mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-11-05 09:36:23 +00:00
687e3b2e47
This reverts commit 68afadab74
.
1159 lines
65 KiB
C++
1159 lines
65 KiB
C++
/*!
|
|
* \file rtklib_solver.cc
|
|
* \brief PVT solver based on rtklib library functions adapted to the GNSS-SDR
|
|
* data flow and structures
|
|
* \authors <ul>
|
|
* <li> 2017-2019, Javier Arribas
|
|
* <li> 2017-2019, Carles Fernandez
|
|
* <li> 2007-2013, T. Takasu
|
|
* </ul>
|
|
*
|
|
* This is a derived work from RTKLIB http://www.rtklib.com/
|
|
* The original source code at https://github.com/tomojitakasu/RTKLIB is
|
|
* released under the BSD 2-clause license with an additional exclusive clause
|
|
* that does not apply here. This additional clause is reproduced below:
|
|
*
|
|
* " The software package includes some companion executive binaries or shared
|
|
* libraries necessary to execute APs on Windows. These licenses succeed to the
|
|
* original ones of these software. "
|
|
*
|
|
* Neither the executive binaries nor the shared libraries are required by, used
|
|
* or included in GNSS-SDR.
|
|
*
|
|
* -------------------------------------------------------------------------
|
|
* Copyright (C) 2007-2013, T. Takasu
|
|
* Copyright (C) 2017-2019, Javier Arribas
|
|
* Copyright (C) 2017-2019, Carles Fernandez
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* -----------------------------------------------------------------------*/
|
|
|
|
#include "rtklib_solver.h"
|
|
#include "Beidou_B1I.h"
|
|
#include "Beidou_B3I.h"
|
|
#include "Beidou_DNAV.h"
|
|
#include "GLONASS_L1_L2_CA.h"
|
|
#include "GPS_L1_CA.h"
|
|
#include "Galileo_E1.h"
|
|
#include "rtklib_conversions.h"
|
|
#include "rtklib_rtkpos.h"
|
|
#include "rtklib_solution.h"
|
|
#include <glog/logging.h>
|
|
#include <matio.h>
|
|
#include <exception>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#if HAS_STD_FILESYSTEM
|
|
#include <system_error>
|
|
namespace errorlib = std;
|
|
#if HAS_STD_FILESYSTEM_EXPERIMENTAL
|
|
#include <experimental/filesystem>
|
|
namespace fs = std::experimental::filesystem;
|
|
#else
|
|
#include <filesystem>
|
|
namespace fs = std::filesystem;
|
|
#endif
|
|
#else
|
|
#include <boost/filesystem/operations.hpp> // for create_directories, exists
|
|
#include <boost/filesystem/path.hpp> // for path, operator<<
|
|
#include <boost/filesystem/path_traits.hpp> // for filesystem
|
|
#include <boost/system/error_code.hpp> // for error_code
|
|
namespace fs = boost::filesystem;
|
|
namespace errorlib = boost::system;
|
|
#endif
|
|
|
|
|
|
Rtklib_Solver::Rtklib_Solver(int nchannels, std::string dump_filename, bool flag_dump_to_file, bool flag_dump_to_mat, const rtk_t &rtk)
|
|
{
|
|
// init empty ephemeris for all the available GNSS channels
|
|
d_nchannels = nchannels;
|
|
d_dump_filename = std::move(dump_filename);
|
|
d_flag_dump_enabled = flag_dump_to_file;
|
|
d_flag_dump_mat_enabled = flag_dump_to_mat;
|
|
this->set_averaging_flag(false);
|
|
rtk_ = rtk;
|
|
|
|
// ############# ENABLE DATA FILE LOG #################
|
|
if (d_flag_dump_enabled == true)
|
|
{
|
|
if (d_dump_file.is_open() == false)
|
|
{
|
|
try
|
|
{
|
|
d_dump_file.exceptions(std::ofstream::failbit | std::ofstream::badbit);
|
|
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
|
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
|
|
}
|
|
catch (const std::ofstream::failure &e)
|
|
{
|
|
LOG(WARNING) << "Exception opening RTKLIB dump file " << e.what();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Rtklib_Solver::~Rtklib_Solver()
|
|
{
|
|
if (d_dump_file.is_open() == true)
|
|
{
|
|
auto pos = d_dump_file.tellp();
|
|
try
|
|
{
|
|
d_dump_file.close();
|
|
}
|
|
catch (const std::exception &ex)
|
|
{
|
|
LOG(WARNING) << "Exception in destructor closing the RTKLIB dump file " << ex.what();
|
|
}
|
|
if (pos == 0)
|
|
{
|
|
errorlib::error_code ec;
|
|
if (!fs::remove(fs::path(d_dump_filename), ec))
|
|
{
|
|
std::cerr << "Problem removing temporary file " << d_dump_filename << '\n';
|
|
}
|
|
d_flag_dump_mat_enabled = false;
|
|
}
|
|
}
|
|
if (d_flag_dump_mat_enabled)
|
|
{
|
|
try
|
|
{
|
|
save_matfile();
|
|
}
|
|
catch (const std::exception &ex)
|
|
{
|
|
LOG(WARNING) << "Exception in destructor saving the PVT .mat dump file " << ex.what();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool Rtklib_Solver::save_matfile()
|
|
{
|
|
// READ DUMP FILE
|
|
std::string dump_filename = d_dump_filename;
|
|
std::ifstream::pos_type size;
|
|
int32_t number_of_double_vars = 21;
|
|
int32_t number_of_uint32_vars = 2;
|
|
int32_t number_of_uint8_vars = 3;
|
|
int32_t number_of_float_vars = 2;
|
|
int32_t epoch_size_bytes = sizeof(double) * number_of_double_vars +
|
|
sizeof(uint32_t) * number_of_uint32_vars +
