1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-06-25 22:43:14 +00:00
gnss-sdr/src/algorithms/libs/galileo_e5_signal_processing.cc
marc-sales 7d6ec42f24 coherent 2or3 ms adding noncoherently I+Q acquisition,
dll+pll tracking still diverges
2014-07-07 21:06:26 +02:00

253 lines
9.7 KiB
C++

/*!
* \file galileo_e5_signal_processing.cc
* \brief This library implements various functions for Galileo E5 signals such
* as replica code generation
* \author Marc Sales, 2014. marcsales92(at)gmail.com
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "galileo_e5_signal_processing.h"
void galileo_e5_a_code_gen_complex_primary(std::complex<float>* _dest, signed int _prn, char _Signal[3])
{
std::string _galileo_signal = _Signal;
unsigned int prn=_prn-1;
unsigned int index=0;
int a[4];
if ((_prn < 1) || (_prn > 50))
{
return;
}
if (_galileo_signal.rfind("5Q") != std::string::npos && _galileo_signal.length() >= 2)
{
for (size_t i = 0; i < Galileo_E5a_Q_PRIMARY_CODE[prn].length()-1; i++)
{
hex_to_binary_converter(a,
Galileo_E5a_Q_PRIMARY_CODE[prn].at(i));
_dest[index]=std::complex<float>(0.0,float(a[0]));
_dest[index+1]=std::complex<float>(0.0,float(a[1]));
_dest[index+2]=std::complex<float>(0.0,float(a[2]));
_dest[index+3]=std::complex<float>(0.0,float(a[3]));
index = index + 4;
}
// last 2 bits are filled up zeros
hex_to_binary_converter(a,
Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length()-1));
_dest[index]=std::complex<float>(float(0.0),a[0]);
_dest[index+1]=std::complex<float>(float(0.0),a[1]);
}
else if (_galileo_signal.rfind("5I") != std::string::npos && _galileo_signal.length() >= 2)
{
for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length()-1; i++)
{
hex_to_binary_converter(a,
Galileo_E5a_I_PRIMARY_CODE[prn].at(i));
_dest[index]=std::complex<float>(float(a[0]),0.0);
_dest[index+1]=std::complex<float>(float(a[1]),0.0);
_dest[index+2]=std::complex<float>(float(a[2]),0.0);
_dest[index+3]=std::complex<float>(float(a[3]),0.0);
index = index + 4;
}
// last 2 bits are filled up zeros
hex_to_binary_converter(a,
Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length()-1));
_dest[index]=std::complex<float>(float(a[0]),0.0);
_dest[index+1]=std::complex<float>(float(a[1]),0.0);
}
else if (_galileo_signal.rfind("5X") != std::string::npos && _galileo_signal.length() >= 2)
{
int b[4];
for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length()-1; i++)
{
hex_to_binary_converter(a,
Galileo_E5a_I_PRIMARY_CODE[prn].at(i));
hex_to_binary_converter(b,
Galileo_E5a_Q_PRIMARY_CODE[prn].at(i));
_dest[index]=std::complex<float>(float(a[0]),float(b[0]));
_dest[index+1]=std::complex<float>(float(a[1]),float(b[1]));
_dest[index+2]=std::complex<float>(float(a[2]),float(b[2]));
_dest[index+3]=std::complex<float>(float(a[3]),float(b[3]));
index = index + 4;
}
// last 2 bits are filled up zeros
hex_to_binary_converter(a,
Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length()-1));
hex_to_binary_converter(b,
Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length()-1));
_dest[index]=std::complex<float>(float(a[0]),float(b[0]));
_dest[index+1]=std::complex<float>(float(a[1]),float(b[1]));
}
}
void galileo_e5_a_code_gen_tiered(std::complex<float>* _dest,std::complex<float>* _primary ,unsigned int _prn, char _Signal[3])
{
std::string _galileo_signal = _Signal;
unsigned int prn=_prn-1;
// Note: always generates 100 ms of tiered code
if (_galileo_signal.rfind("5Q") != std::string::npos && _galileo_signal.length() >= 2)
{
for (size_t i = 0; i < Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++)
{
for (size_t k=0; k< Galileo_E5a_CODE_LENGTH_CHIPS; k++)
{
//_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k] = _primary[k];
//_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k] = new std::complex<float>(0,0);
_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k].imag( _primary[k].imag() *
(Galileo_E5a_Q_SECONDARY_CODE[prn].at(i)=='0' ? (float)1 : (float)-1));
_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k].real((float)0);
}
}
}
else if (_galileo_signal.rfind("5I") != std::string::npos && _galileo_signal.length() >= 2)
{
