/*! * \file galileo_e5_signal_processing.cc * \brief This library implements various functions for Galileo E5 signals such * as replica code generation * \author Marc Sales, 2014. marcsales92(at)gmail.com * * Detailed description of the file here if needed. * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "galileo_e5_signal_processing.h" void galileo_e5_a_code_gen_complex_primary(std::complex* _dest, signed int _prn, char _Signal[3]) { std::string _galileo_signal = _Signal; unsigned int prn=_prn-1; unsigned int index=0; int a[4]; if ((_prn < 1) || (_prn > 50)) { return; } if (_galileo_signal.rfind("5Q") != std::string::npos && _galileo_signal.length() >= 2) { for (size_t i = 0; i < Galileo_E5a_Q_PRIMARY_CODE[prn].length()-1; i++) { hex_to_binary_converter(a, Galileo_E5a_Q_PRIMARY_CODE[prn].at(i)); _dest[index]=std::complex(0.0,float(a[0])); _dest[index+1]=std::complex(0.0,float(a[1])); _dest[index+2]=std::complex(0.0,float(a[2])); _dest[index+3]=std::complex(0.0,float(a[3])); index = index + 4; } // last 2 bits are filled up zeros hex_to_binary_converter(a, Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length()-1)); _dest[index]=std::complex(float(0.0),a[0]); _dest[index+1]=std::complex(float(0.0),a[1]); } else if (_galileo_signal.rfind("5I") != std::string::npos && _galileo_signal.length() >= 2) { for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length()-1; i++) { hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(i)); _dest[index]=std::complex(float(a[0]),0.0); _dest[index+1]=std::complex(float(a[1]),0.0); _dest[index+2]=std::complex(float(a[2]),0.0); _dest[index+3]=std::complex(float(a[3]),0.0); index = index + 4; } // last 2 bits are filled up zeros hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length()-1)); _dest[index]=std::complex(float(a[0]),0.0); _dest[index+1]=std::complex(float(a[1]),0.0); } else if (_galileo_signal.rfind("5X") != std::string::npos && _galileo_signal.length() >= 2) { int b[4]; for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length()-1; i++) { hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(i)); hex_to_binary_converter(b, Galileo_E5a_Q_PRIMARY_CODE[prn].at(i)); _dest[index]=std::complex(float(a[0]),float(b[0])); _dest[index+1]=std::complex(float(a[1]),float(b[1])); _dest[index+2]=std::complex(float(a[2]),float(b[2])); _dest[index+3]=std::complex(float(a[3]),float(b[3])); index = index + 4; } // last 2 bits are filled up zeros hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length()-1)); hex_to_binary_converter(b, Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length()-1)); _dest[index]=std::complex(float(a[0]),float(b[0])); _dest[index+1]=std::complex(float(a[1]),float(b[1])); } } void galileo_e5_a_code_gen_tiered(std::complex* _dest,std::complex* _primary ,unsigned int _prn, char _Signal[3]) { std::string _galileo_signal = _Signal; unsigned int prn=_prn-1; // Note: always generates 100 ms of tiered code if (_galileo_signal.rfind("5Q") != std::string::npos && _galileo_signal.length() >= 2) { for (size_t i = 0; i < Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++) { for (size_t k=0; k< Galileo_E5a_CODE_LENGTH_CHIPS; k++) { //_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k] = _primary[k]; //_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k] = new std::complex(0,0); _dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k].imag( _primary[k].imag() * (Galileo_E5a_Q_SECONDARY_CODE[prn].at(i)=='0' ? (float)1 : (float)-1)); _dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k].real((float)0); } } } else if (_galileo_signal.rfind("5I") != std::string::npos && _galileo_signal.length() >= 2) { for (size_t i = 0; i < Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++) { for (size_t k=0; k< Galileo_E5a_CODE_LENGTH_CHIPS; k++) { //_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k] = _primary[k]; //_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k] = new