|
|
sizeof(uint8_t) * number_of_uint8_vars +
|
|
sizeof(float) * number_of_float_vars;
|
|
std::ifstream dump_file;
|
|
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
|
try
|
|
{
|
|
dump_file.open(dump_filename.c_str(), std::ios::binary | std::ios::ate);
|
|
}
|
|
catch (const std::ifstream::failure &e)
|
|
{
|
|
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
|
|
return false;
|
|
}
|
|
// count number of epochs and rewind
|
|
int64_t num_epoch = 0LL;
|
|
if (dump_file.is_open())
|
|
{
|
|
std::cout << "Generating .mat file for " << dump_filename << std::endl;
|
|
size = dump_file.tellg();
|
|
num_epoch = static_cast<int64_t>(size) / static_cast<int64_t>(epoch_size_bytes);
|
|
dump_file.seekg(0, std::ios::beg);
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
|
|
auto TOW_at_current_symbol_ms = std::vector<uint32_t>(num_epoch);
|
|
auto week = std::vector<uint32_t>(num_epoch);
|
|
auto RX_time = std::vector<double>(num_epoch);
|
|
auto user_clk_offset = std::vector<double>(num_epoch);
|
|
auto pos_x = std::vector<double>(num_epoch);
|
|
auto pos_y = std::vector<double>(num_epoch);
|
|
auto pos_z = std::vector<double>(num_epoch);
|
|
auto vel_x = std::vector<double>(num_epoch);
|
|
auto vel_y = std::vector<double>(num_epoch);
|
|
auto vel_z = std::vector<double>(num_epoch);
|
|
auto cov_xx = std::vector<double>(num_epoch);
|
|
auto cov_yy = std::vector<double>(num_epoch);
|
|
auto cov_zz = std::vector<double>(num_epoch);
|
|
auto cov_xy = std::vector<double>(num_epoch);
|
|
auto cov_yz = std::vector<double>(num_epoch);
|
|
auto cov_zx = std::vector<double>(num_epoch);
|
|
auto latitude = std::vector<double>(num_epoch);
|
|
auto longitude = std::vector<double>(num_epoch);
|
|
auto height = std::vector<double>(num_epoch);
|
|
auto valid_sats = std::vector<uint8_t>(num_epoch);
|
|
auto solution_status = std::vector<uint8_t>(num_epoch);
|
|
auto solution_type = std::vector<uint8_t>(num_epoch);
|
|
auto AR_ratio_factor = std::vector<float>(num_epoch);
|
|
auto AR_ratio_threshold = std::vector<float>(num_epoch);
|
|
auto gdop = std::vector<double>(num_epoch);
|
|
auto pdop = std::vector<double>(num_epoch);
|
|
auto hdop = std::vector<double>(num_epoch);
|
|
auto vdop = std::vector<double>(num_epoch);
|
|
|
|
try
|
|
{
|
|
if (dump_file.is_open())
|
|
{
|
|
for (int64_t i = 0; i < num_epoch; i++)
|
|
{
|
|
dump_file.read(reinterpret_cast<char *>(&TOW_at_current_symbol_ms[i]), sizeof(uint32_t));
|
|
dump_file.read(reinterpret_cast<char *>(&week[i]), sizeof(uint32_t));
|
|
dump_file.read(reinterpret_cast<char *>(&RX_time[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&user_clk_offset[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&pos_x[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&pos_y[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&pos_z[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&vel_x[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&vel_y[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&vel_z[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&cov_xx[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&cov_yy[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&cov_zz[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&cov_xy[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&cov_yz[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&cov_zx[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&latitude[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&longitude[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&height[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&valid_sats[i]), sizeof(uint8_t));
|
|
dump_file.read(reinterpret_cast<char *>(&solution_status[i]), sizeof(uint8_t));
|
|
dump_file.read(reinterpret_cast<char *>(&solution_type[i]), sizeof(uint8_t));
|
|
dump_file.read(reinterpret_cast<char *>(&AR_ratio_factor[i]), sizeof(float));
|
|
dump_file.read(reinterpret_cast<char *>(&AR_ratio_threshold[i]), sizeof(float));
|
|
dump_file.read(reinterpret_cast<char *>(&gdop[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&pdop[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&hdop[i]), sizeof(double));
|
|
dump_file.read(reinterpret_cast<char *>(&vdop[i]), sizeof(double));
|
|
}
|
|
}
|
|
dump_file.close();
|
|
}
|
|
catch (const std::ifstream::failure &e)
|
|
{
|
|
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
|
|
return false;
|
|
}
|
|
|
|
// WRITE MAT FILE
|
|
mat_t *matfp;
|
|
matvar_t *matvar;
|
|
std::string filename = dump_filename;
|
|
filename.erase(filename.length() - 4, 4);
|
|
filename.append(".mat");
|
|
matfp = Mat_CreateVer(filename.c_str(), nullptr, MAT_FT_MAT73);
|
|
if (reinterpret_cast<int64_t *>(matfp) != nullptr)
|
|
{
|
|
