24Q parity
* notes : see reference [2] A.4.3.3 Parity
*-----------------------------------------------------------------------------*/
unsigned int rtk_crc24q(const unsigned char *buff, int len)
{
unsigned int crc = 0;
int i;
trace(4, "rtk_crc24q: len=%d\n", len);
for (i = 0; i < len; i++)
{
crc = ((crc << 8) & 0xFFFFFF) ^ TBL_CR_C24_Q[(crc >> 16) ^ buff[i]];
}
return crc;
}
/* crc-16 parity ---------------------------------------------------------------
* compute crc-16 parity for binex, nvs
* args : unsigned char *buff I data
* int len I data length (bytes)
* return : crc-16 parity
* notes : see reference [10] A.3.
*-----------------------------------------------------------------------------*/
uint16_t rtk_crc16(const unsigned char *buff, int len)
{
uint16_t crc = 0;
int i;
trace(4, "rtk_crc16: len=%d\n", len);
for (i = 0; i < len; i++)
{
crc = (crc << 8) ^ TBL_CR_C16[((crc >> 8) ^ buff[i]) & 0xFF];
}
return crc;
}
/* decode navigation data word -------------------------------------------------
* check party and decode navigation data word
* args : unsigned int word I navigation data word (2+30bit)
* (previous word D29*-30* + current word D1-30)
* unsigned char *data O decoded navigation data without parity
* (8bitx3)
* return : status (1:ok,0:parity error)
* notes : see reference [1] 20.3.5.2 user parity algorithm
*-----------------------------------------------------------------------------*/
int decode_word(unsigned int word, unsigned char *data)
{
const unsigned int hamming[] = {
0xBB1F3480, 0x5D8F9A40, 0xAEC7CD00, 0x5763E680, 0x6BB1F340, 0x8B7A89C0};
unsigned int parity = 0;
unsigned int w;
int i;
trace(5, "decodeword: word=%08x\n", word);
if (word & 0x40000000)
{
word ^= 0x3FFFFFC0;
}
for (i = 0; i < 6; i++)
{
parity <<= 1;
for (w = (word & hamming[i]) >> 6; w; w >>= 1)
{
parity ^= w & 1;
}
}
if (parity != (word & 0x3F))
{
return 0;
}
for (i = 0; i < 3; i++)
{
data[i] = static_cast<unsigned char>(word >> (22 - i * 8));
}
return 1;
}
/* new matrix ------------------------------------------------------------------
* allocate memory of matrix
* args : int n,m I number of rows and columns of matrix
* return : matrix pointer (if n<=0 or m<=0, return NULL)
*-----------------------------------------------------------------------------*/
double *mat(int n, int m)
{
double *p;
if (n <= 0 || m <= 0)
{
return nullptr;
}
if (!(p = static_cast<double *>(malloc(sizeof(double) * n * m))))
{
fatalerr("matrix memory allocation error: n=%d,m=%d\n", n, m);
}
return p;
}
/* new integer matrix ----------------------------------------------------------
* allocate memory of integer matrix
* args : int n,m I number of rows and columns of matrix
* return : matrix pointer (if n <= 0 or m <= 0, return NULL)
*-----------------------------------------------------------------------------*/
int *imat(int n, int m)
{
int *p;
if (n <= 0 || m <= 0)
{
return nullptr;
}
if (!(p = static_cast<int *>(malloc(sizeof(int) * n * m))))
{
fatalerr("integer matrix memory allocation error: n=%d,m=%d\n", n, m);
}
return p;
}
/* zero matrix -----------------------------------------------------------------
* generate new zero matrix
* args : int n,m I number of rows and columns of matrix
* return : matrix pointer (if n <= 0 or m <= 0, return NULL)
*-----------------------------------------------------------------------------*/
double *zeros(int n, int m)
{
double *p;
#if NOCALLOC
if ((p = mat(n, m)))
for (n = n * m - 1; n >= 0; n--) p[n] = 0.0;
#else
if (n <= 0 || m <= 0)
{
return nullptr;
}
if (!(p = static_cast<double *>(calloc(sizeof(double), n * m))))
{
fatalerr("matrix memory allocation error: n=%d,m=%d\n", n, m);
}
#endif
return p;
}
/* identity matrix -------------------------------------------------------------
* generate new identity matrix
* args : int n I number of rows and columns of matrix
* return : matrix pointer (if n <= 0, return NULL)
*-----------------------------------------------------------------------------*/
double *eye(int n)
{
double *p;
int i;
if ((p = zeros(n, n)))
{
for (i = 0; i < n; i++)
{
p[i + i * n] = 1.0;
}
}
return p;
}
/* inner product ---------------------------------------------------------------
* inner product of vectors
* args : double *a,*b I vector a,b (n x 1)
* int n I size of vector a,b
* return : a'*b
*-----------------------------------------------------------------------------*/
double dot(const double *a, const double *b, int n)
{
double c = 0.0;
while (--n >= 0)
{
c += a[n] * b[n];
}
return c;
}
/* euclid norm -----------------------------------------------------------------
* euclid norm of vector
* args : double *a I vector a (n x 1)
* int n I size of vector a
* return : || a ||
*-----------------------------------------------------------------------------*/
double norm_rtk(const double *a, int n)
{
return std::sqrt(dot(a, a, n));
}
/* outer product of 3d vectors -------------------------------------------------
* outer product of 3d vectors
* args : double *a,*b I vector a,b (3 x 1)
* double *c O outer product (a x b) (3 x 1)
* return : none
*-----------------------------------------------------------------------------*/
void cross3(const double *a, const double *b, double *c)
{
c[0] = a[1] * b[2] - a[2] * b[1];
c[1] = a[2] * b[0] - a[0] * b[2];
c[2] = a[0] * b[1] - a[1] * b[0];
}
/* normalize 3d vector ---------------------------------------------------------
* normalize 3d vector
* args : double *a I vector a (3 x 1)
* double *b O normlized vector (3 x 1) || b || = 1
* return : status (1:ok,0:error)
*-----------------------------------------------------------------------------*/
int normv3(const double *a, double *b)
{
double r;
if ((r = norm_rtk(a, 3)) <= 0.0)
{
return 0;
}
b[0] = a[0] / r;
b[1] = a[1] / r;
b[2] = a[2] / r;
return 1;
}
/* copy matrix -----------------------------------------------------------------
* copy matrix
* args : double *A O destination matrix A (n x m)
* double *B I source matrix B (n x m)
* int n,m I number of rows and columns of matrix
* return : none
*-----------------------------------------------------------------------------*/
void matcpy(double *A, const double *B, int n, int m)
{
memcpy(A, B, sizeof(double) * n * m);
}
/* matrix routines -----------------------------------------------------------*/
/* multiply matrix (wrapper of blas dgemm) -------------------------------------
* multiply matrix by matrix (C=alpha*A*B+beta*C)
* args : char *tr I transpose flags ("N":normal,"T":transpose)
* int n,k,m I size of (transposed) matrix A,B
* double alpha I alpha
* double *A,*B I (transposed) matrix A (n x m), B (m x k)
* double beta I beta
* double *C IO matrix C (n x k)
* return : none
*-----------------------------------------------------------------------------*/
void matmul(const char *tr, int n, int k, int m, double alpha,
const double *A, const double *B, double beta, double *C)
{
int lda = tr[0] == 'T' ? m : n;
int ldb = tr[1] == 'T' ? k : m;
dgemm_(const_cast<char *>(tr), const_cast<char *>(tr) + 1, &n, &k, &m, &alpha, const_cast<double *>(A), &lda, const_cast<double *>(B),
&ldb, &beta, C, &n);
}
/* inverse of matrix -----------------------------------------------------------
* inverse of matrix (A=A^-1)
* args : double *A IO matrix (n x n)
* int n I size of matrix A
* return : status (0:ok,0>:error)
*-----------------------------------------------------------------------------*/
int matinv(double *A, int n)
{
double *work;
int info;
int lwork = n * 16;
int *ipiv = imat(n, 1);
work = mat(lwork, 1);
dgetrf_(&n, &n, A, &n, ipiv, &info);
if (!info)
{
dgetri_(&n, A, &n, ipiv, work, &lwork, &info);
}
free(ipiv);
free(work);
return info;
}
/* solve linear equation -------------------------------------------------------
* solve linear equation (X=A\Y or X=A'\Y)
* args : char *tr I transpose flag ("N":normal,"T":transpose)
* double *A I input matrix A (n x n)
* double *Y I input matrix Y (n x m)
* int n,m I size of matrix A,Y
* double *X O X=A\Y or X=A'\Y (n x m)
* return : status (0:ok,0>:error)
* notes : matirix stored by column-major order (fortran convention)
* X can be same as Y
*-----------------------------------------------------------------------------*/
int solve(const char *tr, const double *A, const double *Y, int n,
int m, double *X)
{
double *B = mat(n, n);
int info;
int *ipiv = imat(n, 1);
matcpy(B, A, n, n);
matcpy(X, Y, n, m);
dgetrf_(&n, &n, B, &n, ipiv, &info);
if (!info)
{
dgetrs_(const_cast<char *>(tr), &n, &m, B, &n, ipiv, X, &n, &info);
}
free(ipiv);
free(B);
return info;
}
/* end of matrix routines ----------------------------------------------------*/
/* least square estimation -----------------------------------------------------
* least square estimation by solving normal equation (x=(A*A')^-1*A*y)
* args : double *A I transpose of (weighted) design matrix (n x m)
* double *y I (weighted) measurements (m x 1)
* int n,m I number of parameters and measurements (n <= m)
* double *x O estmated parameters (n x 1)
* double *Q O esimated parameters covariance matrix (n x n)
* return : status (0:ok,0>:error)
* notes : for weighted least square, replace A and y by A*w and w*y (w=W^(1/2))
* matirix stored by column-major order (fortran convention)
*-----------------------------------------------------------------------------*/
int lsq(const double *A, const double *y, int n, int m, double *x,
double *Q)
{
double *Ay;
int info;
if (m < n)
{
return -1;
}
Ay = mat(n, 1);
matmul("NN", n, 1, m, 1.0, A, y, 0.0, Ay); /* Ay=A*y */
matmul("NT", n, n, m, 1.0, A, A, 0.0, Q); /* Q=A*A' */
if (!(info = matinv(Q, n)))
{
matmul("NN", n, 1, n, 1.0, Q, Ay, 0.0, x); /* x=Q^-1*Ay */
}
free(Ay);
return info;
}
/* kalman filter ---------------------------------------------------------------
* kalman filter state update as follows:
*
* K=P*H*(H'*P*H+R)^-1, xp=x+K*v, Pp=(I-K*H')*P
*
* args : double *x I states vector (n x 1)
* double *P I covariance matrix of states (n x n)
* double *H I transpose of design matrix (n x m)
* double *v I innovation (measurement - model) (m x 1)
* double *R I covariance matrix of measurement error (m x m)
* int n,m I number of states and measurements
* double *xp O states vector after update (n x 1)
* double *Pp O covariance matrix of states after update (n x n)
* return : status (0:ok,<0:error)
* notes : matirix stored by column-major order (fortran convention)
* if state x[i]==0.0, not updates state x[i]/P[i+i*n]
*-----------------------------------------------------------------------------*/
int filter_(const double *x, const double *P, const double *H,
const double *v, const double *R, int n, int m,
double *xp, double *Pp)
{
double *F = mat(n, m);
double *Q = mat(m, m);
double *K = mat(n, m);
double *I = eye(n);
int info;
matcpy(Q, R, m, m);
matcpy(xp, x, n, 1);
matmul("NN", n, m, n, 1.0, P, H, 0.0, F); /* Q=H'*P*H+R */
matmul("TN", m, m, n, 1.0, H, F, 1.0, Q);
if (!(info = matinv(Q, m)))
{
matmul("NN", n, m, m, 1.0, F, Q, 0.0, K); /* K=P*H*Q^-1 */
matmul("NN", n, 1, m, 1.0, K, v, 1.0, xp); /* xp=x+K*v */
matmul("NT", n, n, m, -1.0, K, H, 1.0, I); /* Pp=(I-K*H')*P */
matmul("NN", n, n, n, 1.0, I, P, 0.0, Pp);
}
free(F);
free(Q);
free(K);
free(I);
return info;
}
int filter(double *x, double *P, const double *H, const double *v,
const double *R, int n, int m)
{
double *x_;
double *xp_;
double *P_;
double *Pp_;
double *H_;
int i;
int j;
int k;
int info;
int *ix;
ix = imat(n, 1);
for (i = k = 0; i < n; i++)
{
if (x[i] != 0.0 && P[i + i * n] > 0.0)
{
ix[k++] = i;
}
}
x_ = mat(k, 1);
xp_ = mat(k, 1);
P_ = mat(k, k);
Pp_ = mat(k, k);
for (i = 0; i < k; i++)
{
for (j = 0; j < k; j++)
{
Pp_[i * k + j] = 0.0;
}
}
H_ = mat(k, m);
for (i = 0; i < k; i++)
{
x_[i] = x[ix[i]];
for (j = 0; j < k; j++)
{
P_[i + j * k] = P[ix[i] + ix[j] * n];
}
for (j = 0; j < m; j++)
{
H_[i + j * k] = H[ix[i] + j * n];
}
}
info = filter_(x_, P_, H_, v, R, k, m, xp_, Pp_);
for (i = 0; i < k; i++)
{
x[ix[i]] = xp_[i];
for (j = 0; j < k; j++)
{
P[ix[i] + ix[j] * n] = Pp_[i + j * k];
}
}
free(ix);
free(x_);
free(xp_);
free(P_);
free(Pp_);
free(H_);
return info;
}
/* smoother --------------------------------------------------------------------
* combine forward and backward filters by fixed-interval smoother as follows:
*
* xs=Qs*(Qf^-1*xf+Qb^-1*xb), Qs=(Qf^-1+Qb^-1)^-1)
*
* args : double *xf I forward solutions (n x 1)
* args : double *Qf I forward solutions covariance matrix (n x n)
* double *xb I backward solutions (n x 1)
* double *Qb I backward solutions covariance matrix (n x n)
* int n I number of solutions
* double *xs O smoothed solutions (n x 1)
* double *Qs O smoothed solutions covariance matrix (n x n)
* return : status (0:ok,0>:error)
* notes : see reference [4] 5.2
* matirix stored by column-major order (fortran convention)
*-----------------------------------------------------------------------------*/
int smoother(const double *xf, const double *Qf, const double *xb,
const double *Qb, int n, double *xs, double *Qs)
{
double *invQf = mat(n, n);
double *invQb = mat(n, n);
double *xx = mat(n, 1);
int i;
int info = -1;
matcpy(invQf, Qf, n, n);
matcpy(invQb, Qb, n, n);
if (!matinv(invQf, n) && !matinv(invQb, n))
{
for (i = 0; i < n * n; i++)
{
Qs[i] = invQf[i] + invQb[i];
}
if (!(info = matinv(Qs, n)))
{
matmul("NN", n, 1, n, 1.0, invQf, xf, 0.0, xx);
matmul("NN", n, 1, n, 1.0, invQb, xb, 1.0, xx);
matmul("NN", n, 1, n, 1.0, Qs, xx, 0.0, xs);
}
}
free(invQf);
free(invQb);
free(xx);
return info;
}
/* print matrix ----------------------------------------------------------------
* print matrix to stdout
* args : double *A I matrix A (n x m)
* int n,m I number of rows and columns of A
* int p,q I total columns, columns under decimal point
* (FILE *fp I output file pointer)
* return : none
* notes : matirix stored by column-major order (fortran convention)
*-----------------------------------------------------------------------------*/
void matfprint(const double A[], int n, int m, int p, int q, FILE *fp)
{
int i;
int j;
for (i = 0; i < n; i++)
{
for (j = 0; j < m; j++)
{
fprintf(fp, " %*.*f", p, q, A[i + j * n]);
}
fprintf(fp, "\n");
}
}
void matsprint(const double A[], int n, int m, int p, int q, std::string &buffer)
{
int i;
int j;
buffer += '\n';
for (i = 0; i < n; i++)
{
for (j = 0; j < m; j++)
{
char buf_[256];
std::snprintf(buf_, sizeof(buf_), " %*.*f", p, q, A[i + j * n]);
std::string s(buf_);
buffer += s;
}
buffer += '\n';
}
}
void matprint(const double A[], int n, int m, int p, int q)
{
matfprint(A, n, m, p, q, stdout);
}
/* string to number ------------------------------------------------------------
* convert substring in string to number
* args : char *s I string ("... nnn.nnn ...")
* int i,n I substring position and width
* return : converted number (0.0:error)
*-----------------------------------------------------------------------------*/
double str2num(const char *s, int i, int n)
{
double value;
char str[256];
char *p = str;
if (i < 0 || static_cast<int>(strlen(s)) < i || static_cast<int>(sizeof(str)) - 1 < n)
{
return 0.0;
}
for (s += i; *s && --n >= 0; s++)
{
*p++ = *s == 'd' || *s == 'D' ? 'E' : *s;
}
*p = '\0';
return sscanf(str, "%lf", &value) == 1 ? value : 0.0;
}
/* string to time --------------------------------------------------------------
* convert substring in string to gtime_t struct
* args : char *s I string ("... yyyy mm dd hh mm ss ...")