std::complex(0,0); // Modulo operator i%20 since i[0,99] and sec code[0,19] _dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k].real( _primary[k].real() * (Galileo_E5a_I_SECONDARY_CODE.at(i%20)=='0' ? (float)1 : (float)-1)); _dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k].imag((float)0); } } } else if (_galileo_signal.rfind("5X") != std::string::npos && _galileo_signal.length() >= 2) { for (size_t i = 0; i < Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++) { for (size_t k=0; k< Galileo_E5a_CODE_LENGTH_CHIPS; k++) { //_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k] = _primary[k]; //_dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k] = new std::complex(0,0); _dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k].imag( _primary[k].imag() * (Galileo_E5a_Q_SECONDARY_CODE[prn].at(i)=='0' ? (float)1 : (float)-1)); _dest[i*Galileo_E5a_CODE_LENGTH_CHIPS + k].real( _primary[k].real() * (Galileo_E5a_I_SECONDARY_CODE.at(i%20)=='0' ? (float)1 : (float)-1)); } } } else { std::cout << "Signal doesn't correspond to E5a signal" << std::endl; } } void galileo_e5_a_code_gen_complex_sampled(std::complex* _dest, char _Signal[3], unsigned int _prn, signed int _fs, unsigned int _chip_shift, bool _secondary_flag) { // This function is based on the GNU software GPS for MATLAB in the Kay Borre book //std::string _galileo_signal = _Signal; unsigned int _samplesPerCode; unsigned int delay; unsigned int _codeLength = Galileo_E5a_CODE_LENGTH_CHIPS; const int _codeFreqBasis = Galileo_E5a_CODE_CHIP_RATE_HZ; //Hz std::complex* _code; // if (posix_memalign((void**)&_code, 16, _codeLength * sizeof(gr_complex)) == 0){}; _code=new std::complex[_codeLength]; //std::complex primary_code_E5a_chips[(int)Galileo_E5a_CODE_LENGTH_CHIPS]; galileo_e5_a_code_gen_complex_primary(_code , _prn , _Signal); if (_secondary_flag) { std::complex* _tiered_code = new std::complex [Galileo_E5a_Q_SECONDARY_CODE_LENGTH * Galileo_E5a_CODE_LENGTH_CHIPS]; _codeLength *= Galileo_E5a_Q_SECONDARY_CODE_LENGTH; // std::complex* _tiered_code; // if (posix_memalign((void**)&_tiered_code, 16, _codeLength * sizeof(gr_complex)) == 0){}; // std::complex _tiered_code[Galileo_E5a_Q_SECONDARY_CODE_LENGTH * Galileo_E5a_CODE_LENGTH_CHIPS]; //malloc(_tiered_code, ) //std::cout << sizeof (&_tiered_code) << std::endl; galileo_e5_a_code_gen_tiered(_tiered_code, _code,_prn, _Signal); delete[] _code; //free(_code); //if (posix_memalign((void**)&_code, 16, _codeLength * sizeof(gr_complex)) == 0){}; _code = _tiered_code; // delete[] _tiered_code; free(_tiered_code); } _samplesPerCode = round(_fs / (_codeFreqBasis / _codeLength)); // NOTE: if secondary, delay accounts for tiered code delay and samples/codesecondary delay = ((_codeLength - _chip_shift) % _codeLength) * _samplesPerCode / _codeLength; //std::cout << "check tiered code delay" << delay << std::endl; //std::cout << "check codelength" << _codeLength << std::endl; if (_fs != _codeFreqBasis) { std::complex* _resampled_signal;// = new std::complex[_codeLength]; if (posix_memalign((void**)&_resampled_signal, 16, _samplesPerCode * sizeof(gr_complex)) == 0){}; resampler(_code, _resampled_signal, _codeFreqBasis, _fs, _codeLength, _samplesPerCode); //resamples code to fs // free(_code); // if (posix_memalign((void**)&_code, 16, _samplesPerCode * sizeof(gr_complex)) == 0){}; delete[] _code; _code = _resampled_signal; // delete[] _resampled_signal; //free(_resampled_signal); } //std::cout << _fs << "fs" << std::endl; for (unsigned int i = 0; i < _samplesPerCode; i++) { _dest[(i+delay)%_samplesPerCode] = _code[i]; } // if (_code[0]==gr_complex(0,0)) // { // std::cout <<"ERROR: first chip is 0. prn:"<< _prn << std::endl; // std::cout << _Signal << "signal" << std::endl; // } //std::cout << "no problem gen sampled code" <<_prn << " " << _code[0] <