std::array<size_t, 2> dims{1, static_cast<size_t>(num_epoch)};
|
|
matvar = Mat_VarCreate("TOW_at_current_symbol_ms", MAT_C_UINT32, MAT_T_UINT32, 2, dims.data(), TOW_at_current_symbol_ms.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("week", MAT_C_UINT32, MAT_T_UINT32, 2, dims.data(), week.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("RX_time", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), RX_time.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("user_clk_offset", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), user_clk_offset.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("pos_x", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), pos_x.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("pos_y", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), pos_y.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("pos_z", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), pos_z.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("vel_x", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), vel_x.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("vel_y", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), vel_y.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("vel_z", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), vel_z.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("cov_xx", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), cov_xx.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("cov_yy", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), cov_yy.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("cov_zz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), cov_zz.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("cov_xy", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), cov_xy.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("cov_yz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), cov_yz.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("cov_zx", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), cov_zx.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("latitude", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), latitude.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("longitude", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), longitude.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("height", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), height.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("valid_sats", MAT_C_UINT8, MAT_T_UINT8, 2, dims.data(), valid_sats.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("solution_status", MAT_C_UINT8, MAT_T_UINT8, 2, dims.data(), solution_status.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("solution_type", MAT_C_UINT8, MAT_T_UINT8, 2, dims.data(), solution_type.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("AR_ratio_factor", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), AR_ratio_factor.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("AR_ratio_threshold", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), AR_ratio_threshold.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("gdop", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), gdop.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("pdop", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), pdop.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("hdop", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), hdop.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("vdop", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), vdop.data(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
}
|
|
|
|
Mat_Close(matfp);
|
|
return true;
|
|
}
|
|
|
|
|
|
double Rtklib_Solver::get_gdop() const
|
|
{
|
|
return dop_[0];
|
|
}
|
|
|
|
|
|
double Rtklib_Solver::get_pdop() const
|
|
{
|
|
return dop_[1];
|
|
}
|
|
|
|
|
|
double Rtklib_Solver::get_hdop() const
|
|
{
|
|
return dop_[2];
|
|
}
|
|
|
|
|
|
double Rtklib_Solver::get_vdop() const
|
|
{
|
|
return dop_[3];
|
|
}
|
|
|
|
|
|
Monitor_Pvt Rtklib_Solver::get_monitor_pvt() const
|
|
{
|
|
return monitor_pvt;
|
|
}
|
|
|
|
|
|
bool Rtklib_Solver::get_PVT(const std::map<int, Gnss_Synchro> &gnss_observables_map, bool flag_averaging)
|
|
{
|
|
std::map<int, Gnss_Synchro>::const_iterator gnss_observables_iter;
|
|
std::map<int, Galileo_Ephemeris>::const_iterator galileo_ephemeris_iter;
|
|
std::map<int, Gps_Ephemeris>::const_iterator gps_ephemeris_iter;
|
|
std::map<int, Gps_CNAV_Ephemeris>::const_iterator gps_cnav_ephemeris_iter;
|
|
std::map<int, Glonass_Gnav_Ephemeris>::const_iterator glonass_gnav_ephemeris_iter;
|
|
std::map<int, Beidou_Dnav_Ephemeris>::const_iterator beidou_ephemeris_iter;
|
|
|
|