* int i,n I substring position and width
* gtime_t *t O gtime_t struct
* return : status (0:ok,0>:error)
*-----------------------------------------------------------------------------*/
int str2time(const char *s, int i, int n, gtime_t *t)
{
double ep[6];
char str[256];
char *p = str;
if (i < 0 || static_cast<int>(strlen(s)) < i || static_cast<int>(sizeof(str)) - 1 < i)
{
return -1;
}
for (s += i; *s && --n >= 0;)
{
*p++ = *s++;
}
*p = '\0';
if (sscanf(str, "%lf %lf %lf %lf %lf %lf", ep, ep + 1, ep + 2, ep + 3, ep + 4, ep + 5) < 6)
{
return -1;
}
if (ep[0] < 100.0)
{
ep[0] += ep[0] < 80.0 ? 2000.0 : 1900.0;
}
*t = epoch2time(ep);
return 0;
}
/* convert calendar day/time to time -------------------------------------------
* convert calendar day/time to gtime_t struct
* args : double *ep I day/time {year,month,day,hour,min,sec}
* return : gtime_t struct
* notes : proper in 1970-2037 or 1970-2099 (64bit time_t)
*-----------------------------------------------------------------------------*/
gtime_t epoch2time(const double *ep)
{
const int doy[] = {1, 32, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335};
gtime_t time = {0, 0};
int days;
int sec;
int year = static_cast<int>(ep[0]);
int mon = static_cast<int>(ep[1]);
int day = static_cast<int>(ep[2]);
if (year < 1970 || 2099 < year || mon < 1 || 12 < mon)
{
return time;
}
/* leap year if year%4==0 in 1901-2099 */
days = (year - 1970) * 365 + (year - 1969) / 4 + doy[mon - 1] + day - 2 + (year % 4 == 0 && mon >= 3 ? 1 : 0);
sec = static_cast<int>(floor(ep[5]));
time.time = static_cast<time_t>(days) * 86400 + static_cast<int>(ep[3]) * 3600 + static_cast<int>(ep[4]) * 60 + sec;
time.sec = ep[5] - sec;
return time;
}
/* time to calendar day/time ---------------------------------------------------
* convert gtime_t struct to calendar day/time
* args : gtime_t t I gtime_t struct
* double *ep O day/time {year,month,day,hour,min,sec}
* return : none
* notes : proper in 1970-2037 or 1970-2099 (64bit time_t)
*-----------------------------------------------------------------------------*/
void time2epoch(gtime_t t, double *ep)
{
const int mday[] = {/* # of days in a month */
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int days;
int sec;
int mon;
int day;
/* leap year if year%4==0 in 1901-2099 */
days = static_cast<int>(t.time / 86400);
sec = static_cast<int>(t.time - static_cast<time_t>(days) * 86400);
for (day = days % 1461, mon = 0; mon < 48; mon++)
{
if (day >= mday[mon])
{
day -= mday[mon];
}
else
{
break;
}
}
ep[0] = 1970 + static_cast<int>(days / 1461) * 4 + static_cast<int>(mon / 12);
ep[1] = mon % 12 + 1;
ep[2] = day + 1;
ep[3] = static_cast<int>(sec / 3600);
ep[4] = static_cast<int>(sec % 3600 / 60);
ep[5] = sec % 60 + t.sec;
}
/* gps time to time ------------------------------------------------------------
* convert week and tow in gps time to gtime_t struct
* args : int week I week number in gps time
* double sec I time of week in gps time (s)
* return : gtime_t struct
*-----------------------------------------------------------------------------*/
gtime_t gpst2time(int week, double sec)
{
gtime_t t = epoch2time(GPST0);
if (sec < -1e9 || 1e9 < sec)
{
sec = 0.0;
}
t.time += static_cast<time_t>(86400) * 7 * week + static_cast<int>(sec);
t.sec = sec - static_cast<int>(sec);
return t;
}
/* time to gps time ------------------------------------------------------------
* convert gtime_t struct to week and tow in gps time
* args : gtime_t t I gtime_t struct
* int *week IO week number in gps time (NULL: no output)
* return : time of week in gps time (s)
*-----------------------------------------------------------------------------*/
double time2gpst(gtime_t t, int *week)
{
gtime_t t0 = epoch2time(GPST0);
time_t sec = t.time - t0.time;
int w = static_cast<int>(sec / 604800);
if (week)
{
*week = w;
}
return (static_cast<double>(sec - static_cast<time_t>(w * 604800)) + t.sec);
}
/* galileo system time to time -------------------------------------------------
* convert week and tow in galileo system time (gst) to gtime_t struct
* args : int week I week number in gst
* double sec I time of week in gst (s)
* return : gtime_t struct
*-----------------------------------------------------------------------------*/
gtime_t gst2time(int week, double sec)
{
gtime_t t = epoch2time(GST0);
if (sec < -1e9 || 1e9 < sec)
{
sec = 0.0;
}
t.time += static_cast<time_t>(86400) * 7 * week + static_cast<int>(sec);
t.sec = sec - static_cast<int>(sec);
return t;
}
/* time to galileo system time -------------------------------------------------
* convert gtime_t struct to week and tow in galileo system time (gst)
* args : gtime_t t I gtime_t struct
* int *week IO week number in gst (NULL: no output)
* return : time of week in gst (s)
*-----------------------------------------------------------------------------*/
double time2gst(gtime_t t, int *week)
{
gtime_t t0 = epoch2time(GST0);
time_t sec = t.time - t0.time;
int w = static_cast<int>(sec / (86400 * 7));
if (week)
{
*week = w;
}
return (sec - static_cast<double>(w) * 86400 * 7) + t.sec;
}
/* beidou time (bdt) to time ---------------------------------------------------
* convert week and tow in beidou time (bdt) to gtime_t struct
* args : int week I week number in bdt
* double sec I time of week in bdt (s)
* return : gtime_t struct
*-----------------------------------------------------------------------------*/
gtime_t bdt2time(int week, double sec)
{
gtime_t t = epoch2time(BDT0);
if (sec < -1e9 || 1e9 < sec)
{
sec = 0.0;
}
t.time += static_cast<time_t>(86400) * 7 * week + static_cast<int>(sec);
t.sec = sec - static_cast<int>(sec);
return t;
}
/* time to beidouo time (bdt) --------------------------------------------------
* convert gtime_t struct to week and tow in beidou time (bdt)
* args : gtime_t t I gtime_t struct
* int *week IO week number in bdt (NULL: no output)
* return : time of week in bdt (s)
*-----------------------------------------------------------------------------*/
double time2bdt(gtime_t t, int *week)
{
gtime_t t0 = epoch2time(BDT0);
time_t sec = t.time - t0.time;
int w = static_cast<int>(sec / (86400 * 7));
if (week)
{
*week = w;
}
return (sec - static_cast<double>(w) * 86400 * 7) + t.sec;
}
/* add time --------------------------------------------------------------------
* add time to gtime_t struct
* args : gtime_t t I gtime_t struct
* double sec I time to add (s)
* return : gtime_t struct (t+sec)
*-----------------------------------------------------------------------------*/
gtime_t timeadd(gtime_t t, double sec)
{
double tt;
t.sec += sec;
tt = floor(t.sec);
t.time += static_cast<int>(tt);
t.sec -= tt;
return t;
}
/* time difference -------------------------------------------------------------
* difference between gtime_t structs
* args : gtime_t t1,t2 I gtime_t structs
* return : time difference (t1-t2) (s)
*-----------------------------------------------------------------------------*/
double timediff(gtime_t t1, gtime_t t2)
{
return difftime(t1.time, t2.time) + t1.sec - t2.sec;
}
/* time difference accounting with week crossovers -----------------------------
* difference between gtime_t structs
* args : gtime_t t1,t2 I gtime_t structs
* return : time difference (t1-t2) (s)
*-----------------------------------------------------------------------------*/
double timediffweekcrossover(gtime_t t1, gtime_t t2)
{
// as stated in IS-GPS-200M table 20-IV footnote among other parts of the ICD,
// if tk=(t - toe) > 302400s then tk = tk - s
// if tk=(t - toe) < -302400s then tk = tk + 604800s
double tk = difftime(t1.time, t2.time) + t1.sec - t2.sec;
if (tk > 302400.0)
{
tk -= 604800.0;
}
else if (tk < -302400.0)
{
tk += 604800.0;
}
return tk;
}
/* get current time in utc -----------------------------------------------------
* get current time in utc
* args : none
* return : current time in utc
*-----------------------------------------------------------------------------*/
gtime_t timeget()
{
gtime_t time;
double ep[6] = {};
struct timeval tv
{
};
struct tm *tt;
if (!gettimeofday(&tv, nullptr) && (tt = gmtime(&tv.tv_sec)))
{
ep[0] = tt->tm_year + 1900;
ep[1] = tt->tm_mon + 1;
ep[2] = tt->tm_mday;
ep[3] = tt->tm_hour;
ep[4] = tt->tm_min;
ep[5] = tt->tm_sec + tv.tv_usec * 1e-6;
}
time = epoch2time(ep);
#ifdef CPUTIME_IN_GPST /* cputime operated in gpst */
time = gpst2utc(time);
#endif
return time;
}
/* set current time in utc -----------------------------------------------------
* set current time in utc
* args : gtime_t I current time in utc
* return : none
* notes : just set time offset between cpu time and current time
* the time offset is reflected to only timeget()
* not reentrant
*-----------------------------------------------------------------------------*/
void timeset(gtime_t t)
{
timeoffset_ += timediff(t, timeget());
}
/* read leap seconds table by text -------------------------------------------*/
int read_leaps_text(FILE *fp)
{
char buff[256];
char *p;
int i;
int n = 0;
int ep[6];
int ls;
rewind(fp);
while (fgets(buff, sizeof(buff), fp) && n < MAXLEAPS)
{
if ((p = strchr(buff, '#')))
{
*p = '\0';
}
if (sscanf(buff, "%d %d %d %d %d %d %d", ep, ep + 1, ep + 2, ep + 3, ep + 4, ep + 5,
&ls) < 7)
{
continue;
}
for (i = 0; i < 6; i++)
{
leaps[n][i] = ep[i];
}
leaps[n++][6] = ls;
}
return n;
}
/* read leap seconds table by usno -------------------------------------------*/
int read_leaps_usno(FILE *fp)
{
static const char *months[] = {
"JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT", "NOV", "DEC"};
double jd;
double tai_utc;
char buff[256];
char month[32];
char ls[MAXLEAPS][7] = {};
int i;
int j;
int y;
int m;
int d;
int n = 0;
rewind(fp);
while (fgets(buff, sizeof(buff), fp) && n < MAXLEAPS)
{
if (sscanf(buff, "%d %s %d =JD %lf TAI-UTC= %lf", &y, month, &d, &jd,
&tai_utc) < 5)
{
continue;
}
if (y < 1980)
{
continue;
}
for (m = 1; m <= 12; m++)
{
if (!strcmp(months[m - 1], month))
{
break;
}
}
if (m >= 13)
{
continue;
}
ls[n][0] = y;
ls[n][1] = m;
ls[n][2] = d;
ls[n++][6] = static_cast<char>(19.0 - tai_utc);
}
for (i = 0; i < n; i++)
{
for (j = 0; j < 7; j++)
{
leaps[i][j] = ls[n - i - 1][j];
}
}
return n;
}
/* read leap seconds table -----------------------------------------------------
* read leap seconds table
* args : char *file I leap seconds table file
* return : status (1:ok,0:error)
* notes : The leap second table should be as follows or leapsec.dat provided
* by USNO.
* (1) The records in the table file cosist of the following fields:
* year month day hour min sec UTC-GPST(s)
* (2) The date and time indicate the start UTC time for the UTC-GPST
* (3) The date and time should be descending order.
*-----------------------------------------------------------------------------*/
int read_leaps(const char *file)
{
FILE *fp;
int i;
int n;
if (!(fp = fopen(file, "re")))
{
return 0;
}
/* read leap seconds table by text or usno */
if (!(n = read_leaps_text(fp)) && !(n = read_leaps_usno(fp)))
{
fclose(fp);
return 0;
}
for (i = 0; i < 7; i++)
{
leaps[n][i] = 0.0;
}
fclose(fp);
return 1;
}
/* gpstime to utc --------------------------------------------------------------
* convert gpstime to utc considering leap seconds
* args : gtime_t t I time expressed in gpstime
* return : time expressed in utc
* notes : ignore slight time offset under 100 ns
*-----------------------------------------------------------------------------*/
gtime_t gpst2utc(gtime_t t)
{
gtime_t tu;
int i;
for (i = 0; leaps[i][0] > 0; i++)
{
tu = timeadd(t, leaps[i][6]);
if (timediff(tu, epoch2time(leaps[i])) >= 0.0)
{
return tu;
}
}
return t;
}
/* utc to gpstime --------------------------------------------------------------
* convert utc to gpstime considering leap seconds
* args : gtime_t t I time expressed in utc
* return : time expressed in gpstime
* notes : ignore slight time offset under 100 ns
*-----------------------------------------------------------------------------*/
gtime_t utc2gpst(gtime_t t)
{
int i;
for (i = 0; leaps[i][0] > 0; i++)
{
if (timediff(t, epoch2time(leaps[i])) >= 0.0)
{
return timeadd(t, -leaps[i][6]);
}
}
return t;
}
/* gpstime to bdt --------------------------------------------------------------
* convert gpstime to bdt (beidou navigation satellite system time)
* args : gtime_t t I time expressed in gpstime
* return : time expressed in bdt
* notes : ref [8] 3.3, 2006/1/1 00:00 BDT = 2006/1/1 00:00 UTC
* no leap seconds in BDT