for (size_t i = 0; i < Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++)
{
for (size_t k=0; k< Galileo_E5a_CODE_LENGTH_CHIPS; k++)
{
//_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k] = _primary[k];
//_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k] = new std::complex<float>(0,0);
// Modulo operator i%20 since i[0,99] and sec code[0,19]
_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k].real( _primary[k].real() *
(Galileo_E5a_I_SECONDARY_CODE.at(i%20)=='0' ? (float)1 : (float)-1));
_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k].imag((float)0);
}
}
}
else if (_galileo_signal.rfind("5X") != std::string::npos && _galileo_signal.length() >= 2)
{
for (size_t i = 0; i < Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++)
{
for (size_t k=0; k< Galileo_E5a_CODE_LENGTH_CHIPS; k++)
{
//_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k] = _primary[k];
//_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k] = new std::complex<float>(0,0);
_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k].imag( _primary[k].imag() *
(Galileo_E5a_Q_SECONDARY_CODE[prn].at(i)=='0' ? (float)1 : (float)-1));
_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k].real( _primary[k].real() *
(Galileo_E5a_I_SECONDARY_CODE.at(i%20)=='0' ? (float)1 : (float)-1));
}
}
}
else
{
std::cout << "Signal doesn't correspond to E5a signal" << std::endl;
}
}
void galileo_e5_a_code_gen_complex_sampled(std::complex<float>* _dest, char _Signal[3],
unsigned int _prn, signed int _fs, unsigned int _chip_shift,
bool _secondary_flag)
{
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book
//std::string _galileo_signal = _Signal;
unsigned int _samplesPerCode;
unsigned int delay;
unsigned int _codeLength = Galileo_E5a_CODE_LENGTH_CHIPS;
const int _codeFreqBasis = Galileo_E5a_CODE_CHIP_RATE_HZ; //Hz
std::complex<float>* _code;
// if (posix_memalign((void**)&_code, 16, _codeLength * sizeof(gr_complex)) == 0){};
_code=new std::complex<float>[_codeLength];
//std::complex<float> primary_code_E5a_chips[(int)Galileo_E5a_CODE_LENGTH_CHIPS];
galileo_e5_a_code_gen_complex_primary(_code , _prn , _Signal);
if (_secondary_flag)
{
std::complex<float>* _tiered_code = new std::complex<float>
[Galileo_E5a_Q_SECONDARY_CODE_LENGTH * Galileo_E5a_CODE_LENGTH_CHIPS];
_codeLength *= Galileo_E5a_Q_SECONDARY_CODE_LENGTH;
// std::complex<float>* _tiered_code;
// if (posix_memalign((void**)&_tiered_code, 16, _codeLength * sizeof(gr_complex)) == 0){};
// std::complex<float> _tiered_code[Galileo_E5a_Q_SECONDARY_CODE_LENGTH * Galileo_E5a_CODE_LENGTH_CHIPS];
//malloc(_tiered_code, )
//std::cout << sizeof (&_tiered_code) << std::endl;
galileo_e5_a_code_gen_tiered(_tiered_code, _code,_prn, _Signal);
delete[] _code;
//free(_code);
//if (posix_memalign((void**)&_code, 16, _codeLength * sizeof(gr_complex)) == 0){};
_code = _tiered_code;
// delete[] _tiered_code;
free(_tiered_code);
}
_samplesPerCode = round(_fs / (_codeFreqBasis / _codeLength));
// NOTE: if secondary, delay accounts for tiered code delay and samples/codesecondary
delay = ((_codeLength - _chip_shift)
% _codeLength) * _samplesPerCode / _codeLength;
//std::cout << "check tiered code delay" << delay << std::endl;
//std::cout << "check codelength" << _codeLength << std::endl;
if (_fs != _codeFreqBasis)
{
std::complex<float>* _resampled_signal;// = new std::complex<float>[_codeLength];
if (posix_memalign((void**)&_resampled_signal, 16, _samplesPerCode * sizeof(gr_complex)) == 0){};
resampler(_code, _resampled_signal, _codeFreqBasis, _fs,
_codeLength, _samplesPerCode); //resamples code to fs
// free(_code);
// if (posix_memalign((void**)&_code, 16, _samplesPerCode * sizeof(gr_complex)) == 0){};
delete[] _code;
_code = _resampled_signal;
// delete[] _resampled_signal;
//free(_resampled_signal);
}
//std::cout << _fs << "fs" << std::endl;
for (unsigned int i = 0; i < _samplesPerCode; i++)
{
_dest[(i+delay)%_samplesPerCode] = _code[i];
}
// if (_code[0]==gr_complex(0,0))
// {
// std::cout <<"ERROR: first chip is 0. prn:"<< _prn << std::endl;
// std::cout << _Signal << "signal" << std::endl;
// }
//std::cout << "no problem gen sampled code" <<_prn << " " << _code[0] <<std::endl;
free(_code);
}