const Glonass_Gnav_Utc_Model gnav_utc = this->glonass_gnav_utc_model;
|
|
|
|
this->set_averaging_flag(flag_averaging);
|
|
|
|
// ********************************************************************************
|
|
// ****** PREPARE THE DATA (SV EPHEMERIS AND OBSERVATIONS) ************************
|
|
// ********************************************************************************
|
|
int valid_obs = 0; // valid observations counter
|
|
int glo_valid_obs = 0; // GLONASS L1/L2 valid observations counter
|
|
|
|
obs_data.fill({});
|
|
std::vector<eph_t> eph_data(MAXOBS);
|
|
std::vector<geph_t> geph_data(MAXOBS);
|
|
|
|
// Workaround for NAV/CNAV clash problem
|
|
bool gps_dual_band = false;
|
|
bool band1 = false;
|
|
bool band2 = false;
|
|
for (gnss_observables_iter = gnss_observables_map.cbegin();
|
|
gnss_observables_iter != gnss_observables_map.cend();
|
|
++gnss_observables_iter)
|
|
{
|
|
switch (gnss_observables_iter->second.System)
|
|
{
|
|
case 'G':
|
|
{
|
|
std::string sig_(gnss_observables_iter->second.Signal);
|
|
if (sig_ == "1C")
|
|
{
|
|
band1 = true;
|
|
}
|
|
if (sig_ == "2S")
|
|
{
|
|
band2 = true;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
}
|
|
}
|
|
}
|
|
if (band1 == true and band2 == true)
|
|
{
|
|
gps_dual_band = true;
|
|
}
|
|
|
|
for (gnss_observables_iter = gnss_observables_map.cbegin();
|
|
gnss_observables_iter != gnss_observables_map.cend();
|
|
++gnss_observables_iter) // CHECK INCONSISTENCY when combining GLONASS + other system
|
|
{
|
|
switch (gnss_observables_iter->second.System)
|
|
{
|
|
case 'E':
|
|
{
|
|
std::string sig_(gnss_observables_iter->second.Signal);
|
|
// Galileo E1
|
|
if (sig_ == "1B")
|
|
{
|
|
// 1 Gal - find the ephemeris for the current GALILEO SV observation. The SV PRN ID is the map key
|
|
galileo_ephemeris_iter = galileo_ephemeris_map.find(gnss_observables_iter->second.PRN);
|
|
if (galileo_ephemeris_iter != galileo_ephemeris_map.cend())
|
|
{
|
|
// convert ephemeris from GNSS-SDR class to RTKLIB structure
|
|
eph_data[valid_obs] = eph_to_rtklib(galileo_ephemeris_iter->second);
|
|
// convert observation from GNSS-SDR class to RTKLIB structure
|
|
obsd_t newobs = {{0, 0}, '0', '0', {}, {}, {}, {}, {}, {}};
|
|
obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
|
|
gnss_observables_iter->second,
|
|
galileo_ephemeris_iter->second.WN_5,
|
|
0);
|
|
valid_obs++;
|
|
}
|
|
else // the ephemeris are not available for this SV
|
|
{
|
|
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
|
|
}
|
|
}
|
|
|
|
// Galileo E5
|
|
if (sig_ == "5X")
|
|
{
|
|
// 1 Gal - find the ephemeris for the current GALILEO SV observation. The SV PRN ID is the map key
|
|
galileo_ephemeris_iter = galileo_ephemeris_map.find(gnss_observables_iter->second.PRN);
|
|
if (galileo_ephemeris_iter != galileo_ephemeris_map.cend())
|
|
{
|
|
bool found_E1_obs = false;
|
|
for (int i = 0; i < valid_obs; i++)
|
|
{
|
|
if (eph_data[i].sat == (static_cast<int>(gnss_observables_iter->second.PRN + NSATGPS + NSATGLO)))
|
|
{
|
|
obs_data[i + glo_valid_obs] = insert_obs_to_rtklib(obs_data[i + glo_valid_obs],
|
|
gnss_observables_iter->second,
|
|
galileo_ephemeris_iter->second.WN_5,
|
|
2); // Band 3 (L5/E5)
|
|
found_E1_obs = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found_E1_obs)
|
|
{
|
|
// insert Galileo E5 obs as new obs and also insert its ephemeris
|
|
// convert ephemeris from GNSS-SDR class to RTKLIB structure
|
|
eph_data[valid_obs] = eph_to_rtklib(galileo_ephemeris_iter->second);
|
|
// convert observation from GNSS-SDR class to RTKLIB structure
|
|
auto default_code_ = static_cast<unsigned char>(CODE_NONE);
|
|
obsd_t newobs = {{0, 0}, '0', '0', {}, {},
|
|
{default_code_, default_code_, default_code_},
|
|
{}, {0.0, 0.0, 0.0}, {}};
|
|
obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
|
|
gnss_observables_iter->second,
|
|
galileo_ephemeris_iter->second.WN_5,
|
|
2); // Band 3 (L5/E5)
|
|
valid_obs++;
|
|
}
|
|
}
|
|
else // the ephemeris are not available for this SV
|
|
{
|
|
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case 'G':
|
|
{
|
|
// GPS L1
|
|
// 1 GPS - find the ephemeris for the current GPS SV observation. The SV PRN ID is the map key
|
|
std::string sig_(gnss_observables_iter->second.Signal);
|
|
if (sig_ == "1C")
|
|
{
|
|
gps_ephemeris_iter = gps_ephemeris_map.find(gnss_observables_iter->second.PRN);
|
|
if (gps_ephemeris_iter != gps_ephemeris_map.cend())
|
|
{
|
|
// convert ephemeris from GNSS-SDR class to RTKLIB structure
|
|
eph_data[valid_obs] = eph_to_rtklib(gps_ephemeris_iter->second);
|
|
// convert observation from GNSS-SDR class to RTKLIB structure
|
|
obsd_t newobs = {{0, 0}, '0', '0', {}, {}, {}, {}, {}, {}};
|
|
obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