* ignore slight time offset under 100 ns
*-----------------------------------------------------------------------------*/
gtime_t gpst2bdt(gtime_t t)
{
return timeadd(t, -14.0);
}
/* bdt to gpstime --------------------------------------------------------------
* convert bdt (beidou navigation satellite system time) to gpstime
* args : gtime_t t I time expressed in bdt
* return : time expressed in gpstime
* notes : see gpst2bdt()
*-----------------------------------------------------------------------------*/
gtime_t bdt2gpst(gtime_t t)
{
return timeadd(t, 14.0);
}
/* time to day and sec -------------------------------------------------------*/
double time2sec(gtime_t time, gtime_t *day)
{
double ep[6];
double sec;
time2epoch(time, ep);
sec = ep[3] * 3600.0 + ep[4] * 60.0 + ep[5];
ep[3] = ep[4] = ep[5] = 0.0;
*day = epoch2time(ep);
return sec;
}
/* utc to gmst -----------------------------------------------------------------
* convert utc to gmst (Greenwich mean sidereal time)
* args : gtime_t t I time expressed in utc
* double ut1_utc I UT1-UTC (s)
* return : gmst (rad)
*-----------------------------------------------------------------------------*/
double utc2gmst(gtime_t t, double ut1_utc)
{
const double ep2000[] = {2000, 1, 1, 12, 0, 0};
gtime_t tut;
gtime_t tut0;
double ut;
double t1;
double t2;
double t3;
double gmst0;
double gmst;
tut = timeadd(t, ut1_utc);
ut = time2sec(tut, &tut0);
t1 = timediff(tut0, epoch2time(ep2000)) / 86400.0 / 36525.0;
t2 = t1 * t1;
t3 = t2 * t1;
gmst0 = 24110.54841 + 8640184.812866 * t1 + 0.093104 * t2 - 6.2E-6 * t3;
gmst = gmst0 + 1.002737909350795 * ut;
return fmod(gmst, 86400.0) * GNSS_PI / 43200.0; /* 0 <= gmst <= 2*PI */
}
/* time to string --------------------------------------------------------------
* convert gtime_t struct to string
* args : gtime_t t I gtime_t struct
* char *s O string ("yyyy/mm/dd hh:mm:ss.ssss")
* int n I number of decimals
* return : none
*-----------------------------------------------------------------------------*/
void time2str(gtime_t t, char *s, int n)
{
double ep[6];
if (n < 0)
{
n = 0;
}
else if (n > 12)
{
n = 12;
}
if (1.0 - t.sec < 0.5 / pow(10.0, n))
{
t.time++;
t.sec = 0.0;
};
time2epoch(t, ep);
std::snprintf(s, MAXSTATMSG, "%04.0f/%02.0f/%02.0f %02.0f:%02.0f:%0*.*f", ep[0], ep[1], ep[2],
ep[3], ep[4], n <= 0 ? 2 : n + 3, n <= 0 ? 0 : n, ep[5]);
}
/* get time string -------------------------------------------------------------
* get time string
* args : gtime_t t I gtime_t struct
* int n I number of decimals
* return : time string
* notes : not reentrant, do not use multiple in a function
*-----------------------------------------------------------------------------*/
char *time_str(gtime_t t, int n)
{
static char buff[64];
time2str(t, buff, n);
return buff;
}
/* time to day of year ---------------------------------------------------------
* convert time to day of year
* args : gtime_t t I gtime_t struct
* return : day of year (days)
*-----------------------------------------------------------------------------*/
double time2doy(gtime_t t)
{
double ep[6];
time2epoch(t, ep);
ep[1] = ep[2] = 1.0;
ep[3] = ep[4] = ep[5] = 0.0;
return timediff(t, epoch2time(ep)) / 86400.0 + 1.0;
}
/* adjust gps week number ------------------------------------------------------
* adjust gps week number using cpu time
* args : int week I not-adjusted gps week number
* return : adjusted gps week number
*-----------------------------------------------------------------------------*/
int adjgpsweek(int week, bool pre_2009_file)
{
// int w;
// if (week < 512)
// {
// //assume receiver date > 7 april 2019
// w = week + 2048; //add weeks from 6-january-1980 to week rollover in 6 april 2019
// }
// else
// {
// //assume receiver date < 7 april 2019
// w = week + 1024; //add weeks from 6-january-1980 to week rollover in 21 august 1999
// }
int w;
if (week > 1023)
{
return week;
}
if (pre_2009_file == false)
{
(void)time2gpst(utc2gpst(timeget()), &w);
if (w < 1560)
{
w = 1560; /* use 2009/12/1 if time is earlier than 2009/12/1 */
}
return week + (w - week + 512) / 1024 * 1024;
}
else
{
w = week + 1024; // add weeks from 6-january-1980 to week rollover in 21 august 1999
return w;
}
}
/* get tick time ---------------------------------------------------------------
* get current tick in ms
* args : none
* return : current tick in ms
*-----------------------------------------------------------------------------*/
unsigned int tickget()
{
struct timespec tp = {0, 0};
struct timeval tv = {0, 0};
#ifdef CLOCK_MONOTONIC_RAW
/* linux kernel > 2.6.28 */
if (!clock_gettime(CLOCK_MONOTONIC_RAW, &tp))
{
return tp.tv_sec * 1000U + tp.tv_nsec / 1000000U;
}
gettimeofday(&tv, nullptr);
return tv.tv_sec * 1000U + tv.tv_usec / 1000U;
#else
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000u + tv.tv_usec / 1000u;
#endif
}
/* sleep ms --------------------------------------------------------------------
* sleep ms
* args : int ms I milliseconds to sleep (<0:no sleep)
* return : none
*-----------------------------------------------------------------------------*/
void sleepms(int ms)
{
struct timespec ts = {0, 0};
if (ms <= 0)
{
return;
}
ts.tv_sec = static_cast<time_t>(ms / 1000);
ts.tv_nsec = static_cast<int64_t>(ms % 1000 * 1000000);
nanosleep(&ts, nullptr);
}
/* convert degree to deg-min-sec -----------------------------------------------
* convert degree to degree-minute-second
* args : double deg I degree
* double *dms O degree-minute-second {deg, min, sec}
* int ndec I number of decimals of second
* return : none
*-----------------------------------------------------------------------------*/
void deg2dms(double deg, double *dms, int ndec)
{
double sign = deg < 0.0 ? -1.0 : 1.0;
double a = fabs(deg);
double unit = pow(0.1, ndec);
dms[0] = floor(a);
a = (a - dms[0]) * 60.0;
dms[1] = floor(a);
a = (a - dms[1]) * 60.0;
dms[2] = floor(a / unit + 0.5) * unit;
if (dms[2] >= 60.0)
{
dms[2] = 0.0;
dms[1] += 1.0;
if (dms[1] >= 60.0)
{
dms[1] = 0.0;
dms[0] += 1.0;
}
}
dms[0] *= sign;
}
void deg2dms(double deg, double *dms)
{
double sign = deg < 0.0 ? -1.0 : 1.0;
double a = fabs(deg);
dms[0] = floor(a);
a = (a - dms[0]) * 60.0;
dms[1] = floor(a);
a = (a - dms[1]) * 60.0;
dms[2] = a;
dms[0] *= sign;
}
/* convert deg-min-sec to degree -----------------------------------------------
* convert degree-minute-second to degree
* args : double *dms I degree-minute-second {deg,min,sec}
* return : degree
*-----------------------------------------------------------------------------*/
double dms2deg(const double *dms)
{
double sign = dms[0] < 0.0 ? -1.0 : 1.0;
return sign * (fabs(dms[0]) + dms[1] / 60.0 + dms[2] / 3600.0);
}
/* transform ecef to geodetic position ------------------------------------------
* transform ecef position to geodetic position
* args : double *r I ecef position {x,y,z} (m)
* double *pos O geodetic position {lat,lon,h} (rad,m)
* return : none
* notes : WGS84, ellipsoidal height
*-----------------------------------------------------------------------------*/
void ecef2pos(const double *r, double *pos)
{
double e2 = FE_WGS84 * (2.0 - FE_WGS84);
double r2 = dot(r, r, 2);
double z;
double zk;
double v = RE_WGS84;
double sinp;
for (z = r[2], zk = 0.0; fabs(z - zk) >= 1e-4;)
{
zk = z;
sinp = z / sqrt(r2 + z * z);
v = RE_WGS84 / sqrt(1.0 - e2 * sinp * sinp);
z = r[2] + v * e2 * sinp;
}
pos[0] = r2 > 1e-12 ? atan(z / sqrt(r2)) : (r[2] > 0.0 ? GNSS_PI / 2.0 : -GNSS_PI / 2.0);
pos[1] = r2 > 1e-12 ? atan2(r[1], r[0]) : 0.0;
pos[2] = sqrt(r2 + z * z) - v;
}
/* transform geodetic to ecef position -----------------------------------------
* transform geodetic position to ecef position
* args : double *pos I geodetic position {lat, lon,h} (rad,m)
* double *r O ecef position {x,y,z} (m)
* return : none
* notes : WGS84, ellipsoidal height
*-----------------------------------------------------------------------------*/
void pos2ecef(const double *pos, double *r)
{
double sinp = sin(pos[0]);
double cosp = cos(pos[0]);
double sinl = sin(pos[1]);
double cosl = cos(pos[1]);
double e2 = FE_WGS84 * (2.0 - FE_WGS84);
double v = RE_WGS84 / sqrt(1.0 - e2 * sinp * sinp);
r[0] = (v + pos[2]) * cosp * cosl;
r[1] = (v + pos[2]) * cosp * sinl;
r[2] = (v * (1.0 - e2) + pos[2]) * sinp;
}
/* ecef to local coordinate transformation matrix ------------------------------
* compute ecef to local coordinate transformation matrix
* args : double *pos I geodetic position {lat,lon} (rad)
* double *E O ecef to local coord transformation matrix (3x3)
* return : none
* notes : matirix stored by column-major order (fortran convention)
*-----------------------------------------------------------------------------*/
void xyz2enu(const double *pos, double *E)
{
double sinp = sin(pos[0]);
double cosp = cos(pos[0]);
double sinl = sin(pos[1]);
double cosl = cos(pos[1]);
E[0] = -sinl;
E[3] = cosl;
E[6] = 0.0;
E[1] = -sinp * cosl;
E[4] = -sinp * sinl;
E[7] = cosp;
E[2] = cosp * cosl;
E[5] = cosp * sinl;
E[8] = sinp;
}
/* transform ecef vector to local tangental coordinate -------------------------
* transform ecef vector to local tangental coordinate
* args : double *pos I geodetic position {lat,lon} (rad)
* double *r I vector in ecef coordinate {x,y,z}
* double *e O vector in local tangental coordinate {e,n,u}
* return : none
*-----------------------------------------------------------------------------*/
void ecef2enu(const double *pos, const double *r, double *e)
{
double E[9];
xyz2enu(pos, E);
matmul("NN", 3, 1, 3, 1.0, E, r, 0.0, e);
}
/* transform local vector to ecef coordinate -----------------------------------
* transform local tangental coordinate vector to ecef
* args : double *pos I geodetic position {lat,lon} (rad)
* double *e I vector in local tangental coordinate {e,n,u}
* double *r O vector in ecef coordinate {x,y,z}
* return : none
*-----------------------------------------------------------------------------*/
void enu2ecef(const double *pos, const double *e, double *r)
{
double E[9];
xyz2enu(pos, E);
matmul("TN", 3, 1, 3, 1.0, E, e, 0.0, r);
}
/* transform covariance to local tangental coordinate --------------------------
* transform ecef covariance to local tangental coordinate
* args : double *pos I geodetic position {lat, lon} (rad)
* double *P I covariance in ecef coordinate
* double *Q O covariance in local tangental coordinate
* return : none
*-----------------------------------------------------------------------------*/
void covenu(const double *pos, const double *P, double *Q)
{
double E[9];
double EP[9];
xyz2enu(pos, E);
matmul("NN", 3, 3, 3, 1.0, E, P, 0.0, EP);
matmul("NT", 3, 3, 3, 1.0, EP, E, 0.0, Q);
}
/* transform local enu coordinate covariance to xyz-ecef -----------------------
* transform local enu covariance to xyz-ecef coordinate
* args : double *pos I geodetic position {lat,lon} (rad)
* double *Q I covariance in local enu coordinate
* double *P O covariance in xyz-ecef coordinate
* return : none
*-----------------------------------------------------------------------------*/
void covecef(const double *pos, const double *Q, double *P)
{
double E[9];
double EQ[9];
xyz2enu(pos, E);
matmul("TN", 3, 3, 3, 1.0, E, Q, 0.0, EQ);
matmul("NN", 3, 3, 3, 1.0, EQ, E, 0.0, P);
}
/* astronomical arguments: f={l,l',F,D,OMG} (rad) ----------------------------*/
void ast_args(double t, double *f)
{
static const double fc[][5] = {/* coefficients for iau 1980 nutation */
{134.96340251, 1717915923.2178, 31.8792, 0.051635, -0.00024470},
{357.52910918, 129596581.0481, -0.5532, 0.000136, -0.00001149},
{93.27209062, 1739527262.8478, -12.7512, -0.001037, 0.00000417},
{297.85019547, 1602961601.2090, -6.3706, 0.006593, -0.00003169},
{125.04455501, -6962890.2665, 7.4722, 0.007702, -0.00005939}};
double tt[4];
int i;
int j;
for (tt[0] = t, i = 1; i < 4; i++)
{
tt[i] = tt[i - 1] * t;
}
for (i = 0; i < 5; i++)
{
f[i] = fc[i][0] * 3600.0;
for (j = 0; j < 4; j++)
{
f[i] += fc[i][j + 1] * tt[j];
}
f[i] = fmod(f[i] * AS2R, 2.0 * GNSS_PI);
}
}
/* iau 1980 nutation ---------------------------------------------------------*/
void nut_iau1980(double t, const double *f, double *dpsi, double *deps)
{
static const double nut[106][10] = {
{0, 0, 0, 0, 1, -6798.4, -171996, -174.2, 92025, 8.9},
{0, 0, 2, -2, 2, 182.6, -13187, -1.6, 5736, -3.1},
{0, 0, 2, 0, 2, 13.7, -2274, -0.2, 977, -0.5},
{0, 0, 0, 0, 2, -3399.2, 2062, 0.2, -895, 0.5},