|
|
gnss_observables_iter->second,
|
|
gps_ephemeris_iter->second.i_GPS_week,
|
|
0);
|
|
valid_obs++;
|
|
}
|
|
else // the ephemeris are not available for this SV
|
|
{
|
|
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->first;
|
|
}
|
|
}
|
|
// GPS L2 (todo: solve NAV/CNAV clash)
|
|
if ((sig_ == "2S") and (gps_dual_band == false))
|
|
{
|
|
gps_cnav_ephemeris_iter = gps_cnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
|
|
if (gps_cnav_ephemeris_iter != gps_cnav_ephemeris_map.cend())
|
|
{
|
|
// 1. Find the same satellite in GPS L1 band
|
|
gps_ephemeris_iter = gps_ephemeris_map.find(gnss_observables_iter->second.PRN);
|
|
if (gps_ephemeris_iter != gps_ephemeris_map.cend())
|
|
{
|
|
/* By the moment, GPS L2 observables are not used in pseudorange computations if GPS L1 is available
|
|
// 2. If found, replace the existing GPS L1 ephemeris with the GPS L2 ephemeris
|
|
// (more precise!), and attach the L2 observation to the L1 observation in RTKLIB structure
|
|
for (int i = 0; i < valid_obs; i++)
|
|
{
|
|
if (eph_data[i].sat == static_cast<int>(gnss_observables_iter->second.PRN))
|
|
{
|
|
eph_data[i] = eph_to_rtklib(gps_cnav_ephemeris_iter->second);
|
|
obs_data[i + glo_valid_obs] = insert_obs_to_rtklib(obs_data[i + glo_valid_obs],
|
|
gnss_observables_iter->second,
|
|
eph_data[i].week,
|
|
1); // Band 2 (L2)
|
|
break;
|
|
}
|
|
}
|
|
*/
|
|
}
|
|
else
|
|
{
|
|
// 3. If not found, insert the GPS L2 ephemeris and the observation
|
|
// convert ephemeris from GNSS-SDR class to RTKLIB structure
|
|
eph_data[valid_obs] = eph_to_rtklib(gps_cnav_ephemeris_iter->second);
|
|
// convert observation from GNSS-SDR class to RTKLIB structure
|
|
auto default_code_ = static_cast<unsigned char>(CODE_NONE);
|
|
obsd_t newobs = {{0, 0}, '0', '0', {}, {},
|
|
{default_code_, default_code_, default_code_},
|
|
{}, {0.0, 0.0, 0.0}, {}};
|
|
obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
|
|
gnss_observables_iter->second,
|
|
gps_cnav_ephemeris_iter->second.i_GPS_week,
|
|
1); // Band 2 (L2)
|
|
valid_obs++;
|
|
}
|
|
}
|
|
else // the ephemeris are not available for this SV
|
|
{
|
|
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
|
|
}
|
|
}
|
|
// GPS L5
|
|
if (sig_ == "L5")
|
|
{
|
|
gps_cnav_ephemeris_iter = gps_cnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
|
|
if (gps_cnav_ephemeris_iter != gps_cnav_ephemeris_map.cend())
|
|
{
|
|
// 1. Find the same satellite in GPS L1 band
|
|
gps_ephemeris_iter = gps_ephemeris_map.find(gnss_observables_iter->second.PRN);
|
|
if (gps_ephemeris_iter != gps_ephemeris_map.cend())
|
|
{
|
|
// 2. If found, replace the existing GPS L1 ephemeris with the GPS L5 ephemeris
|
|
// (more precise!), and attach the L5 observation to the L1 observation in RTKLIB structure
|
|
for (int i = 0; i < valid_obs; i++)
|
|
{
|
|
if (eph_data[i].sat == static_cast<int>(gnss_observables_iter->second.PRN))
|
|
{
|
|
eph_data[i] = eph_to_rtklib(gps_cnav_ephemeris_iter->second);
|
|
obs_data[i + glo_valid_obs] = insert_obs_to_rtklib(obs_data[i],
|
|
gnss_observables_iter->second,
|
|
gps_cnav_ephemeris_iter->second.i_GPS_week,
|
|
2); // Band 3 (L5)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// 3. If not found, insert the GPS L5 ephemeris and the observation
|
|
// convert ephemeris from GNSS-SDR class to RTKLIB structure
|
|
eph_data[valid_obs] = eph_to_rtklib(gps_cnav_ephemeris_iter->second);
|
|
// convert observation from GNSS-SDR class to RTKLIB structure
|
|
auto default_code_ = static_cast<unsigned char>(CODE_NONE);
|
|
obsd_t newobs = {{0, 0}, '0', '0', {}, {},
|
|
{default_code_, default_code_, default_code_},
|
|
{}, {0.0, 0.0, 0.0}, {}};
|
|
obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
|
|
gnss_observables_iter->second,
|
|
gps_cnav_ephemeris_iter->second.i_GPS_week,
|
|
2); // Band 3 (L5)
|
|
valid_obs++;
|
|
}
|
|
}
|
|
else // the ephemeris are not available for this SV
|
|
{
|
|
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case 'R': //TODO This should be using rtk lib nomenclature
|
|
{
|
|
std::string sig_(gnss_observables_iter->second.Signal);
|
|
// GLONASS GNAV L1
|
|
if (sig_ == "1G")
|
|
{
|
|
// 1 Glo - find the ephemeris for the current GLONASS SV observation. The SV Slot Number (PRN ID) is the map key
|
|
glonass_gnav_ephemeris_iter = glonass_gnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
|
|
if (glonass_gnav_ephemeris_iter != glonass_gnav_ephemeris_map.cend())
|
|
{
|
|
// convert ephemeris from GNSS-SDR class to RTKLIB structure
|
|
geph_data[glo_valid_obs] = eph_to_rtklib(glonass_gnav_ephemeris_iter->second, gnav_utc);
|
|
// convert observation from GNSS-SDR class to RTKLIB structure
|
|
obsd_t newobs = {{0, 0}, '0', '0', {}, {}, {}, {}, {}, {}};
|
|
obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
|
|
gnss_observables_iter->second,
|
|
glonass_gnav_ephemeris_iter->second.d_WN,
|
|
0); // Band 0 (L1)
|
|
glo_valid_obs++;
|
|
}
|
|
else // the ephemeris are not available for this SV
|
|
{
|
|
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
|
|
}
|
|
}
|
|
// GLONASS GNAV L2
|
|
if (sig_ == "2G")
|
|
{
|
|
// 1 GLONASS - find the ephemeris for the current GLONASS SV observation. The SV PRN ID is the map key
|
|
glonass_gnav_ephemeris_iter = glonass_gnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
|
|
if (glonass_gnav_ephemeris_iter != glonass_gnav_ephemeris_map.cend())
|
|
{
|
|
bool found_L1_obs = false;
|
|
for (int i = 0; i < glo_valid_obs; i++)
|
|
{
|
|
if (geph_data[i].sat == (static_cast<int>(gnss_observables_iter->second.PRN + NSATGPS)))
|
|
{
|
|
obs_data[i + valid_obs] = insert_obs_to_rtklib(obs_data[i + valid_obs],
|
|
gnss_observables_iter->second,
|
|
glonass_gnav_ephemeris_iter->second.d_WN,
|
|
1); // Band 1 (L2)
|
|
found_L1_obs = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found_L1_obs)
|
|
{
|
|
// insert GLONASS GNAV L2 obs as new obs and also insert its ephemeris
|
|
// convert ephemeris from GNSS-SDR class to RTKLIB structure
|
|
geph_data[glo_valid_obs] = eph_to_rtklib(glonass_gnav_ephemeris_iter->second, gnav_utc);
|
|
// convert observation from GNSS-SDR class to RTKLIB structure
|
|
obsd_t newobs = {{0, 0}, '0', '0', {}, {}, {}, {}, {}, {}};
|
|
obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
|
|
gnss_observables_iter->second,
|
|
glonass_gnav_ephemeris_iter->second.d_WN,
|
|
1); // Band 1 (L2)
|
|
glo_valid_obs++;
|
|
}
|
|
}
|
|
else // the ephemeris are not available for this SV
|
|
{
|
|
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case 'C':
|
|
{
|
|
// BEIDOU B1I
|
|
// - find the ephemeris for the current BEIDOU SV observation. The SV PRN ID is the map key
|
|
std::string sig_(gnss_observables_iter->second.Signal);
|
|
if (sig_ == "B1")
|
|
{
|
|
beidou_ephemeris_iter = beidou_dnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
|
|
if (beidou_ephemeris_iter != beidou_dnav_ephemeris_map.cend())
|
|
{
|
|
// convert ephemeris from GNSS-SDR class to RTKLIB structure
|
|
eph_data[valid_obs] = eph_to_rtklib(beidou_ephemeris_iter->second);
|
|
// convert observation from GNSS-SDR class to RTKLIB structure
|
|
obsd_t newobs = {{0, 0}, '0', '0', {}, {}, {}, {}, {}, {}};
|
|
obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
|
|
gnss_observables_iter->second,
|
|
beidou_ephemeris_iter->second.i_BEIDOU_week + BEIDOU_DNAV_BDT2GPST_WEEK_NUM_OFFSET,
|
|
0);
|
|
valid_obs++;
|
|
}
|
|
else // the ephemeris are not available for this SV
|
|
{
|
|
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->first;
|
|
}
|
|
}
|
|
// BeiDou B3
|
|
if (sig_ == "B3")
|
|
{
|
|
beidou_ephemeris_iter = beidou_dnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
|
|
if (beidou_ephemeris_iter != beidou_dnav_ephemeris_map.cend())
|
|
{
|
|
bool found_B1I_obs = false;
|
|
for (int i = 0; i < valid_obs; i++)
|
|
{
|
|
if (eph_data[i].sat == (static_cast<int>(gnss_observables_iter->second.PRN + NSATGPS + NSATGLO + NSATGAL + NSATQZS)))
|
|
{
|
|
obs_data[i + glo_valid_obs] = insert_obs_to_rtklib(obs_data[i + glo_valid_obs],
|
|
gnss_observables_iter->second,
|
|
beidou_ephemeris_iter->second.i_BEIDOU_week + BEIDOU_DNAV_BDT2GPST_WEEK_NUM_OFFSET,
|
|
2); // Band 3 (L2/G2/B3)
|
|
found_B1I_obs = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found_B1I_obs)
|
|
{
|
|
// insert BeiDou B3I obs as new obs and also insert its ephemeris
|
|
// convert ephemeris from GNSS-SDR class to RTKLIB structure
|
|
eph_data[valid_obs] = eph_to_rtklib(beidou_ephemeris_iter->second);
|
|
// convert observation from GNSS-SDR class to RTKLIB structure
|
|
auto default_code_ = static_cast<unsigned char>(CODE_NONE);
|
|
obsd_t newobs = {{0, 0}, '0', '0', {}, {},
|
|
{default_code_, default_code_, default_code_},
|
|
{}, {0.0, 0.0, 0.0}, {}};
|
|
obs_data[valid_obs + glo_valid_obs] = insert_obs_to_rtklib(newobs,
|
|
gnss_observables_iter->second,
|
|
beidou_ephemeris_iter->second.i_BEIDOU_week + BEIDOU_DNAV_BDT2GPST_WEEK_NUM_OFFSET,
|
|
2); // Band 2 (L2/G2)
|
|
valid_obs++;
|
|
}
|
|
}
|
|
else // the ephemeris are not available for this SV
|
|
{
|
|
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
DLOG(INFO) << "Hybrid observables: Unknown GNSS";
|
|
break;
|
|
}
|
|
}
|
|
|
|
// **********************************************************************
|
|
// ****** SOLVE PVT******************************************************
|
|
// **********************************************************************
|
|
|
|
this->set_valid_position(false);
|
|
if ((valid_obs + glo_valid_obs) > 3)