{0, -1, 0, 0, 0, -365.3, -1426, 3.4, 54, -0.1},
{1, 0, 0, 0, 0, 27.6, 712, 0.1, -7, 0.0},
{0, 1, 2, -2, 2, 121.7, -517, 1.2, 224, -0.6},
{0, 0, 2, 0, 1, 13.6, -386, -0.4, 200, 0.0},
{1, 0, 2, 0, 2, 9.1, -301, 0.0, 129, -0.1},
{0, -1, 2, -2, 2, 365.2, 217, -0.5, -95, 0.3},
{-1, 0, 0, 2, 0, 31.8, 158, 0.0, -1, 0.0},
{0, 0, 2, -2, 1, 177.8, 129, 0.1, -70, 0.0},
{-1, 0, 2, 0, 2, 27.1, 123, 0.0, -53, 0.0},
{1, 0, 0, 0, 1, 27.7, 63, 0.1, -33, 0.0},
{0, 0, 0, 2, 0, 14.8, 63, 0.0, -2, 0.0},
{-1, 0, 2, 2, 2, 9.6, -59, 0.0, 26, 0.0},
{-1, 0, 0, 0, 1, -27.4, -58, -0.1, 32, 0.0},
{1, 0, 2, 0, 1, 9.1, -51, 0.0, 27, 0.0},
{-2, 0, 0, 2, 0, -205.9, -48, 0.0, 1, 0.0},
{-2, 0, 2, 0, 1, 1305.5, 46, 0.0, -24, 0.0},
{0, 0, 2, 2, 2, 7.1, -38, 0.0, 16, 0.0},
{2, 0, 2, 0, 2, 6.9, -31, 0.0, 13, 0.0},
{2, 0, 0, 0, 0, 13.8, 29, 0.0, -1, 0.0},
{1, 0, 2, -2, 2, 23.9, 29, 0.0, -12, 0.0},
{0, 0, 2, 0, 0, 13.6, 26, 0.0, -1, 0.0},
{0, 0, 2, -2, 0, 173.3, -22, 0.0, 0, 0.0},
{-1, 0, 2, 0, 1, 27.0, 21, 0.0, -10, 0.0},
{0, 2, 0, 0, 0, 182.6, 17, -0.1, 0, 0.0},
{0, 2, 2, -2, 2, 91.3, -16, 0.1, 7, 0.0},
{-1, 0, 0, 2, 1, 32.0, 16, 0.0, -8, 0.0},
{0, 1, 0, 0, 1, 386.0, -15, 0.0, 9, 0.0},
{1, 0, 0, -2, 1, -31.7, -13, 0.0, 7, 0.0},
{0, -1, 0, 0, 1, -346.6, -12, 0.0, 6, 0.0},
{2, 0, -2, 0, 0, -1095.2, 11, 0.0, 0, 0.0},
{-1, 0, 2, 2, 1, 9.5, -10, 0.0, 5, 0.0},
{1, 0, 2, 2, 2, 5.6, -8, 0.0, 3, 0.0},
{0, -1, 2, 0, 2, 14.2, -7, 0.0, 3, 0.0},
{0, 0, 2, 2, 1, 7.1, -7, 0.0, 3, 0.0},
{1, 1, 0, -2, 0, -34.8, -7, 0.0, 0, 0.0},
{0, 1, 2, 0, 2, 13.2, 7, 0.0, -3, 0.0},
{-2, 0, 0, 2, 1, -199.8, -6, 0.0, 3, 0.0},
{0, 0, 0, 2, 1, 14.8, -6, 0.0, 3, 0.0},
{2, 0, 2, -2, 2, 12.8, 6, 0.0, -3, 0.0},
{1, 0, 0, 2, 0, 9.6, 6, 0.0, 0, 0.0},
{1, 0, 2, -2, 1, 23.9, 6, 0.0, -3, 0.0},
{0, 0, 0, -2, 1, -14.7, -5, 0.0, 3, 0.0},
{0, -1, 2, -2, 1, 346.6, -5, 0.0, 3, 0.0},
{2, 0, 2, 0, 1, 6.9, -5, 0.0, 3, 0.0},
{1, -1, 0, 0, 0, 29.8, 5, 0.0, 0, 0.0},
{1, 0, 0, -1, 0, 411.8, -4, 0.0, 0, 0.0},
{0, 0, 0, 1, 0, 29.5, -4, 0.0, 0, 0.0},
{0, 1, 0, -2, 0, -15.4, -4, 0.0, 0, 0.0},
{1, 0, -2, 0, 0, -26.9, 4, 0.0, 0, 0.0},
{2, 0, 0, -2, 1, 212.3, 4, 0.0, -2, 0.0},
{0, 1, 2, -2, 1, 119.6, 4, 0.0, -2, 0.0},
{1, 1, 0, 0, 0, 25.6, -3, 0.0, 0, 0.0},
{1, -1, 0, -1, 0, -3232.9, -3, 0.0, 0, 0.0},
{-1, -1, 2, 2, 2, 9.8, -3, 0.0, 1, 0.0},
{0, -1, 2, 2, 2, 7.2, -3, 0.0, 1, 0.0},
{1, -1, 2, 0, 2, 9.4, -3, 0.0, 1, 0.0},
{3, 0, 2, 0, 2, 5.5, -3, 0.0, 1, 0.0},
{-2, 0, 2, 0, 2, 1615.7, -3, 0.0, 1, 0.0},
{1, 0, 2, 0, 0, 9.1, 3, 0.0, 0, 0.0},
{-1, 0, 2, 4, 2, 5.8, -2, 0.0, 1, 0.0},
{1, 0, 0, 0, 2, 27.8, -2, 0.0, 1, 0.0},
{-1, 0, 2, -2, 1, -32.6, -2, 0.0, 1, 0.0},
{0, -2, 2, -2, 1, 6786.3, -2, 0.0, 1, 0.0},
{-2, 0, 0, 0, 1, -13.7, -2, 0.0, 1, 0.0},
{2, 0, 0, 0, 1, 13.8, 2, 0.0, -1, 0.0},
{3, 0, 0, 0, 0, 9.2, 2, 0.0, 0, 0.0},
{1, 1, 2, 0, 2, 8.9, 2, 0.0, -1, 0.0},
{0, 0, 2, 1, 2, 9.3, 2, 0.0, -1, 0.0},
{1, 0, 0, 2, 1, 9.6, -1, 0.0, 0, 0.0},
{1, 0, 2, 2, 1, 5.6, -1, 0.0, 1, 0.0},
{1, 1, 0, -2, 1, -34.7, -1, 0.0, 0, 0.0},
{0, 1, 0, 2, 0, 14.2, -1, 0.0, 0, 0.0},
{0, 1, 2, -2, 0, 117.5, -1, 0.0, 0, 0.0},
{0, 1, -2, 2, 0, -329.8, -1, 0.0, 0, 0.0},
{1, 0, -2, 2, 0, 23.8, -1, 0.0, 0, 0.0},
{1, 0, -2, -2, 0, -9.5, -1, 0.0, 0, 0.0},
{1, 0, 2, -2, 0, 32.8, -1, 0.0, 0, 0.0},
{1, 0, 0, -4, 0, -10.1, -1, 0.0, 0, 0.0},
{2, 0, 0, -4, 0, -15.9, -1, 0.0, 0, 0.0},
{0, 0, 2, 4, 2, 4.8, -1, 0.0, 0, 0.0},
{0, 0, 2, -1, 2, 25.4, -1, 0.0, 0, 0.0},
{-2, 0, 2, 4, 2, 7.3, -1, 0.0, 1, 0.0},
{2, 0, 2, 2, 2, 4.7, -1, 0.0, 0, 0.0},
{0, -1, 2, 0, 1, 14.2, -1, 0.0, 0, 0.0},
{0, 0, -2, 0, 1, -13.6, -1, 0.0, 0, 0.0},
{0, 0, 4, -2, 2, 12.7, 1, 0.0, 0, 0.0},
{0, 1, 0, 0, 2, 409.2, 1, 0.0, 0, 0.0},
{1, 1, 2, -2, 2, 22.5, 1, 0.0, -1, 0.0},
{3, 0, 2, -2, 2, 8.7, 1, 0.0, 0, 0.0},
{-2, 0, 2, 2, 2, 14.6, 1, 0.0, -1, 0.0},
{-1, 0, 0, 0, 2, -27.3, 1, 0.0, -1, 0.0},
{0, 0, -2, 2, 1, -169.0, 1, 0.0, 0, 0.0},
{0, 1, 2, 0, 1, 13.1, 1, 0.0, 0, 0.0},
{-1, 0, 4, 0, 2, 9.1, 1, 0.0, 0, 0.0},
{2, 1, 0, -2, 0, 131.7, 1, 0.0, 0, 0.0},
{2, 0, 0, 2, 0, 7.1, 1, 0.0, 0, 0.0},
{2, 0, 2, -2, 1, 12.8, 1, 0.0, -1, 0.0},
{2, 0, -2, 0, 1, -943.2, 1, 0.0, 0, 0.0},
{1, -1, 0, -2, 0, -29.3, 1, 0.0, 0, 0.0},
{-1, 0, 0, 1, 1, -388.3, 1, 0.0, 0, 0.0},
{-1, -1, 0, 2, 1, 35.0, 1, 0.0, 0, 0.0},
{0, 1, 0, 1, 0, 27.3, 1, 0.0, 0, 0.0}};
double ang;
int i;
int j;
*dpsi = *deps = 0.0;
for (i = 0; i < 106; i++)
{
ang = 0.0;
for (j = 0; j < 5; j++)
{
ang += nut[i][j] * f[j];
}
*dpsi += (nut[i][6] + nut[i][7] * t) * sin(ang);
*deps += (nut[i][8] + nut[i][9] * t) * cos(ang);
}
*dpsi *= 1e-4 * AS2R; /* 0.1 mas -> rad */
*deps *= 1e-4 * AS2R;
}
/* eci to ecef transformation matrix -------------------------------------------
* compute eci to ecef transformation matrix
* args : gtime_t tutc I time in utc
* double *erpv I erp values {xp,yp,ut1_utc,lod} (rad,rad,s,s/d)
* double *U O eci to ecef transformation matrix (3 x 3)
* double *gmst IO greenwich mean sidereal time (rad)
* (NULL: no output)
* return : none
* note : see ref [3] chap 5
* not thread-safe
*-----------------------------------------------------------------------------*/
void eci2ecef(gtime_t tutc, const double *erpv, double *U, double *gmst)
{
const double ep2000[] = {2000, 1, 1, 12, 0, 0};
static gtime_t tutc_;
static double U_[9];
static double gmst_;
gtime_t tgps;
double eps;
double ze;
double th;
double z;
double t;
double t2;
double t3;
double dpsi;
double deps;
double gast;
double f[5];
double R1[9];
double R2[9];
double R3[9];
double R[9];
double W[9];
double N[9];
double P[9];
double NP[9];
int i;
trace(4, "eci2ecef: tutc=%s\n", time_str(tutc, 3));
if (fabs(timediff(tutc, tutc_)) < 0.01)
{ /* read cache */
for (i = 0; i < 9; i++)
{
U[i] = U_[i];
}
if (gmst)
{
*gmst = gmst_;
}
return;
}
tutc_ = tutc;
/* terrestrial time */
tgps = utc2gpst(tutc_);
t = (timediff(tgps, epoch2time(ep2000)) + 19.0 + 32.184) / 86400.0 / 36525.0;
t2 = t * t;
t3 = t2 * t;
/* astronomical arguments */
ast_args(t, f);
/* iau 1976 precession */
ze = (2306.2181 * t + 0.30188 * t2 + 0.017998 * t3) * AS2R;
th = (2004.3109 * t - 0.42665 * t2 - 0.041833 * t3) * AS2R;
z = (2306.2181 * t + 1.09468 * t2 + 0.018203 * t3) * AS2R;
eps = (84381.448 - 46.8150 * t - 0.00059 * t2 + 0.001813 * t3) * AS2R;
Rz(-z, R1);
Ry(th, R2);
Rz(-ze, R3);
matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, R);
matmul("NN", 3, 3, 3, 1.0, R, R3, 0.0, P); /* P=Rz(-z)*Ry(th)*Rz(-ze) */
/* iau 1980 nutation */
nut_iau1980(t, f, &dpsi, &deps);
Rx(-eps - deps, R1);
Rz(-dpsi, R2);
Rx(eps, R3);
matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, R);
matmul("NN", 3, 3, 3, 1.0, R, R3, 0.0, N); /* N=Rx(-eps)*Rz(-dspi)*Rx(eps) */
/* greenwich apparent sidereal time (rad) */
gmst_ = utc2gmst(tutc_, erpv[2]);
gast = gmst_ + dpsi * cos(eps);
gast += (0.00264 * sin(f[4]) + 0.000063 * sin(2.0 * f[4])) * AS2R;
/* eci to ecef transformation matrix */
Ry(-erpv[0], R1);
Rx(-erpv[1], R2);
Rz(gast, R3);
matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, W);
matmul("NN", 3, 3, 3, 1.0, W, R3, 0.0, R); /* W=Ry(-xp)*Rx(-yp) */
matmul("NN", 3, 3, 3, 1.0, N, P, 0.0, NP);
matmul("NN", 3, 3, 3, 1.0, R, NP, 0.0, U_); /* U=W*Rz(gast)*N*P */
for (i = 0; i < 9; i++)
{
U[i] = U_[i];
}
if (gmst)
{
*gmst = gmst_;
}
trace(5, "gmst=%.12f gast=%.12f\n", gmst_, gast);
trace(5, "P=\n");
tracemat(5, P, 3, 3, 15, 12);
trace(5, "N=\n");
tracemat(5, N, 3, 3, 15, 12);
trace(5, "W=\n");
tracemat(5, W, 3, 3, 15, 12);
trace(5, "U=\n");
tracemat(5, U, 3, 3, 15, 12);
}
/* decode antenna parameter field --------------------------------------------*/
int decodef(char *p, int n, double *v)
{
int i;
for (i = 0; i < n; i++)
{
v[i] = 0.0;
}
for (i = 0, p = strtok(p, " "); p && i < n; p = strtok(nullptr, " "))
{
v[i++] = atof(p) * 1e-3;
}
return i;
}
/* add antenna parameter -----------------------------------------------------*/
void addpcv(const pcv_t *pcv, pcvs_t *pcvs)
{
pcv_t *pcvs_pcv;
if (pcvs->nmax <= pcvs->n)
{
pcvs->nmax += 256;
if (!(pcvs_pcv = static_cast<pcv_t *>(realloc(pcvs->pcv, sizeof(pcv_t) * pcvs->nmax))))
{
trace(1, "addpcv: memory allocation error\n");
free(pcvs->pcv);
pcvs->pcv = nullptr;
pcvs->n = pcvs->nmax = 0;
return;
}
pcvs->pcv = pcvs_pcv;
}
pcvs->pcv[pcvs->n++] = *pcv;
}
/* strncpy without truncation ------------------------------------------------*/
char *strncpy_no_trunc(char *out, size_t outsz, const char *in, size_t insz)
{
assert(outsz > 0);
while (--outsz > 0 && insz > 0 && *in)
{
*out++ = *in++;
insz--;
}
*out = 0;
return out;
}
/* read ngs antenna parameter file -------------------------------------------*/
int readngspcv(const char *file, pcvs_t *pcvs)
{
FILE *fp;
static const pcv_t pcv0 = {0, {}, {}, {0, 0}, {0, 0}, {{}, {}}, {{}, {}}};
pcv_t pcv = {0, {}, {}, {0, 0}, {0, 0}, {{}, {}}, {{}, {}}};
double neu[3];
int n = 0;
char buff[256];
if (!(fp = fopen(file, "re")))
{
trace(2, "ngs pcv file open error: %s\n", file);
return 0;
}
while (fgets(buff, sizeof(buff), fp))
{
if (strlen(buff) >= 62 && buff[61] == '|')
{
continue;
}
if (buff[0] != ' ')
{
n = 0; /* start line */
}
if (++n == 1)
{
pcv = pcv0;
strncpy_no_trunc(pcv.type, 61, buff, 256);
pcv.type[61] = '\0';
}
else if (n == 2)
{
if (decodef(buff, 3, neu) < 3)
{
continue;
}
pcv.off[0][0] = neu[1];
pcv.off[0][1] = neu[0];
pcv.off[0][2] = neu[2];
}
else if (n == 3)
{
decodef(buff, 10, pcv.var[0]);
}
else if (n == 4)
{
decodef(buff, 9, pcv.var[0] + 10);
}
else if (n == 5)
{
if (decodef(buff, 3, neu) < 3)
{
continue;
};
pcv.off[1][0] = neu[1];
pcv.off[1][1] = neu[0];
pcv.off[1][2] = neu[2];
}
else if (n == 6)
{
decodef(buff, 10, pcv.var[1]);
}
else if (n == 7)
{
decodef(buff, 9, pcv.var[1] + 10);
addpcv(&pcv, pcvs);
}
}
fclose(fp);
return 1;
}
/* read antex file ----------------------------------------------------------*/
int readantex(const char *file, pcvs_t *pcvs)
{
FILE *fp;
static const pcv_t pcv0 = {0, {}, {}, {0, 0}, {0, 0}, {{}, {}}, {{}, {}}};
pcv_t pcv = {0, {}, {}, {0, 0}, {0, 0}, {{}, {}}, {{}, {}}};
double neu[3];
int i;
int f;
int freq = 0;
int state = 0;
int freqs[] = {1, 2, 5, 6, 7, 8, 0};
char buff[256];
trace(3, "readantex: file=%s\n", file);
if (!(fp = fopen(file, "re")))
{
trace(2, "antex pcv file open error: %s\n", file);
return 0;
}
while (fgets(buff, sizeof(buff), fp))
{
if (strlen(buff) < 60 || strstr(buff + 60, "COMMENT"))
{
continue;
}
if (strstr(buff + 60, "START OF ANTENNA"))
{
pcv = pcv0;
state = 1;
}
if (strstr(buff + 60, "END OF ANTENNA"))
{
addpcv(&pcv, pcvs);
state = 0;
}
if (!state)
{
continue;
}
if (strstr(buff + 60, "TYPE / SERIAL NO"))
{
strncpy(pcv.type, buff, 20); // MAXANT (64)
pcv.type[20] = '\0';
int ret = std::snprintf(pcv.code, 20, "%s", buff + 20); // NOLINT(runtime/printf)
if (ret >= 0 && ret < 20)
{
if (!strncmp(pcv.code + 3, " ", 8))
{
pcv.sat = satid2no(pcv.code);
}
}
}
else if (strstr(buff + 60, "VALID FROM"))
{
if (!str2time(buff, 0, 43, &pcv.ts))
{
continue;
}
}
else if (strstr(buff + 60, "VALID UNTIL"))
{
if (!str2time(buff, 0, 43, &pcv.te))
{
continue;
}
}
else if (strstr(buff + 60, "START OF FREQUENCY"))
{
if (sscanf(buff + 4, "%d", &f) < 1)
{
continue;
}
for (i = 0; i < NFREQ; i++)
{
if (freqs[i] == f)
{
break;
}
}
if (i < NFREQ)
{
freq = i + 1;
}
}
else if (strstr(buff + 60, "END OF FREQUENCY"))
{
freq = 0;
}
else if (strstr(buff + 60, "NORTH / EAST / UP"))
{
if (freq < 1 || NFREQ < freq)
{
continue;
}
if (decodef(buff, 3, neu) < 3)
{
continue;
}
pcv.off[freq - 1][0] = neu[pcv.sat ? 0 : 1]; /* x or e */
pcv.off[freq - 1][1] = neu[pcv.sat ? 1 : 0]; /* y or n */
pcv.off[freq - 1][2] = neu[2]; /* z or u */
}
else if (strstr(buff, "NOAZI"))
{
if (freq < 1 || NFREQ < freq)
{
continue;
}
if ((i = decodef(buff + 8, 19, pcv.var[freq - 1])) <= 0)
{
continue;
}
for (; i < 19; i++)
{
pcv.var[freq - 1][i] = pcv.var[freq - 1][i - 1];
}
}
}
fclose(fp);
return 1;
}
/* read antenna parameters ------------------------------------------------------
* read antenna parameters
* args : char *file I antenna parameter file (antex)
* pcvs_t *pcvs IO antenna parameters
* return : status (1:ok,0:file open error)
* notes : file with the externsion .atx or .ATX is recognized as antex
* file except for antex is recognized ngs antenna parameters
* see reference [3]
* only support non-azimuth-depedent parameters
*-----------------------------------------------------------------------------*/
int readpcv(const char *file, pcvs_t *pcvs)
{
pcv_t *pcv;
const char *ext;
int i;
int stat;
trace(3, "readpcv: file=%s\n", file);
if (!(ext = strrchr(file, '.')))