|
|
{
|
|
int result = 0;
|
|
nav_t nav_data{};
|
|
nav_data.eph = eph_data.data();
|
|
nav_data.geph = geph_data.data();
|
|
nav_data.n = valid_obs;
|
|
nav_data.ng = glo_valid_obs;
|
|
if (gps_iono.valid)
|
|
{
|
|
nav_data.ion_gps[0] = gps_iono.d_alpha0;
|
|
nav_data.ion_gps[1] = gps_iono.d_alpha1;
|
|
nav_data.ion_gps[2] = gps_iono.d_alpha2;
|
|
nav_data.ion_gps[3] = gps_iono.d_alpha3;
|
|
nav_data.ion_gps[4] = gps_iono.d_beta0;
|
|
nav_data.ion_gps[5] = gps_iono.d_beta1;
|
|
nav_data.ion_gps[6] = gps_iono.d_beta2;
|
|
nav_data.ion_gps[7] = gps_iono.d_beta3;
|
|
}
|
|
if (!(gps_iono.valid) and gps_cnav_iono.valid)
|
|
{
|
|
nav_data.ion_gps[0] = gps_cnav_iono.d_alpha0;
|
|
nav_data.ion_gps[1] = gps_cnav_iono.d_alpha1;
|
|
nav_data.ion_gps[2] = gps_cnav_iono.d_alpha2;
|
|
nav_data.ion_gps[3] = gps_cnav_iono.d_alpha3;
|
|
nav_data.ion_gps[4] = gps_cnav_iono.d_beta0;
|
|
nav_data.ion_gps[5] = gps_cnav_iono.d_beta1;
|
|
nav_data.ion_gps[6] = gps_cnav_iono.d_beta2;
|
|
nav_data.ion_gps[7] = gps_cnav_iono.d_beta3;
|
|
}
|
|
if (galileo_iono.ai0_5 != 0.0)
|
|
{
|
|
nav_data.ion_gal[0] = galileo_iono.ai0_5;
|
|
nav_data.ion_gal[1] = galileo_iono.ai1_5;
|
|
nav_data.ion_gal[2] = galileo_iono.ai2_5;
|
|
nav_data.ion_gal[3] = 0.0;
|
|
}
|
|
if (beidou_dnav_iono.valid)
|
|
{
|
|
nav_data.ion_cmp[0] = beidou_dnav_iono.d_alpha0;
|
|
nav_data.ion_cmp[1] = beidou_dnav_iono.d_alpha1;
|
|
nav_data.ion_cmp[2] = beidou_dnav_iono.d_alpha2;
|
|
nav_data.ion_cmp[3] = beidou_dnav_iono.d_alpha3;
|
|
nav_data.ion_cmp[4] = beidou_dnav_iono.d_beta0;
|
|
nav_data.ion_cmp[5] = beidou_dnav_iono.d_beta0;
|
|
nav_data.ion_cmp[6] = beidou_dnav_iono.d_beta0;
|
|
nav_data.ion_cmp[7] = beidou_dnav_iono.d_beta3;
|
|
}
|
|
if (gps_utc_model.valid)
|
|
{
|
|
nav_data.utc_gps[0] = gps_utc_model.d_A0;
|
|
nav_data.utc_gps[1] = gps_utc_model.d_A1;
|
|
nav_data.utc_gps[2] = gps_utc_model.d_t_OT;
|
|
nav_data.utc_gps[3] = gps_utc_model.i_WN_T;
|
|
nav_data.leaps = gps_utc_model.d_DeltaT_LS;
|
|
}
|
|
if (!(gps_utc_model.valid) and gps_cnav_utc_model.valid)
|
|
{
|
|
nav_data.utc_gps[0] = gps_cnav_utc_model.d_A0;
|
|
nav_data.utc_gps[1] = gps_cnav_utc_model.d_A1;
|
|
nav_data.utc_gps[2] = gps_cnav_utc_model.d_t_OT;
|
|
nav_data.utc_gps[3] = gps_cnav_utc_model.i_WN_T;
|
|
nav_data.leaps = gps_cnav_utc_model.d_DeltaT_LS;
|
|
}
|
|
if (glonass_gnav_utc_model.valid)
|
|
{
|
|
nav_data.utc_glo[0] = glonass_gnav_utc_model.d_tau_c; // ??
|
|
nav_data.utc_glo[1] = 0.0; // ??
|
|
nav_data.utc_glo[2] = 0.0; // ??
|
|
nav_data.utc_glo[3] = 0.0; // ??
|
|
}
|
|
if (galileo_utc_model.A0_6 != 0.0)
|
|
{
|
|
nav_data.utc_gal[0] = galileo_utc_model.A0_6;
|
|
nav_data.utc_gal[1] = galileo_utc_model.A1_6;
|
|
nav_data.utc_gal[2] = galileo_utc_model.t0t_6;
|
|
nav_data.utc_gal[3] = galileo_utc_model.WNot_6;
|
|
nav_data.leaps = galileo_utc_model.Delta_tLS_6;
|
|
}
|
|
if (beidou_dnav_utc_model.valid)
|
|
{
|
|
nav_data.utc_cmp[0] = beidou_dnav_utc_model.d_A0_UTC;
|
|
nav_data.utc_cmp[1] = beidou_dnav_utc_model.d_A1_UTC;
|
|
nav_data.utc_cmp[2] = 0.0; // ??
|
|
nav_data.utc_cmp[3] = 0.0; // ??
|
|
nav_data.leaps = beidou_dnav_utc_model.d_DeltaT_LS;
|
|
}
|
|
|
|
/* update carrier wave length using native function call in RTKlib */
|
|
for (int i = 0; i < MAXSAT; i++)
|
|
{
|
|
for (int j = 0; j < NFREQ; j++)
|
|
{
|
|
nav_data.lam[i][j] = satwavelen(i + 1, j, &nav_data);
|
|
}
|
|
}
|
|
|
|
result = rtkpos(&rtk_, obs_data.data(), valid_obs + glo_valid_obs, &nav_data);
|
|
|
|
if (result == 0)
|
|
{
|
|
LOG(INFO) << "RTKLIB rtkpos error";
|
|
DLOG(INFO) << "RTKLIB rtkpos error message: " << rtk_.errbuf;
|
|
this->set_time_offset_s(0.0); // reset rx time estimation
|
|
this->set_num_valid_observations(0);
|
|
}
|
|
else
|
|
{
|
|
this->set_num_valid_observations(rtk_.sol.ns); // record the number of valid satellites used by the PVT solver
|
|
pvt_sol = rtk_.sol;
|
|
// DOP computation
|
|
unsigned int used_sats = 0;
|
|
for (unsigned int i = 0; i < MAXSAT; i++)
|
|
{
|
|
pvt_ssat[i] = rtk_.ssat[i];
|
|
if (rtk_.ssat[i].vs == 1)
|
|
{
|
|
used_sats++;
|
|
}
|
|
}
|
|
|
|
std::vector<double> azel;
|
|
azel.reserve(used_sats * 2);
|
|
unsigned int index_aux = 0;
|
|
for (auto &i : rtk_.ssat)
|
|
{
|
|
if (i.vs == 1)
|
|
{
|
|
azel[2 * index_aux] = i.azel[0];
|
|
azel[2 * index_aux + 1] = i.azel[1];
|
|
index_aux++;
|
|
}
|
|
}
|
|
|
|
if (index_aux > 0)
|
|
{
|
|
dops(index_aux, azel.data(), 0.0, dop_.data());
|
|
}
|
|
this->set_valid_position(true);
|
|
arma::vec rx_position_and_time(4);
|
|
rx_position_and_time(0) = pvt_sol.rr[0]; // [m]
|
|
rx_position_and_time(1) = pvt_sol.rr[1]; // [m]
|
|
rx_position_and_time(2) = pvt_sol.rr[2]; // [m]
|
|
//todo: fix this ambiguity in the RTKLIB units in receiver clock offset!