{
ext = "";
}
if (!strcmp(ext, ".atx") || !strcmp(ext, ".ATX"))
{
stat = readantex(file, pcvs);
}
else
{
stat = readngspcv(file, pcvs);
}
for (i = 0; i < pcvs->n; i++)
{
pcv = pcvs->pcv + i;
trace(4, "sat=%2d type=%20s code=%s off=%8.4f %8.4f %8.4f %8.4f %8.4f %8.4f\n",
pcv->sat, pcv->type, pcv->code, pcv->off[0][0], pcv->off[0][1],
pcv->off[0][2], pcv->off[1][0], pcv->off[1][1], pcv->off[1][2]);
}
return stat;
}
/* search antenna parameter ----------------------------------------------------
* read satellite antenna phase center position
* args : int sat I satellite number (0: receiver antenna)
* char *type I antenna type for receiver antenna
* gtime_t time I time to search parameters
* pcvs_t *pcvs IO antenna parameters
* return : antenna parameter (NULL: no antenna)
*-----------------------------------------------------------------------------*/
pcv_t *searchpcv(int sat, const char *type, gtime_t time,
const pcvs_t *pcvs)
{
pcv_t *pcv;
char buff[MAXANT] = "";
char *types[2];
char *p;
int i;
int j;
int n = 0;
trace(3, "searchpcv: sat=%2d type=%s\n", sat, type);
if (sat)
{ /* search satellite antenna */
for (i = 0; i < pcvs->n; i++)
{
pcv = pcvs->pcv + i;
if (pcv->sat != sat)
{
continue;
}
if (pcv->ts.time != 0 && timediff(pcv->ts, time) > 0.0)
{
continue;
}
if (pcv->te.time != 0 && timediff(pcv->te, time) < 0.0)
{
continue;
}
return pcv;
}
}
else
{
if (strlen(type) < MAXANT + 1)
{
std::strncpy(buff, type, MAXANT);
buff[MAXANT - 1] = '\0';
}
else
{
trace(1, "type array is too long");
}
for (p = strtok(buff, " "); p && n < 2; p = strtok(nullptr, " "))
{
types[n++] = p;
}
if (n <= 0)
{
return nullptr;
}
/* search receiver antenna with radome at first */
for (i = 0; i < pcvs->n; i++)
{
pcv = pcvs->pcv + i;
for (j = 0; j < n; j++)
{
if (!strstr(pcv->type, types[j]))
{
break;
}
}
if (j >= n)
{
return pcv;
}
}
/* search receiver antenna without radome */
for (i = 0; i < pcvs->n; i++)
{
pcv = pcvs->pcv + i;
if (strstr(pcv->type, types[0]) != pcv->type)
{
continue;
}
trace(2, "pcv without radome is used type=%s\n", type);
return pcv;
}
}
return nullptr;
}
/* read station positions ------------------------------------------------------
* read positions from station position file
* args : char *file I station position file containing
* lat(deg) lon(deg) height(m) name in a line
* char *rcvs I station name
* double *pos O station position {lat,lon,h} (rad/m)
* (all 0 if search error)
* return : none
*-----------------------------------------------------------------------------*/
void readpos(const char *file, const char *rcv, double *pos)
{
static double poss[2048][3];
static char stas[2048][16];
FILE *fp;
int i;
int j;
int len;
int np = 0;
char buff[256];
char str[256];
trace(3, "readpos: file=%s\n", file);
if (!(fp = fopen(file, "re")))
{
fprintf(stderr, "reference position file open error : %s\n", file);
return;
}
while (np < 2048 && fgets(buff, sizeof(buff), fp))
{
if (buff[0] == '%' || buff[0] == '#')
{
continue;
}
if (sscanf(buff, "%lf %lf %lf %s", &poss[np][0], &poss[np][1], &poss[np][2],
str) < 4)
{
continue;
}
auto sta = stas[np++]; // NOLINT(readability-qualified-auto)
strncpy_no_trunc(sta, 16, str, 256);
sta[15] = '\0';
}
fclose(fp);
len = static_cast<int>(strlen(rcv));
for (i = 0; i < np; i++)
{
if (strncmp(stas[i], rcv, len) != 0)
{
continue;
}
for (j = 0; j < 3; j++)
{
pos[j] = poss[i][j];
}
pos[0] *= D2R;
pos[1] *= D2R;
return;
}
pos[0] = pos[1] = pos[2] = 0.0;
}
/* read blq record -----------------------------------------------------------*/
int readblqrecord(FILE *fp, double *odisp)
{
double v[11];
char buff[256];
int i;
int n = 0;
while (fgets(buff, sizeof(buff), fp))
{
if (!strncmp(buff, "$$", 2))
{
continue;
}
if (sscanf(buff, "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
v, v + 1, v + 2, v + 3, v + 4, v + 5, v + 6, v + 7, v + 8, v + 9, v + 10) < 11)
{
continue;
}
for (i = 0; i < 11; i++)
{
odisp[n + i * 6] = v[i];
}
if (++n == 6)
{
return 1;
}
}
return 0;
}
/* read blq ocean tide loading parameters --------------------------------------
* read blq ocean tide loading parameters
* args : char *file I BLQ ocean tide loading parameter file
* char *sta I station name
* double *odisp O ocean tide loading parameters
* return : status (1:ok, 0:file open error)
*-----------------------------------------------------------------------------*/
int readblq(const char *file, const char *sta, double *odisp)
{
FILE *fp;
char buff[256];
char staname[32] = "";
char name[32];
char *p;
/* station name to upper case */
sscanf(sta, "%16s", staname);
for (p = staname; (*p = static_cast<char>(toupper(static_cast<int>(*p)))); p++)
{
}
if (!(fp = fopen(file, "re")))
{
trace(2, "blq file open error: file=%s\n", file);
return 0;
}
while (fgets(buff, sizeof(buff), fp))
{
if (!strncmp(buff, "$$", 2) || strlen(buff) < 2)
{
continue;
}
if (sscanf(buff + 2, "%16s", name) < 1)
{
continue;
}
for (p = name; (*p = static_cast<char>(toupper(static_cast<int>(*p)))); p++)
{
}
if (strcmp(name, staname) != 0)
{
continue;
}
/* read blq record */
if (readblqrecord(fp, odisp))
{
fclose(fp);
return 1;
}
}
fclose(fp);
trace(2, "no otl parameters: sta=%s file=%s\n", sta, file);
return 0;
}
/* read earth rotation parameters ----------------------------------------------
* read earth rotation parameters
* args : char *file I IGS ERP file (IGS ERP ver.2)
* erp_t *erp O earth rotation parameters
* return : status (1:ok,0:file open error)
*-----------------------------------------------------------------------------*/
int readerp(const char *file, erp_t *erp)
{
FILE *fp;
erpd_t *erp_data;
double v[14] = {};
char buff[256];
trace(3, "readerp: file=%s\n", file);
if (!(fp = fopen(file, "re")))
{
trace(2, "erp file open error: file=%s\n", file);
return 0;
}
while (fgets(buff, sizeof(buff), fp))
{
if (sscanf(buff, "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
v, v + 1, v + 2, v + 3, v + 4, v + 5, v + 6, v + 7, v + 8, v + 9, v + 10, v + 11, v + 12, v + 13) < 5)
{
continue;
}
if (erp->n >= erp->nmax)
{
erp->nmax = erp->nmax <= 0 ? 128 : erp->nmax * 2;
erp_data = static_cast<erpd_t *>(realloc(erp->data, sizeof(erpd_t) * erp->nmax));
if (!erp_data)
{
free(erp->data);
erp->data = nullptr;
erp->n = erp->nmax = 0;
fclose(fp);
return 0;
}
erp->data = erp_data;
}
erp->data[erp->n].mjd = v[0];
erp->data[erp->n].xp = v[1] * 1e-6 * AS2R;
erp->data[erp->n].yp = v[2] * 1e-6 * AS2R;
erp->data[erp->n].ut1_utc = v[3] * 1e-7;
erp->data[erp->n].lod = v[4] * 1e-7;
erp->data[erp->n].xpr = v[12] * 1e-6 * AS2R;
erp->data[erp->n++].ypr = v[13] * 1e-6 * AS2R;
}
fclose(fp);
return 1;
}
/* get earth rotation parameter values -----------------------------------------
* get earth rotation parameter values
* args : erp_t *erp I earth rotation parameters
* gtime_t time I time (gpst)
* double *erpv O erp values {xp,yp,ut1_utc,lod} (rad,rad,s,s/d)
* return : status (1:ok,0:error)
*-----------------------------------------------------------------------------*/
int geterp(const erp_t *erp, gtime_t time, double *erpv)
{
const double ep[] = {2000, 1, 1, 12, 0, 0};
double mjd;
double day;
double a;
int i;
int j;
int k;
trace(4, "geterp:\n");
if (erp->n <= 0)
{
return 0;
}
mjd = 51544.5 + (timediff(gpst2utc(time), epoch2time(ep))) / 86400.0;
if (mjd <= erp->data[0].mjd)
{
day = mjd - erp->data[0].mjd;
erpv[0] = erp->data[0].xp + erp->data[0].xpr * day;
erpv[1] = erp->data[0].yp + erp->data[0].ypr * day;
erpv[2] = erp->data[0].ut1_utc - erp->data[0].lod * day;
erpv[3] = erp->data[0].lod;
return 1;
}
if (mjd >= erp->data[erp->n - 1].mjd)
{
day = mjd - erp->data[erp->n - 1].mjd;
erpv[0] = erp->data[erp->n - 1].xp + erp->data[erp->n - 1].xpr * day;
erpv[1] = erp->data[erp->n - 1].yp + erp->data[erp->n - 1].ypr * day;
erpv[2] = erp->data[erp->n - 1].ut1_utc - erp->data[erp->n - 1].lod * day;
erpv[3] = erp->data[erp->n - 1].lod;
return 1;
}
for (j = 0, k = erp->n - 1; j < k - 1;)
{
i = (j + k) / 2;
if (mjd < erp->data[i].mjd)
{
k = i;
}
else
{
j = i;
}
}
if (erp->data[j].mjd == erp->data[j + 1].mjd)
{
a = 0.5;
}
else
{
a = (mjd - erp->data[j].mjd) / (erp->data[j + 1].mjd - erp->data[j].mjd);
}
erpv[0] = (1.0 - a) * erp->data[j].xp + a * erp->data[j + 1].xp;
erpv[1] = (1.0 - a) * erp->data[j].yp + a * erp->data[j + 1].yp;
erpv[2] = (1.0 - a) * erp->data[j].ut1_utc + a * erp->data[j + 1].ut1_utc;
erpv[3] = (1.0 - a) * erp->data[j].lod + a * erp->data[j + 1].lod;
return 1;
}
/* compare ephemeris ---------------------------------------------------------*/
int cmpeph(const void *p1, const void *p2)
{
const auto *q1 = static_cast<const eph_t *>(p1);
const auto *q2 = static_cast<const eph_t *>(p2);
return q1->ttr.time != q2->ttr.time ? static_cast<int>(q1->ttr.time - q2->ttr.time) : (q1->toe.time != q2->toe.time ? static_cast<int>(q1->toe.time - q2->toe.time) : q1->sat - q2->sat);
}
/* sort and unique ephemeris -------------------------------------------------*/
void uniqeph(nav_t *nav)
{
eph_t *nav_eph;
int i;
int j;
trace(3, "uniqeph: n=%d\n", nav->n);
if (nav->n <= 0)
{
return;
}
qsort(nav->eph, nav->n, sizeof(eph_t), cmpeph);
for (i = 1, j = 0; i < nav->n; i++)
{
if (nav->eph[i].sat != nav->eph[j].sat ||
nav->eph[i].iode != nav->eph[j].iode)
{
nav->eph[++j] = nav->eph[i];
}
}
nav->n = j + 1;
if (!(nav_eph = static_cast<eph_t *>(realloc(nav->eph, sizeof(eph_t) * nav->n))))
{
trace(1, "uniqeph malloc error n=%d\n", nav->n);
free(nav->eph);
nav->eph = nullptr;
nav->n = nav->nmax = 0;
return;
}
nav->eph = nav_eph;
nav->nmax = nav->n;
trace(4, "uniqeph: n=%d\n", nav->n);
}
/* compare glonass ephemeris -------------------------------------------------*/
int cmpgeph(const void *p1, const void *p2)
{
const auto *q1 = static_cast<const geph_t *>(p1);
const auto *q2 = static_cast<const geph_t *>(p2);
return q1->tof.time != q2->tof.time ? static_cast<int>(q1->tof.time - q2->tof.time) : (q1->toe.time != q2->toe.time ? static_cast<int>(q1->toe.time - q2->toe.time) : q1->sat - q2->sat);
}
/* sort and unique glonass ephemeris -----------------------------------------*/
void uniqgeph(nav_t *nav)
{
geph_t *nav_geph;
int i;
int j;
trace(3, "uniqgeph: ng=%d\n", nav->ng);
if (nav->ng <= 0)
{
return;
}
qsort(nav->geph, nav->ng, sizeof(geph_t), cmpgeph);
for (i = j = 0; i < nav->ng; i++)
{
if (nav->geph[i].sat != nav->geph[j].sat ||
nav->geph[i].toe.time != nav->geph[j].toe.time ||
nav->geph[i].svh != nav->geph[j].svh)
{
nav->geph[++j] = nav->geph[i];
}
}
nav->ng = j + 1;
if (!(nav_geph = static_cast<geph_t *>(realloc(nav->geph, sizeof(geph_t) * nav->ng))))
{
trace(1, "uniqgeph malloc error ng=%d\n", nav->ng);
free(nav->geph);
nav->geph = nullptr;
nav->ng = nav->ngmax = 0;
return;
}
nav->geph = nav_geph;
nav->ngmax = nav->ng;
trace(4, "uniqgeph: ng=%d\n", nav->ng);
}
/* compare sbas ephemeris ----------------------------------------------------*/
int cmpseph(const void *p1, const void *p2)
{
const auto *q1 = static_cast<const seph_t *>(p1);
const auto *q2 = static_cast<const seph_t *>(p2);
return q1->tof.time != q2->tof.time ? static_cast<int>(q1->tof.time - q2->tof.time) : (q1->t0.time != q2->t0.time ? static_cast<int>(q1->t0.time - q2->t0.time) : q1->sat - q2->sat);
}
/* sort and unique sbas ephemeris --------------------------------------------*/
void uniqseph(nav_t *nav)
{
seph_t *nav_seph;
int i;
int j;
trace(3, "uniqseph: ns=%d\n", nav->ns);
if (nav->ns <= 0)
{
return;
}
qsort(nav->seph, nav->ns, sizeof(seph_t), cmpseph);
for (i = j = 0; i < nav->ns; i++)
{
if (nav->seph[i].sat != nav->seph[j].sat ||
nav->seph[i].t0.time != nav->seph[j].t0.time)
{
nav->seph[++j] = nav->seph[i];
}
}
nav->ns = j + 1;
if (!(nav_seph = static_cast<seph_t *>(realloc(nav->seph, sizeof(seph_t) * nav->ns))))
{
trace(1, "uniqseph malloc error ns=%d\n", nav->ns);
free(nav->seph);
nav->seph = nullptr;
nav->ns = nav->nsmax = 0;
return;
}
nav->seph = nav_seph;
nav->nsmax = nav->ns;
trace(4, "uniqseph: ns=%d\n", nav->ns);
}
/* unique ephemerides ----------------------------------------------------------
* unique ephemerides in navigation data and update carrier wave length
* args : nav_t *nav IO navigation data
* return : number of epochs
*-----------------------------------------------------------------------------*/
void uniqnav(nav_t *nav)
{
int i;
int j;
trace(3, "uniqnav: neph=%d ngeph=%d nseph=%d\n", nav->n, nav->ng, nav->ns);
/* unique ephemeris */
uniqeph(nav);
uniqgeph(nav);
uniqseph(nav);
/* update carrier wave length */
for (i = 0; i < MAXSAT; i++)
{
for (j = 0; j < NFREQ; j++)
{
nav->lam[i][j] = satwavelen(i + 1, j, nav);
}
}
}
/* compare observation data -------------------------------------------------*/
int cmpobs(const void *p1, const void *p2)
{
const auto *q1 = static_cast<const obsd_t *>(p1);
const auto *q2 = static_cast<const obsd_t *>(p2);
double tt = timediff(q1->time, q2->time);
if (fabs(tt) > DTTOL)
{
return tt < 0 ? -1 : 1;
}
if (q1->rcv != q2->rcv)
{
return static_cast<int>(q1->rcv) - static_cast<int>(q2->rcv);
}
return static_cast<int>(q1->sat) - static_cast<int>(q2->sat);
}
/* sort and unique observation data --------------------------------------------
* sort and unique observation data by time, rcv, sat
* args : obs_t *obs IO observation data
* return : number of epochs
*-----------------------------------------------------------------------------*/
int sortobs(obs_t *obs)
{
int i;
int j;
int n;
trace(3, "sortobs: nobs=%d\n", obs->n);
if (obs->n <= 0)
{
return 0;
}
qsort(obs->data, obs->n, sizeof(obsd_t), cmpobs);
/* delete duplicated data */
for (i = j = 0; i < obs->n; i++)
{
if (obs->data[i].sat != obs->data[j].sat ||
obs->data[i].rcv != obs->data[j].rcv ||
timediff(obs->data[i].time, obs->data[j].time) != 0.0)
{
obs->data[++j] = obs->data[i];
}
}
obs->n = j + 1;
for (i = n = 0; i < obs->n; i = j, n++)
{
for (j = i + 1; j < obs->n; j++)
{
if (timediff(obs->data[j].time, obs->data[i].time) > DTTOL)
{
break;
}
}
}
return n;
}
/* screen by time --------------------------------------------------------------
* screening by time start, time end, and time interval
* args : gtime_t time I time
* gtime_t ts I time start (ts.time==0:no screening by ts)
* gtime_t te I time end (te.time==0:no screening by te)
* double tint I time interval (s) (0.0:no screen by tint)
* return : 1:on condition, 0:not on condition
*-----------------------------------------------------------------------------*/
int screent(gtime_t time, gtime_t ts, gtime_t te, double tint)
{
return (tint <= 0.0 || fmod(time2gpst(time, nullptr) + DTTOL, tint) <= DTTOL * 2.0) &&
(ts.time == 0 || timediff(time, ts) >= -DTTOL) &&
(te.time == 0 || timediff(time, te) < DTTOL);
}
/* read/save navigation data ---------------------------------------------------
* save or load navigation data
* args : char file I file path
* nav_t nav O/I navigation data
* return : status (1:ok,0:no file)
*-----------------------------------------------------------------------------*/
int readnav(const char *file, nav_t *nav)
{
FILE *fp;
eph_t eph0 = {0, 0, 0, 0, 0, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, {}, {}, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, false};
geph_t geph0 = {0, 0, 0, 0, 0, 0, {0, 0}, {0, 0}, {}, {}, {}, 0.0, 0.0, 0.0};
char buff[4096];
char *p;
int32_t toe_time;
int32_t tof_time;
int32_t toc_time;
int32_t ttr_time;
int i;
int sat;
int prn;
trace(3, "loadnav: file=%s\n", file);
if (!(fp = fopen(file, "re")))
{
return 0;
}
while (fgets(buff, sizeof(buff), fp))
{
if (!strncmp(buff, "IONUTC", 6))
{
for (i = 0; i < 8; i++)
{
nav->ion_gps[i] = 0.0;
}
for (i = 0; i < 4; i++)
{
nav->utc_gps[i] = 0.0;
}
nav->leaps = 0;
sscanf(buff, "IONUTC,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%d",
&nav->ion_gps[0], &nav->ion_gps[1], &nav->ion_gps[2], &nav->ion_gps[3],
&nav->ion_gps[4], &nav->ion_gps[5], &nav->ion_gps[6], &nav->ion_gps[7],
&nav->utc_gps[0], &nav->utc_gps[1], &nav->utc_gps[2], &nav->utc_gps[3],
&nav->leaps);
continue;
}
if ((p = strchr(buff, ',')))
{
*p = '\0';
}
else
{
continue;
}
if (!(sat = satid2no(buff)))
{
continue;
}
if (satsys(sat, &prn) == SYS_GLO)
{
nav->geph[prn - 1] = geph0;
nav->geph[prn - 1].sat = sat;
toe_time = tof_time = 0;
sscanf(p + 1,
"%d,%d,%d,%d,%d,%d,%d,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,"
"%lf,%lf,%lf,%lf",
&nav->geph[prn - 1].iode, &nav->geph[prn - 1].frq, &nav->geph[prn - 1].svh,
&nav->geph[prn - 1].sva, &nav->geph[prn - 1].age,
&toe_time, &tof_time,
&nav->geph[prn - 1].pos[0], &nav->geph[prn - 1].pos[1], &nav->geph[prn - 1].pos[2],
&nav->geph[prn - 1].vel[0], &nav->geph[prn - 1].vel[1], &nav->geph[prn - 1].vel[2],
&nav->geph[prn - 1].acc[0], &nav->geph[prn - 1].acc[1], &nav->geph[prn - 1].acc[2],
&nav->geph[prn - 1].taun, &nav->geph[prn - 1].gamn, &nav->geph[prn - 1].dtaun);
nav->geph[prn - 1].toe.time = toe_time;
nav->geph[prn - 1].tof.time = tof_time;
}
else
{
nav->eph[sat - 1] = eph0;
nav->eph[sat - 1].sat = sat;
toe_time = toc_time = ttr_time = 0;
sscanf(p + 1,
"%d,%d,%d,%d,%d,%d,%d,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,"
"%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%d,%d",
&nav->eph[sat - 1].iode, &nav->eph[sat - 1].iodc, &nav->eph[sat - 1].sva,
&nav->eph[sat - 1].svh,
&toe_time, &toc_time, &ttr_time,
&nav->eph[sat - 1].A, &nav->eph[sat - 1].e, &nav->eph[sat - 1].i0,
&nav->eph[sat - 1].OMG0, &nav->eph[sat - 1].omg, &nav->eph[sat - 1].M0,
&nav->eph[sat - 1].deln, &nav->eph[sat - 1].OMGd, &nav->eph[sat - 1].idot,
&nav->eph[sat - 1].crc, &nav->eph[sat - 1].crs, &nav->eph[sat - 1].cuc,
&nav->eph[sat - 1].cus, &nav->eph[sat - 1].cic, &nav->eph[sat - 1].cis,
&nav->eph[sat - 1].toes, &nav->eph[sat - 1].fit, &nav->eph[sat - 1].f0,
&nav->eph[sat - 1].f1, &nav->eph[sat - 1].f2, &nav->eph[sat - 1].tgd[0],
&nav->eph[sat - 1].code, &nav->eph[sat - 1].flag);
nav->eph[sat - 1].toe.time = toe_time;
nav->eph[sat - 1].toc.time = toc_time;
nav->eph[sat - 1].ttr.time = ttr_time;
}
}
fclose(fp);
return 1;
}
int savenav(const char *file, const nav_t *nav)
{
FILE *fp;
int i;
trace(3, "savenav: file=%s\n", file);
if (!(fp = fopen(file, "we")))
{
return 0;
}
for (i = 0; i < MAXSAT; i++)
{
if (nav->eph[i].ttr.time == 0)
{
continue;
}
auto id = satno2id(nav->eph[i].sat);
fprintf(fp,
"%s,%d,%d,%d,%d,%d,%d,%d,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,"
"%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,"
"%.14E,%.14E,%.14E,%.14E,%.14E,%d,%d\n",
id.data(), nav->eph[i].iode, nav->eph[i].iodc, nav->eph[i].sva,
nav->eph[i].svh, static_cast<int>(nav->eph[i].toe.time),
static_cast<int>(nav->eph[i].toc.time), static_cast<int>(nav->eph[i].ttr.time),
nav->eph[i].A, nav->eph[i].e, nav->eph[i].i0, nav->eph[i].OMG0,
nav->eph[i].omg, nav->eph[i].M0, nav->eph[i].deln, nav->eph[i].OMGd,
nav->eph[i].idot, nav->eph[i].crc, nav->eph[i].crs, nav->eph[i].cuc,
nav->eph[i].cus, nav->eph[i].cic, nav->eph[i].cis, nav->eph[i].toes,
nav->eph[i].fit, nav->eph[i].f0, nav->eph[i].f1, nav->eph[i].f2,
nav->eph[i].tgd[0], nav->eph[i].code, nav->eph[i].flag);
}
for (i = 0; i < MAXPRNGLO; i++)
{
if (nav->geph[i].tof.time == 0)
{
continue;
}
auto id = satno2id(nav->geph[i].sat);
fprintf(fp,
"%s,%d,%d,%d,%d,%d,%d,%d,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,"
"%.14E,%.14E,%.14E,%.14E,%.14E,%.14E\n",
id.data(), nav->geph[i].iode, nav->geph[i].frq, nav->geph[i].svh,
nav->geph[i].sva, nav->geph[i].age, static_cast<int>(nav->geph[i].toe.time),
static_cast<int>(nav->geph[i].tof.time),
nav->geph[i].pos[0], nav->geph[i].pos[1], nav->geph[i].pos[2],
nav->geph[i].vel[0], nav->geph[i].vel[1], nav->geph[i].vel[2],
nav->geph[i].acc[0], nav->geph[i].acc[1], nav->geph[i].acc[2],
nav->geph[i].taun, nav->geph[i].gamn, nav->geph[i].dtaun);
}
fprintf(fp,
"IONUTC,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,"
"%.14E,%.14E,%.14E,%d",
nav->ion_gps[0], nav->ion_gps[1], nav->ion_gps[2], nav->ion_gps[3],
nav->ion_gps[4], nav->ion_gps[5], nav->ion_gps[6], nav->ion_gps[7],
nav->utc_gps[0], nav->utc_gps[1], nav->utc_gps[2], nav->utc_gps[3],
nav->leaps);
fclose(fp);
return 1;
}
/* free observation data -------------------------------------------------------
* free memory for observation data
* args : obs_t *obs IO observation data
* return : none
*-----------------------------------------------------------------------------*/
void freeobs(obs_t *obs)
{
free(obs->data);
obs->data = nullptr;
obs->n = obs->nmax = 0;
}
/* free navigation data ---------------------------------------------------------
* free memory for navigation data
* args : nav_t *nav IO navigation data
* int opt I option (one of the following)
* (0x01: gps/qzs ephmeris, 0x02: glonass ephemeris,
* 0x04: sbas ephemeris, 0x08: precise ephemeris,
* 0x10: precise clock 0x20: almanac,
* 0x40: tec data)
* return : none
*-----------------------------------------------------------------------------*/
void freenav(nav_t *nav, int opt)
{
if (opt & 0x01)
{
free(nav->eph);
nav->eph = nullptr;
nav->n = nav->nmax = 0;
}
if (opt & 0x02)
{
free(nav->geph);
nav->geph = nullptr;
nav->ng = nav->ngmax = 0;
}
if (opt & 0x04)
{
free(nav->seph);
nav->seph = nullptr;
nav->ns = nav->nsmax = 0;
}
if (opt & 0x08)
{
free(nav->peph);
nav->peph = nullptr;
nav->ne = nav->nemax = 0;
}
if (opt & 0x10)
{
free(nav->pclk);
nav->pclk = nullptr;
nav->nc = nav->ncmax = 0;
}
if (opt & 0x20)
{
free(nav->alm);
nav->alm = nullptr;
nav->na = nav->namax = 0;
}
if (opt & 0x40)
{
free(nav->tec);
nav->tec = nullptr;
nav->nt = nav->ntmax = 0;
}
if (opt & 0x80)
{
free(nav->fcb);
nav->fcb = nullptr;
nav->nf = nav->nfmax = 0;
}
}
/* debug trace functions -----------------------------------------------------*/
// #ifdef TRACE
//
FILE *fp_trace = nullptr; /* file pointer of trace */
std::string file_trace; /* trace file */
static int level_trace = 0; /* level of trace */
unsigned int tick_trace = 0; /* tick time at traceopen (ms) */
gtime_t time_trace = {0, 0.0}; /* time at traceopen */
pthread_mutex_t lock_trace; /* lock for trace */
void traceswap()
{
gtime_t time = utc2gpst(timeget());
std::string path;
rtk_lock(&lock_trace);
if (static_cast<int>(time2gpst(time, nullptr) / INT_SWAP_TRAC) ==
static_cast<int>(time2gpst(time_trace, nullptr) / INT_SWAP_TRAC))
{
rtk_unlock(&lock_trace);
return;
}
time_trace = time;
if (!reppath(file_trace, path, time, "", ""))
{
rtk_unlock(&lock_trace);
return;
}
if (fp_trace)
{
fclose(fp_trace);
}
if (!(fp_trace = fopen(path.data(), "we")))
{
fp_trace = stderr;
}
rtk_unlock(&lock_trace);
}
void traceopen(const char *file)
{
gtime_t time = utc2gpst(timeget());
std::string path;
reppath(file, path, time, "", "");
if (path.empty() or (fp_trace = fopen(path.data(), "we")) == nullptr)
{
fp_trace = stderr;
}
file_trace = file;
tick_trace = tickget();
time_trace = time;
initlock(&lock_trace);
}
void traceclose()
{
if (fp_trace && fp_trace != stderr)
{
fclose(fp_trace);
}
fp_trace = nullptr;
file_trace.clear();
}
void tracelevel(int level)
{
level_trace = level;
}
// extern void trace(int level, const char *format, ...)
// {
// va_list ap;
//
// /* print error message to stderr */
// if (level <= 1) {
// va_start(ap,format); vfprintf(stderr,format,ap); va_end(ap);
// }
// if (!fp_trace||level>level_trace) return;
// traceswap();
// fprintf(fp_trace,"%d ",level);
// va_start(ap,format); vfprintf(fp_trace,format,ap); va_end(ap);
// fflush(fp_trace);
// }
void tracet(int level, const char *format, ...)
{
va_list ap;
if (!fp_trace || level > level_trace)
{
return;
}
traceswap();
fprintf(fp_trace, "%d %9.3f: ", level, (tickget() - tick_trace) / 1000.0);
va_start(ap, format);
vfprintf(fp_trace, format, ap);
va_end(ap);
fflush(fp_trace);
}
void tracemat(int level, const double *A, int n, int m, int p, int q)
{
std::string buffer_;
matsprint(A, n, m, p, q, buffer_);
VLOG(level) << buffer_;
}
void traceobs(int level __attribute__((unused)), const obsd_t *obs __attribute__((unused)), int n __attribute__((unused)))
{
// char str[64],id[16];
// int i;
//
// if (!fp_trace||level>level_trace) return;
// for (i=0;i<n;i++) {
// time2str(obs[i].time,str,3);
// auto id = satno2id(obs[i].sat);
// fprintf(fp_trace," (%2d) %s %-3s rcv%d %13.3f %13.3f %13.3f %13.3f %d %d %d %d %3.1f %3.1f\n",
// i+1,str,id.data(),obs[i].rcv,obs[i].L[0],obs[i].L[1],obs[i].P[0],
// obs[i].P[1],obs[i].LLI[0],obs[i].LLI[1],obs[i].code[0],
// obs[i].code[1],obs[i].SNR[0]*0.25,obs[i].SNR[1]*0.25);
// }
// fflush(fp_trace);
}
// extern void tracenav(int level, const nav_t *nav)
// {
// char s1[64],s2[64],id[16];
// int i;
//
// if (!fp_trace||level>level_trace) return;
// for (i=0;i<nav->n;i++) {
// time2str(nav->eph[i].toe,s1,0);
// time2str(nav->eph[i].ttr,s2,0);
// auto id = satno2id(nav->eph[i].sat);
// fprintf(fp_trace,"(%3d) %-3s : %s %s %3d %3d %02x\n",i+1,
// id.data(),s1,s2,nav->eph[i].iode,nav->eph[i].iodc,nav->eph[i].svh);
// }
// fprintf(fp_trace,"(ion) %9.4e %9.4e %9.4e %9.4e\n",nav->ion_gps[0],
// nav->ion_gps[1],nav->ion_gps[2],nav->ion_gps[3]);
// fprintf(fp_trace,"(ion) %9.4e %9.4e %9.4e %9.4e\n",nav->ion_gps[4],
// nav->ion_gps[5],nav->ion_gps[6],nav->ion_gps[7]);
// fprintf(fp_trace,"(ion) %9.4e %9.4e %9.4e %9.4e\n",nav->ion_gal[0],
// nav->ion_gal[1],nav->ion_gal[2],nav->ion_gal[3]);
// }
// extern void tracegnav(int level, const nav_t *nav)
// {
// char s1[64],s2[64],id[16];
// int i;
//
// if (!fp_trace||level>level_trace) return;
// for (i=0;i<nav->ng;i++) {
// time2str(nav->geph[i].toe,s1,0);
// time2str(nav->geph[i].tof,s2,0);
// auto id = satno2id(nav->geph[i].sat);
// fprintf(fp_trace,"(%3d) %-3s : %s %s %2d %2d %8.3f\n",i+1,
// id.data(),s1,s2,nav->geph[i].frq,nav->geph[i].svh,nav->geph[i].taun*1e6);
// }
// }
// extern void tracehnav(int level, const nav_t *nav)
// {
// char s1[64],s2[64],id[16];
// int i;
//
// if (!fp_trace||level>level_trace) return;
// for (i=0;i<nav->ns;i++) {
// time2str(nav->seph[i].t0,s1,0);
// time2str(nav->seph[i].tof,s2,0);
// auto id = satno2id(nav->seph[i].sat);
// fprintf(fp_trace,"(%3d) %-3s : %s %s %2d %2d\n",i+1,
// id.data(),s1,s2,nav->seph[i].svh,nav->seph[i].sva);
// }
// }
// extern void tracepeph(int level, const nav_t *nav)
// {
// char s[64];
// int i,j;
//
// if (!fp_trace||level>level_trace) return;
//
// for (i=0;i<nav->ne;i++) {
// time2str(nav->peph[i].time,s,0);
// for (j=0;j<MAXSAT;j++) {
// auto id = satno2id(j+1);
// fprintf(fp_trace,"%-3s %d %-3s %13.3f %13.3f %13.3f %13.3f %6.3f %6.3f %6.3f %6.3f\n",
// s,nav->peph[i].index,id.data(),
// nav->peph[i].pos[j][0],nav->peph[i].pos[j][1],
// nav->peph[i].pos[j][2],nav->peph[i].pos[j][3]*1e9,
// nav->peph[i].std[j][0],nav->peph[i].std[j][1],
// nav->peph[i].std[j][2],nav->peph[i].std[j][3]*1e9);
// }
// }
// }
// extern void tracepclk(int level, const nav_t *nav)
// {
// char s[64];
// int i,j;
//
// if (!fp_trace||level>level_trace) return;
//
// for (i=0;i<nav->nc;i++) {
// time2str(nav->pclk[i].time,s,0);
// for (j=0;j<MAXSAT;j++) {
// auto id = satno2id(j+1);
// fprintf(fp_trace,"%-3s %d %-3s %13.3f %6.3f\n",
// s,nav->pclk[i].index,id.data(),
// nav->pclk[i].clk[j][0]*1e9,nav->pclk[i].std[j][0]*1e9);
// }
// }
// }
// extern void traceb(int level, const unsigned char *p, int n)
// {
// int i;
// if (!fp_trace||level>level_trace) return;
// for (i=0;i<n;i++) fprintf(fp_trace,"%02X%s",*p++,i%8==7?" ":"");
// fprintf(fp_trace,"\n");
// }
// #else
// void traceopen(const char *file) {}
// void traceclose(void) {}
// void tracelevel(int level) {}
void trace(int level, const char *format, ...)
{
va_list ap;
char buffer[256];
va_start(ap, format);
vsnprintf(buffer, sizeof(buffer), format, ap);
va_end(ap);
std::string str(buffer);
VLOG(level) << "RTKLIB TRACE[" << level << "]:" << str;
}
// void tracet (int level, const char *format, ...) {}
// void tracemat(int level, const double *A, int n, int m, int p, int q) {}
// void traceobs(int level, const obsd_t *obs, int n) {}
// void tracenav(int level, const nav_t *nav) {}
// void tracegnav(int level, const nav_t *nav) {}
// void tracehnav(int level, const nav_t *nav) {}
// void tracepeph(int level, const nav_t *nav) {}
// void tracepclk(int level, const nav_t *nav) {}
// void traceb (int level, const unsigned char *p, int n) {}
// #endif /* TRACE */
/* execute command -------------------------------------------------------------
* execute command line by operating system shell
* args : char *cmd I command line
* return : execution status (0:ok,0>:error)
*-----------------------------------------------------------------------------*/
int execcmd(const char *cmd)
{
trace(3, "execcmd: cmd=%s\n", cmd);
return system(cmd);
}
/* create directory ------------------------------------------------------------
* create directory if not exist
* args : char *path I file path to be saved
* return : none
* notes : not recursive. only one level
*-----------------------------------------------------------------------------*/
void createdir(fs::path const &path)
{
errorlib::error_code ec;
auto created = fs::create_directory(path, ec);
if (not created)
{
trace(1, "Error creating folder: %s", path.c_str());
}
}
/* replace string ------------------------------------------------------------*/
int repstr(std::string &str, std::string const &pat, std::string const &rep)
{
int replaced = 0;
auto pos = str.find(pat);
if (pos != std::string::npos)
{
str.replace(pos, pat.length(), rep);
replaced = 1;
}
return replaced;
}
/* replace keywords in file path -----------------------------------------------
* replace keywords in file path with date, time, rover and base station id
* args : char *path I file path (see below)
* char *rpath O file path in which keywords replaced (see below)
* gtime_t time I time (gpst) (time.time==0: not replaced)
* char *rov I rover id string ("": not replaced)
* char *base I base station id string ("": not replaced)
* return : status (1:keywords replaced, 0:no valid keyword in the path,
* -1:no valid time)
* notes : the following keywords in path are replaced by date, time and name
* %Y -> yyyy : year (4 digits) (1900-2099)
* %y -> yy : year (2 digits) (00-99)
* %m -> mm : month (01-12)
* %d -> dd : day of month (01-31)
* %h -> hh : hours (00-23)
* %M -> mm : minutes (00-59)
* %S -> ss : seconds (00-59)
* %n -> ddd : day of year (001-366)
* %W -> wwww : gps week (0001-9999)
* %D -> d : day of gps week (0-6)
* %H -> h : hour code (a=0,b=1,c=2,...,x=23)
* %ha-> hh : 3 hours (00,03,06,...,21)
* %hb-> hh : 6 hours (00,06,12,18)
* %hc-> hh : 12 hours (00,12)
* %t -> mm : 15 minutes (00,15,30,45)
* %r -> rrrr : rover id
* %b -> bbbb : base station id
*-----------------------------------------------------------------------------*/
int reppath(std::string const &path, std::string &rpath, gtime_t time, const char *rov,
const char *base)
{
int stat = 0;
rpath = path;
// synctactic sugar; implements C++23 std::string::contains()
auto patFind = [](std::string const &s, std::string const &pat) -> bool {
auto pos = s.find(pat);
return pos != s.npos;
};
if (*rov)
{
stat |= repstr(rpath, "%r", rov);
}
if (*base)
{
stat |= repstr(rpath, "%b", base);
}
if (time.time != 0)
{
char rep[64]; // scratch space for replacement string
double ep[6];
time2epoch(time, ep);
int week = 0;
auto dow = static_cast<int>(floor(time2gpst(time, &week) / 86400.0));
double ep0[6] = {ep[0], 1, 1, 0, 0, 0};
auto doy = static_cast<int>(floor(timediff(time, epoch2time(ep0)) / 86400.0)) + 1;
std::snprintf(rep, sizeof(rep), "%02d", (static_cast<int>(ep[3]) / 3) * 3);
stat |= repstr(rpath, "%ha", rep);
std::snprintf(rep, sizeof(rep), "%02d", (static_cast<int>(ep[3]) / 6) * 6);
stat |= repstr(rpath, "%hb", rep);
std::snprintf(rep, sizeof(rep), "%02d", (static_cast<int>(ep[3]) / 12) * 12);
stat |= repstr(rpath, "%hc", rep);
std::snprintf(rep, sizeof(rep), "%04.0f", ep[0]);
stat |= repstr(rpath, "%Y", rep);
std::snprintf(rep, sizeof(rep), "%02.0f", fmod(ep[0], 100.0));
stat |= repstr(rpath, "%y", rep);
std::snprintf(rep, sizeof(rep), "%02.0f", ep[1]);
stat |= repstr(rpath, "%m", rep);
std::snprintf(rep, sizeof(rep), "%02.0f", ep[2]);
stat |= repstr(rpath, "%d", rep);
std::snprintf(rep, sizeof(rep), "%02.0f", ep[3]);
stat |= repstr(rpath, "%h", rep);
std::snprintf(rep, sizeof(rep), "%02.0f", ep[4]);
stat |= repstr(rpath, "%M", rep);
std::snprintf(rep, sizeof(rep), "%02.0f", floor(ep[5]));
stat |= repstr(rpath, "%S", rep);
std::snprintf(rep, sizeof(rep), "%03d", doy);
stat |= repstr(rpath, "%n", rep);
std::snprintf(rep, sizeof(rep), "%04d", week);
stat |= repstr(rpath, "%W", rep);
std::snprintf(rep, sizeof(rep), "%d", dow);
stat |= repstr(rpath, "%D", rep);
std::snprintf(rep, sizeof(rep), "%c", 'a' + static_cast<int>(ep[3]));
stat |= repstr(rpath, "%H", rep);
std::snprintf(rep, sizeof(rep), "%02d", (static_cast<int>(ep[4]) / 15) * 15);
stat |= repstr(rpath, "%t", rep);
}
else if (patFind(rpath, "%ha") || patFind(rpath, "%hb") || patFind(rpath, "%hc") ||
patFind(rpath, "%Y") || patFind(rpath, "%y") || patFind(rpath, "%m") ||
patFind(rpath, "%d") || patFind(rpath, "%h") || patFind(rpath, "%M") ||
patFind(rpath, "%S") || patFind(rpath, "%n") || patFind(rpath, "%W") ||
patFind(rpath, "%D") || patFind(rpath, "%H") || patFind(rpath, "%t"))
{
stat = -1; /* no valid time */
}
return stat;
}
/* satellite carrier wave length -----------------------------------------------
* get satellite carrier wave lengths
* args : int sat I satellite number
* int frq I frequency index (0:L1,1:L2,2:L5/3,...)
* nav_t *nav I navigation messages
* return : carrier wave length (m) (0.0: error)
*-----------------------------------------------------------------------------*/
double satwavelen(int sat, int frq, const nav_t *nav)
{
const double freq_glo[] = {FREQ1_GLO, FREQ2_GLO};
const double dfrq_glo[] = {DFRQ1_GLO, DFRQ2_GLO};
int i;
int sys = satsys(sat, nullptr);
if (sys == SYS_GLO)
{
if (0 <= frq && frq <= 1)
{
for (i = 0; i < nav->ng; i++)
{
if (nav->geph[i].sat != sat)
{
continue;
}
return SPEED_OF_LIGHT_M_S / (freq_glo[frq] + dfrq_glo[frq] * nav->geph[i].frq);
}
}
else if (frq == 2)
{ /* L3 */
return SPEED_OF_LIGHT_M_S / FREQ3_GLO;
}
}
else if (sys == SYS_BDS)
{
if (frq == 0)
{
return SPEED_OF_LIGHT_M_S / FREQ1_BDS; /* B1 */
}
if (frq == 1)
{
return SPEED_OF_LIGHT_M_S / FREQ2_BDS; /* B2 */
}
if (frq == 2)
{
return SPEED_OF_LIGHT_M_S / FREQ3_BDS; /* B3 */
}
}
else
{
if (frq == 0)
{
return SPEED_OF_LIGHT_M_S / FREQ1; /* L1/E1 */
}
if (frq == 1)
{
return SPEED_OF_LIGHT_M_S / FREQ2; /* L2 */
}
if (frq == 2)
{
return SPEED_OF_LIGHT_M_S / FREQ5; /* L5/E5a */
}
if (frq == 3)
{
return SPEED_OF_LIGHT_M_S / FREQ6; /* L6/LEX */
}
if (frq == 4)
{
return SPEED_OF_LIGHT_M_S / FREQ7; /* E5b */
}
if (frq == 5)
{
return SPEED_OF_LIGHT_M_S / FREQ8; /* E5a+b */
}
if (frq == 6)
{
return SPEED_OF_LIGHT_M_S / FREQ9; /* S */
}
}
return 0.0;
}
/* geometric distance ----------------------------------------------------------
* compute geometric distance and receiver-to-satellite unit vector
* args : double *rs I satellilte position (ecef at transmission) (m)
* double *rr I receiver position (ecef at reception) (m)
* double *e O line-of-sight vector (ecef)
* return : geometric distance (m) (0>:error/no satellite position)
* notes : distance includes sagnac effect correction
*-----------------------------------------------------------------------------*/
double geodist(const double *rs, const double *rr, double *e)
{
double r;
int i;
if (norm_rtk(rs, 3) < RE_WGS84)
{
return -1.0;
}
for (i = 0; i < 3; i++)
{
e[i] = rs[i] - rr[i];
}
r = norm_rtk(e, 3);
for (i = 0; i < 3; i++)
{
e[i] /= r;
}
return r + GNSS_OMEGA_EARTH_DOT * (rs[0] * rr[1] - rs[1] * rr[0]) / SPEED_OF_LIGHT_M_S;
}
/* satellite azimuth/elevation angle -------------------------------------------
* compute satellite azimuth/elevation angle
* args : double *pos I geodetic position {lat,lon,h} (rad,m)
* double *e I receiver-to-satellilte unit vector (ecef)
* double *azel IO azimuth/elevation {az,el} (rad) (NULL: no output)
* (0.0<=azel[0]<2*pi,-pi/2<=azel[1]<=pi/2)
* return : elevation angle (rad)
*-----------------------------------------------------------------------------*/
double satazel(const double *pos, const double *e, double *azel)
{
double az = 0.0;
double el = GNSS_PI / 2.0;
double enu[3];
if (pos[2] > -RE_WGS84)
{
ecef2enu(pos, e, enu);
az = dot(enu, enu, 2) < 1e-12 ? 0.0 : atan2(enu[0], enu[1]);
if (az < 0.0)
{
az += 2 * GNSS_PI;
}
el = asin(enu[2]);
}
if (azel)
{
azel[0] = az;
azel[1] = el;
}
return el;
}
/* compute dops ----------------------------------------------------------------
* compute DOP (dilution of precision)
* args : int ns I number of satellites
* double *azel I satellite azimuth/elevation angle (rad)
* double elmin I elevation cutoff angle (rad)
* double *dop O DOPs {GDOP,PDOP,HDOP,VDOP}
* return : none
* notes : dop[0]-[3] return 0 in case of dop computation error
*-----------------------------------------------------------------------------*/
void dops(int ns, const double *azel, double elmin, double *dop)
{
std::vector<double> H(4 * MAXSAT);
double Q[16];
double cosel;
double sinel;
int i;
int n;
for (i = 0; i < 4; i++)
{
dop[i] = 0.0;
}
for (i = n = 0; i < ns && i < MAXSAT; i++)
{
if (azel[1 + i * 2] < elmin || azel[1 + i * 2] <= 0.0)
{
continue;
}
cosel = cos(azel[1 + i * 2]);
sinel = sin(azel[1 + i * 2]);
H[4 * n] = cosel * sin(azel[i * 2]);
H[1 + 4 * n] = cosel * cos(azel[i * 2]);
H[2 + 4 * n] = sinel;
H[3 + 4 * n++] = 1.0;
}
if (n < 4)
{
return;
}
matmul("NT", 4, 4, n, 1.0, H.data(), H.data(), 0.0, Q);
if (!matinv(Q, 4))
{
dop[0] = std::sqrt(Q[0] + Q[5] + Q[10] + Q[15]); /* GDOP */
dop[1] = std::sqrt(Q[0] + Q[5] + Q[10]); /* PDOP */
dop[2] = std::sqrt(Q[0] + Q[5]); /* HDOP */
dop[3] = std::sqrt(Q[10]); /* VDOP */
}
}
/* ionosphere model ------------------------------------------------------------
* compute ionospheric delay by broadcast ionosphere model (klobuchar model)
* args : gtime_t t I time (gpst)
* double *ion I iono model parameters {a0,a1,a2,a3,b0,b1,b2,b3}
* double *pos I receiver position {lat,lon,h} (rad,m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* return : ionospheric delay (L1) (m)
*-----------------------------------------------------------------------------*/
double ionmodel(gtime_t t, const double *ion, const double *pos,
const double *azel)
{
const double ion_default[] = {/* 2004/1/1 */
0.1118E-07, -0.7451e-08, -0.5961e-07, 0.1192E-06,
0.1167E+06, -0.2294E+06, -0.1311e+06, 0.1049E+07};
double tt;
double f;
double psi;
double phi;
double lam;
double amp;
double per;
double x;
int week;
if (pos[2] < -1e3 || azel[1] <= 0)
{
return 0.0;
}
if (norm_rtk(ion, 8) <= 0.0)
{
ion = ion_default;
}
/* earth centered angle (semi-circle) */
psi = 0.0137 / (azel[1] / GNSS_PI + 0.11) - 0.022;
/* subionospheric latitude/longitude (semi-circle) */
phi = pos[0] / GNSS_PI + psi * cos(azel[0]);
if (phi > 0.416)
{
phi = 0.416;
}
else if (phi < -0.416)
{
phi = -0.416;
}
lam = pos[1] / GNSS_PI + psi * sin(azel[0]) / cos(phi * GNSS_PI);
/* geomagnetic latitude (semi-circle) */
phi += 0.064 * cos((lam - 1.617) * GNSS_PI);
/* local time (s) */
tt = 43200.0 * lam + time2gpst(t, &week);
tt -= floor(tt / 86400.0) * 86400.0; /* 0 <= tt<86400 */
/* slant factor */
f = 1.0 + 16.0 * pow(0.53 - azel[1] / GNSS_PI, 3.0);
/* ionospheric delay */
amp = ion[0] + phi * (ion[1] + phi * (ion[2] + phi * ion[3]));
per = ion[4] + phi * (ion[5] + phi * (ion[6] + phi * ion[7]));
amp = amp < 0.0 ? 0.0 : amp;
per = per < 72000.0 ? 72000.0 : per;
x = 2.0 * GNSS_PI * (tt - 50400.0) / per;
return SPEED_OF_LIGHT_M_S * f * (fabs(x) < 1.57 ? 5E-9 + amp * (1.0 + x * x * (-0.5 + x * x / 24.0)) : 5E-9);
}
/* ionosphere mapping function -------------------------------------------------
* compute ionospheric delay mapping function by single layer model
* args : double *pos I receiver position {lat,lon,h} (rad,m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* return : ionospheric mapping function
*-----------------------------------------------------------------------------*/
double ionmapf(const double *pos, const double *azel)
{
if (pos[2] >= HION)
{
return 1.0;
}
return 1.0 / cos(asin((RE_WGS84 + pos[2]) / (RE_WGS84 + HION) * sin(GNSS_PI / 2.0 - azel[1])));
}
/* ionospheric pierce point position -------------------------------------------
* compute ionospheric pierce point (ipp) position and slant factor
* args : double *pos I receiver position {lat,lon,h} (rad,m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* double re I earth radius (km)
* double hion I altitude of ionosphere (km)
* double *posp O pierce point position {lat,lon,h} (rad,m)
* return : slant factor
* notes : see ref [2], only valid on the earth surface
* fixing bug on ref [2] A.4.4.10.1 A-22,23
*-----------------------------------------------------------------------------*/
double ionppp(const double *pos, const double *azel, double re,
double hion, double *posp)
{
double cosaz;
double rp;
double ap;
double sinap;
double tanap;
rp = re / (re + hion) * cos(azel[1]);
ap = GNSS_PI / 2.0 - azel[1] - asin(rp);
sinap = sin(ap);
tanap = tan(ap);
cosaz = cos(azel[0]);
posp[0] = asin(sin(pos[0]) * cos(ap) + cos(pos[0]) * sinap * cosaz);
if ((pos[0] > 70.0 * D2R && tanap * cosaz > tan(GNSS_PI / 2.0 - pos[0])) ||
(pos[0] < -70.0 * D2R && -tanap * cosaz > tan(GNSS_PI / 2.0 + pos[0])))
{
posp[1] = pos[1] + GNSS_PI - asin(sinap * sin(azel[0]) / cos(posp[0]));
}
else
{
posp[1] = pos[1] + asin(sinap * sin(azel[0]) / cos(posp[0]));
}
return 1.0 / sqrt(1.0 - rp * rp);
}
/* troposphere model -----------------------------------------------------------
* compute tropospheric delay by standard atmosphere and saastamoinen model
* args : gtime_t time I time
* double *pos I receiver position {lat,lon,h} (rad,m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* double humi I relative humidity
* return : tropospheric delay (m)
*-----------------------------------------------------------------------------*/
double tropmodel(gtime_t time __attribute__((unused)), const double *pos, const double *azel,
double humi)
{
const double temp0 = 15.0; /* temparature at sea level */
double hgt;
double pres;
double temp;
double e;
double z;
double trph;
double trpw;
if (pos[2] < -100.0 || 1e4 < pos[2] || azel[1] <= 0)
{
return 0.0;
}
/* standard atmosphere */
hgt = pos[2] < 0.0 ? 0.0 : pos[2];
pres = 1013.25 * pow(1.0 - 2.2557E-5 * hgt, 5.2568);
temp = temp0 - 6.5E-3 * hgt + 273.16;
e = 6.108 * humi * exp((17.15 * temp - 4684.0) / (temp - 38.45));
/* saastamoninen model */
z = GNSS_PI / 2.0 - azel[1];
trph = 0.0022768 * pres / (1.0 - 0.00266 * cos(2.0 * pos[0]) - 0.00028 * hgt / 1e3) / cos(z);
trpw = 0.002277 * (1255.0 / temp + 0.05) * e / cos(z);
return trph + trpw;
}
#ifndef IERS_MODEL
double interpc(const double coef[], double lat)
{
int i = static_cast<int>(lat / 15.0);
if (i < 1)
{
return coef[0];
}
if (i > 4)
{
return coef[4];
}
return coef[i - 1] * (1.0 - lat / 15.0 + i) + coef[i] * (lat / 15.0 - i);
}
double mapf(double el, double a, double b, double c)
{
double sinel = sin(el);
return (1.0 + a / (1.0 + b / (1.0 + c))) / (sinel + (a / (sinel + b / (sinel + c))));
}
double nmf(gtime_t time, const double pos[], const double azel[],
double *mapfw)
{
/* ref [5] table 3 */
/* hydro-ave-a,b,c, hydro-amp-a,b,c, wet-a,b,c at latitude 15,30,45,60,75 */
const double coef[][5] = {
{1.2769934E-3, 1.2683230E-3, 1.2465397E-3, 1.2196049E-3, 1.2045996E-3},
{2.9153695E-3, 2.9152299E-3, 2.9288445E-3, 2.9022565E-3, 2.9024912E-3},
{62.610505E-3, 62.837393E-3, 63.721774E-3, 63.824265E-3, 64.258455E-3},
{0.0000000E-0, 1.2709626E-5, 2.6523662E-5, 3.4000452E-5, 4.1202191e-5},
{0.0000000E-0, 2.1414979E-5, 3.0160779E-5, 7.2562722E-5, 11.723375E-5},
{0.0000000E-0, 9.0128400E-5, 4.3497037E-5, 84.795348E-5, 170.37206E-5},
{5.8021897E-4, 5.6794847E-4, 5.8118019E-4, 5.9727542E-4, 6.1641693E-4},
{1.4275268E-3, 1.5138625E-3, 1.4572752E-3, 1.5007428E-3, 1.7599082E-3},
{4.3472961e-2, 4.6729510E-2, 4.3908931e-2, 4.4626982E-2, 5.4736038E-2}};
const double aht[] = {2.53E-5, 5.49E-3, 1.14E-3}; /* height correction */
double y;
double cosy;
double ah[3];
double aw[3];
double dm;
double el = azel[1];
double lat = pos[0] * R2D;
double hgt = pos[2];
int i;
if (el <= 0.0)
{
if (mapfw)
{
*mapfw = 0.0;
}
return 0.0;
}
/* year from doy 28, added half a year for southern latitudes */
y = (time2doy(time) - 28.0) / 365.25 + (lat < 0.0 ? 0.5 : 0.0);
cosy = cos(2.0 * GNSS_PI * y);
lat = fabs(lat);
for (i = 0; i < 3; i++)
{
ah[i] = interpc(coef[i], lat) - interpc(coef[i + 3], lat) * cosy;
aw[i] = interpc(coef[i + 6], lat);
}
/* ellipsoidal height is used instead of height above sea level */
dm = (1.0 / sin(el) - mapf(el, aht[0], aht[1], aht[2])) * hgt / 1e3;
if (mapfw)
{
*mapfw = mapf(el, aw[0], aw[1], aw[2]);
}
return mapf(el, ah[0], ah[1], ah[2]) + dm;
}
#endif /* !IERS_MODEL */
/* troposphere mapping function ------------------------------------------------
* compute tropospheric mapping function by NMF
* args : gtime_t t I time
* double *pos I receiver position {lat,lon,h} (rad,m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* double *mapfw IO wet mapping function (NULL: not output)
* return : dry mapping function
* note : see ref [5] (NMF) and [9] (GMF)
* original JGR paper of [5] has bugs in eq.(4) and (5). the corrected
* paper is obtained from:
* ftp://web.haystack.edu/pub/aen/nmf/NMF_JGR.pdf
*-----------------------------------------------------------------------------*/
double tropmapf(gtime_t time, const double pos[], const double azel[],
double *mapfw)
{
#ifdef IERS_MODEL
const double ep[] = {2000, 1, 1, 12, 0, 0};
double mjd, lat, lon, hgt, zd, gmfh, gmfw;
#endif
trace(4, "tropmapf: pos=%10.6f %11.6f %6.1f azel=%5.1f %4.1f\n",
pos[0] * R2D, pos[1] * R2D, pos[2], azel[0] * R2D, azel[1] * R2D);
if (pos[2] < -1000.0 || pos[2] > 20000.0)
{
if (mapfw)
{
*mapfw = 0.0;
}
return 0.0;
}
#ifdef IERS_MODEL
mjd = 51544.5 + (timediff(time, epoch2time(ep))) / 86400.0;
lat = pos[0];
lon = pos[1];
hgt = pos[2] - geoidh(pos); /* height in m (mean sea level) */
zd = GNSS_PI / 2.0 - azel[1];
/* call GMF */
gmf_(&mjd, &lat, &lon, &hgt, &zd, &gmfh, &gmfw);
if (mapfw) *mapfw = gmfw;
return gmfh;
#else
return nmf(time, pos, azel, mapfw); /* NMF */
#endif
}
/* interpolate antenna phase center variation --------------------------------*/
double interpvar(double ang, const double *var)
{
double a = ang / 5.0; /* ang=0-90 */
int i = static_cast<int>(a);
if (i < 0)
{
return var[0];
}
if (i >= 18)
{
return var[18];
}
return var[i] * (1.0 - a + i) + var[i + 1] * (a - i);
}
/* receiver antenna model ------------------------------------------------------
* compute antenna offset by antenna phase center parameters
* args : pcv_t *pcv I antenna phase center parameters
* double *azel I azimuth/elevation for receiver {az,el} (rad)
* int opt I option (0:only offset,1:offset+pcv)
* double *dant O range offsets for each frequency (m)
* return : none
* notes : current version does not support azimuth dependent terms
*-----------------------------------------------------------------------------*/
void antmodel(const pcv_t *pcv, const double *del, const double *azel,
int opt, double *dant)
{
double e[3];
double off[3];
double cosel = cos(azel[1]);
int i;
int j;
trace(4, "antmodel: azel=%6.1f %4.1f opt=%d\n", azel[0] * R2D, azel[1] * R2D, opt);
e[0] = sin(azel[0]) * cosel;
e[1] = cos(azel[0]) * cosel;
e[2] = sin(azel[1]);
for (i = 0; i < NFREQ; i++)
{
for (j = 0; j < 3; j++)
{
off[j] = pcv->off[i][j] + del[j];
}
dant[i] = -dot(off, e, 3) + (opt ? interpvar(90.0 - azel[1] * R2D, pcv->var[i]) : 0.0);
}
trace(5, "antmodel: dant=%6.3f %6.3f\n", dant[0], dant[1]);
}
/* satellite antenna model ------------------------------------------------------
* compute satellite antenna phase center parameters
* args : pcv_t *pcv I antenna phase center parameters
* double nadir I nadir angle for satellite (rad)
* double *dant O range offsets for each frequency (m)
* return : none
*-----------------------------------------------------------------------------*/
void antmodel_s(const pcv_t *pcv, double nadir, double *dant)
{
int i;
trace(4, "antmodel_s: nadir=%6.1f\n", nadir * R2D);
for (i = 0; i < NFREQ; i++)
{
dant[i] = interpvar(nadir * R2D * 5.0, pcv->var[i]);
}
trace(5, "antmodel_s: dant=%6.3f %6.3f\n", dant[0], dant[1]);
}
/* sun and moon position in eci (ref [4] 5.1.1, 5.2.1) -----------------------*/
void sunmoonpos_eci(gtime_t tut, double *rsun, double *rmoon)
{
const double ep2000[] = {2000, 1, 1, 12, 0, 0};
double t;
double f[5];
double eps;
double Ms;
double ls;
double rs;
double lm;
double pm;
double rm;
double sine;
double cose;
double sinp;
double cosp;
double sinl;
double cosl;
trace(4, "sunmoonpos_eci: tut=%s\n", time_str(tut, 3));
t = timediff(tut, epoch2time(ep2000)) / 86400.0 / 36525.0;
/* astronomical arguments */
ast_args(t, f);
/* obliquity of the ecliptic */
eps = 23.439291 - 0.0130042 * t;
sine = sin(eps * D2R);
cose = cos(eps * D2R);
/* sun position in eci */
if (rsun)
{
Ms = 357.5277233 + 35999.05034 * t;
ls = 280.460 + 36000.770 * t + 1.914666471 * sin(Ms * D2R) + 0.019994643 * sin(2.0 * Ms * D2R);
rs = AU * (1.000140612 - 0.016708617 * cos(Ms * D2R) - 0.000139589 * cos(2.0 * Ms * D2R));
sinl = sin(ls * D2R);
cosl = cos(ls * D2R);
rsun[0] = rs * cosl;
rsun[1] = rs * cose * sinl;
rsun[2] = rs * sine * sinl;
trace(5, "rsun =%.3f %.3f %.3f\n", rsun[0], rsun[1], rsun[2]);
}
/* moon position in eci */
if (rmoon)
{
lm = 218.32 + 481267.883 * t + 6.29 * sin(f[0]) - 1.27 * sin(f[0] - 2.0 * f[3]) +
0.66 * sin(2.0 * f[3]) + 0.21 * sin(2.0 * f[0]) - 0.19 * sin(f[1]) - 0.11 * sin(2.0 * f[2]);
pm = 5.13 * sin(f[2]) + 0.28 * sin(f[0] + f[2]) - 0.28 * sin(f[2] - f[0]) -
0.17 * sin(f[2] - 2.0 * f[3]);
rm = RE_WGS84 / sin((0.9508 + 0.0518 * cos(f[0]) + 0.0095 * cos(f[0] - 2.0 * f[3]) +
0.0078 * cos(2.0 * f[3]) + 0.0028 * cos(2.0 * f[0])) *
D2R);
sinl = sin(lm * D2R);
cosl = cos(lm * D2R);
sinp = sin(pm * D2R);
cosp = cos(pm * D2R);
rmoon[0] = rm * cosp * cosl;
rmoon[1] = rm * (cose * cosp * sinl - sine * sinp);
rmoon[2] = rm * (sine * cosp * sinl + cose * sinp);
trace(5, "rmoon=%.3f %.3f %.3f\n", rmoon[0], rmoon[1], rmoon[2]);
}
}
/* sun and moon position -------------------------------------------------------
* get sun and moon position in ecef
* args : gtime_t tut I time in ut1
* double *erpv I erp value {xp,yp,ut1_utc,lod} (rad,rad,s,s/d)
* double *rsun IO sun position in ecef (m) (NULL: not output)
* double *rmoon IO moon position in ecef (m) (NULL: not output)
* double *gmst O gmst (rad)
* return : none
*-----------------------------------------------------------------------------*/
void sunmoonpos(gtime_t tutc, const double *erpv, double *rsun,
double *rmoon, double *gmst)
{
gtime_t tut;
double rs[3];
double rm[3];
double U[9];
double gmst_;
trace(4, "sunmoonpos: tutc=%s\n", time_str(tutc, 3));
tut = timeadd(tutc, erpv[2]); /* utc -> ut1 */
/* sun and moon position in eci */
sunmoonpos_eci(tut, rsun ? rs : nullptr, rmoon ? rm : nullptr);
/* eci to ecef transformation matrix */
eci2ecef(tutc, erpv, U, &gmst_);
/* sun and moon position in ecef */
if (rsun)
{
matmul("NN", 3, 1, 3, 1.0, U, rs, 0.0, rsun);
}
if (rmoon)
{
matmul("NN", 3, 1, 3, 1.0, U, rm, 0.0, rmoon);
}
if (gmst)
{
*gmst = gmst_;
}
}
/* carrier smoothing -----------------------------------------------------------
* carrier smoothing by Hatch filter
* args : obs_t *obs IO raw observation data/smoothed observation data
* int ns I smoothing window size (epochs)
* return : none
*-----------------------------------------------------------------------------*/
void csmooth(obs_t *obs, int ns)
{
std::vector<std::array<double, NFREQ>> Ps[2];
std::vector<std::array<double, NFREQ>> Lp[2];
double dcp;
int i;
int j;
int s;
int r;
std::vector<std::array<int, NFREQ>> n[2];
obsd_t *p;
Ps[0].resize(MAXSAT);
Ps[1].resize(MAXSAT);
Lp[0].resize(MAXSAT);
Lp[1].resize(MAXSAT);
n[0].resize(MAXSAT);
n[1].resize(MAXSAT);
trace(3, "csmooth: nobs=%d,ns=%d\n", obs->n, ns);
for (i = 0; i < obs->n; i++)
{
p = &obs->data[i];
s = p->sat;
r = p->rcv;
for (j = 0; j < NFREQ; j++)
{
if (s <= 0 || MAXSAT < s || r <= 0 || 2 < r)
{
continue;
}
if (p->P[j] == 0.0 || p->L[j] == 0.0)
{
continue;
}
if (p->LLI[j])
{
n[r - 1][s - 1][j] = 0;
}
if (n[r - 1][s - 1][j] == 0)
{
Ps[r - 1][s - 1][j] = p->P[j];
}
else
{
dcp = LAM_CARR[j] * (p->L[j] - Lp[r - 1][s - 1][j]);
Ps[r - 1][s - 1][j] = p->P[j] / ns + (Ps[r - 1][s - 1][j] + dcp) * (ns - 1) / ns;
}
if (++n[r - 1][s - 1][j] < ns)
{
p->P[j] = 0.0;
}
else
{
p->P[j] = Ps[r - 1][s - 1][j];
}
Lp[r - 1][s - 1][j] = p->L[j];
}
}
}
/* uncompress file -------------------------------------------------------------
* uncompress (uncompress/unzip/uncompact hatanaka-compression/tar) file
* args : char *file I input file
* char *uncfile O uncompressed file
* return : status (-1:error,0:not compressed file,1:uncompress completed)
* note : creates uncompressed file in tempolary directory
* gzip and crx2rnx commands have to be installed in commands path
*-----------------------------------------------------------------------------*/
int rtk_uncompress(const char *file, char *uncfile)
{
int stat = 0;
char *p;
char cmd[2048] = "";
char tmpfile[1024] = "";
char buff[1024];
char *fname;
char *dir = const_cast<char *>("");
trace(3, "rtk_uncompress: file=%s\n", file);
if (strlen(file) < 1025)
{
std::strncpy(tmpfile, file, 1024);
tmpfile[1023] = '\0';
}
else
{
trace(1, "file array is too long");
}
if (!(p = strrchr(tmpfile, '.')))
{
return 0;
}
/* uncompress by gzip */
if (!strcmp(p, ".z") || !strcmp(p, ".Z") ||
!strcmp(p, ".gz") || !strcmp(p, ".GZ") ||
!strcmp(p, ".zip") || !strcmp(p, ".ZIP"))
{
std::strncpy(uncfile, tmpfile, 1024);
uncfile[p - tmpfile] = '\0';
std::snprintf(cmd, sizeof(cmd), R"(gzip -f -d -c "%s" > "%s")", tmpfile, uncfile);
if (execcmd(cmd))
{
if (remove(uncfile) != 0)
{
trace(1, "Error removing file");
}
return -1;
}
if (strlen(uncfile) < 1025)
{
std::strncpy(tmpfile, uncfile, 1024);
tmpfile[1023] = '\0';
}
stat = 1;
}
/* extract tar file */
if ((p = strrchr(tmpfile, '.')) && !strcmp(p, ".tar"))
{
std::strncpy(uncfile, tmpfile, 1024);
uncfile[p - tmpfile] = '\0';
std::strncpy(buff, tmpfile, 1024);
fname = buff;
if ((p = strrchr(buff, '/')))
{
*p = '\0';
dir = fname;
fname = p + 1;
}
std::ostringstream temp;
std::string s_aux1(dir);
std::string s_aux2(tmpfile);
temp << "tar -C " << s_aux1 << " -xf " << s_aux2;
std::string s_aux = temp.str();
int n = s_aux.length();
if (n < 2048)
{
for (int i = 0; i < n; i++)
{
cmd[i] = s_aux[i];
}
}
if (execcmd(cmd))
{
if (stat)
{
if (remove(tmpfile) != 0)
{
trace(1, "Error removing file");
}
}
return -1;
}
if (stat)
{
if (remove(tmpfile) != 0)
{
trace(1, "Error removing file");
}
}
stat = 1;
}
/* extract hatanaka-compressed file by cnx2rnx */
else if ((p = strrchr(tmpfile, '.')) && strlen(p) > 3 && (*(p + 3) == 'd' || *(p + 3) == 'D'))
{
std::strncpy(uncfile, tmpfile, 1024);
uncfile[p - tmpfile + 3] = *(p + 3) == 'D' ? 'O' : 'o';
std::snprintf(cmd, sizeof(cmd), R"(crx2rnx < "%s" > "%s")", tmpfile, uncfile);
if (execcmd(cmd))
{
if (remove(uncfile) != 0)
{
trace(1, "Error removing file");
}
if (stat)
{
if (remove(tmpfile) != 0)
{
trace(1, "Error removing file");
}
}
return -1;
}
if (stat)
{
if (remove(tmpfile) != 0)
{
trace(1, "Error removing file");
}
}
stat = 1;
}
trace(3, "rtk_uncompress: stat=%d\n", stat);
return stat;
}
/* expand file path ------------------------------------------------------------
* expand file path with wild-card (*) in file
* args : char *path I file path to expand (captal insensitive)
* char *paths O expanded file paths
* int nmax I max number of expanded file paths
* return : number of expanded file paths
* notes : the order of expanded files is alphabetical order
*-----------------------------------------------------------------------------*/
int expath(const char *path, char *paths[], int nmax)
{
int i;
int j;
int n = 0;
char tmp[1024] = "";
struct dirent *d;
DIR *dp;
const char *file = path;
char dir[1024] = "";
char s1[1024];
char s2[1024];
char *p;
char *q;
char *r;
trace(3, "expath : path=%s nmax=%d\n", path, nmax);
// TODO: Fix invalid conversion from const char* to char*
// if ((p=strrchr(path,'/')) || (p=strrchr(path,'\\'))) {
// file=p+1; strncpy(dir,path,p-path+1); dir[p-path+1]='\0';
// }
if (!(dp = opendir(*dir ? dir : ".")))
{
return 0;
}
while ((d = readdir(dp)))
{
if (*(d->d_name) == '.')
{
continue;
}
std::snprintf(s1, sizeof(s1), "^%s$", d->d_name);
std::snprintf(s2, sizeof(s2), "^%s$", file);
for (p = s1; *p; p++)
{
*p = static_cast<char>(tolower(static_cast<int>(*p)));
}
for (p = s2; *p; p++)
{
*p = static_cast<char>(tolower(static_cast<int>(*p)));
}
for (p = s1, q = strtok_r(s2, "*", &r); q; q = strtok_r(nullptr, "*", &r))
{
if ((p = strstr(p, q)))
{
p += strlen(q);
}
else
{
break;
}
}
if (p && n < nmax)
{
std::snprintf(paths[n++], MAXSTRPATH + 255, "%s%s", dir, d->d_name);
}
}
closedir(dp);
/* sort paths in alphabetical order */
for (i = 0; i < n - 1; i++)
{
for (j = i + 1; j < n; j++)
{
if (strcmp(paths[i], paths[j]) > 0)
{
if (strlen(paths[i]) < 1025)
{
std::strncpy(tmp, paths[i], 1024);
tmp[1023] = '\0';
}
else
{
trace(1, "Path is too long");
}
std::strncpy(paths[i], paths[j], 1024);
std::strncpy(paths[j], tmp, 1024);
}
}
}
for (i = 0; i < n; i++)
{
trace(3, "expath : file=%s\n", paths[i]);
}
return n;
}
/* From RTKLIB 2.4.2 */
void windupcorr(gtime_t time, const double *rs, const double *rr, double *phw)
{
double ek[3];
double exs[3];
double eys[3];
double ezs[3];
double ess[3];
double exr[3];
double eyr[3];
double eks[3];
double ekr[3];
double E[9];
double dr[3];
double ds[3];
double drs[3];
double r[3];
double pos[3];
double rsun[3];
double cosp;
double ph;
double erpv[5] = {0};
int i;
trace(4, "windupcorr: time=%s\n", time_str(time, 0));
/* sun position in ecef */
sunmoonpos(gpst2utc(time), erpv, rsun, nullptr, nullptr);
/* unit vector satellite to receiver */
for (i = 0; i < 3; i++)
{
r[i] = rr[i] - rs[i];
}
if (!normv3(r, ek))
{
return;
}
/* unit vectors of satellite antenna */
for (i = 0; i < 3; i++)
{
r[i] = -rs[i];
}
if (!normv3(r, ezs))
{
return;
}
for (i = 0; i < 3; i++)
{
r[i] = rsun[i] - rs[i];
}
if (!normv3(r, ess))
{
return;
}
cross3(ezs, ess, r);
if (!normv3(r, eys))
{
return;
}
cross3(eys, ezs, exs);
/* unit vectors of receiver antenna */
ecef2pos(rr, pos);
xyz2enu(pos, E);
exr[0] = E[1];
exr[1] = E[4];
exr[2] = E[7]; /* x = north */
eyr[0] = -E[0];
eyr[1] = -E[3];
eyr[2] = -E[6]; /* y = west */
/* phase windup effect */
cross3(ek, eys, eks);
cross3(ek, eyr, ekr);
for (i = 0; i < 3; i++)
{
ds[i] = exs[i] - ek[i] * dot(ek, exs, 3) - eks[i];
dr[i] = exr[i] - ek[i] * dot(ek, exr, 3) + ekr[i];
}
cosp = dot(ds, dr, 3) / norm_rtk(ds, 3) / norm_rtk(dr, 3);
if (cosp < -1.0)
{
cosp = -1.0;
}
else if (cosp > 1.0)
{
cosp = 1.0;
}
ph = acos(cosp) / 2.0 / GNSS_PI;
cross3(ds, dr, drs);
if (dot(ek, drs, 3) < 0.0)
{
ph = -ph;
}
*phw = ph + floor(*phw - ph + 0.5); /* in cycle */
}