|
|
if (rtk_.opt.mode == PMODE_SINGLE)
|
|
{
|
|
// if the RTKLIB solver is set to SINGLE, the dtr is already expressed in [s]
|
|
// add also the clock offset from gps to galileo (pvt_sol.dtr[2])
|
|
rx_position_and_time(3) = pvt_sol.dtr[0] + pvt_sol.dtr[2];
|
|
}
|
|
else
|
|
{
|
|
// the receiver clock offset is expressed in [meters], so we convert it into [s]
|
|
// add also the clock offset from gps to galileo (pvt_sol.dtr[2])
|
|
rx_position_and_time(3) = pvt_sol.dtr[2] + pvt_sol.dtr[0] / GPS_C_M_S;
|
|
}
|
|
this->set_rx_pos(rx_position_and_time.rows(0, 2)); // save ECEF position for the next iteration
|
|
|
|
// compute Ground speed and COG
|
|
double ground_speed_ms = 0.0;
|
|
std::array<double, 3> pos{};
|
|
std::array<double, 3> enuv{};
|
|
ecef2pos(pvt_sol.rr, pos.data());
|
|
ecef2enu(pos.data(), &pvt_sol.rr[3], enuv.data());
|
|
this->set_speed_over_ground(norm_rtk(enuv.data(), 2));
|
|
double new_cog;
|
|
if (ground_speed_ms >= 1.0)
|
|
{
|
|
new_cog = atan2(enuv[0], enuv[1]) * R2D;
|
|
if (new_cog < 0.0)
|
|
{
|
|
new_cog += 360.0;
|
|
}
|
|
this->set_course_over_ground(new_cog);
|
|
}
|
|
|
|
this->set_time_offset_s(rx_position_and_time(3));
|
|
|
|
DLOG(INFO) << "RTKLIB Position at RX TOW = " << gnss_observables_map.begin()->second.RX_time
|
|
<< " in ECEF (X,Y,Z,t[meters]) = " << rx_position_and_time;
|
|
|
|
boost::posix_time::ptime p_time;
|
|
// gtime_t rtklib_utc_time = gpst2utc(pvt_sol.time); // Corrected RX Time (Non integer multiply of 1 ms of granularity)
|
|
// Uncorrected RX Time (integer multiply of 1 ms and the same observables time reported in RTCM and RINEX)
|
|
gtime_t rtklib_time = timeadd(pvt_sol.time, rx_position_and_time(3)); // uncorrected rx time
|
|
gtime_t rtklib_utc_time = gpst2utc(rtklib_time);
|
|
p_time = boost::posix_time::from_time_t(rtklib_utc_time.time);
|
|
p_time += boost::posix_time::microseconds(static_cast<long>(round(rtklib_utc_time.sec * 1e6))); // NOLINT(google-runtime-int)
|
|
|
|
this->set_position_UTC_time(p_time);
|
|
cart2geo(static_cast<double>(rx_position_and_time(0)), static_cast<double>(rx_position_and_time(1)), static_cast<double>(rx_position_and_time(2)), 4);
|
|
|
|
DLOG(INFO) << "RTKLIB Position at " << boost::posix_time::to_simple_string(p_time)
|
|
<< " is Lat = " << this->get_latitude() << " [deg], Long = " << this->get_longitude()
|
|
<< " [deg], Height= " << this->get_height() << " [m]"
|
|
<< " RX time offset= " << this->get_time_offset_s() << " [s]";
|
|
|
|
// ######## PVT MONITOR #########
|
|
// TOW
|
|
monitor_pvt.TOW_at_current_symbol_ms = gnss_observables_map.begin()->second.TOW_at_current_symbol_ms;
|
|
// WEEK
|
|
monitor_pvt.week = adjgpsweek(nav_data.eph[0].week);
|
|
// PVT GPS time
|
|
monitor_pvt.RX_time = gnss_observables_map.begin()->second.RX_time;
|
|
// User clock offset [s]
|
|
monitor_pvt.user_clk_offset = rx_position_and_time(3);
|
|
|
|
// ECEF POS X,Y,X [m] + ECEF VEL X,Y,X [m/s] (6 x double)
|
|
monitor_pvt.pos_x = pvt_sol.rr[0];
|
|
monitor_pvt.pos_y = pvt_sol.rr[1];
|
|
monitor_pvt.pos_z = pvt_sol.rr[2];
|
|
monitor_pvt.vel_x = pvt_sol.rr[3];
|
|
monitor_pvt.vel_y = pvt_sol.rr[4];
|
|
monitor_pvt.vel_z = pvt_sol.rr[5];
|
|
|
|
// position variance/covariance (m^2) {c_xx,c_yy,c_zz,c_xy,c_yz,c_zx} (6 x double)
|
|
monitor_pvt.cov_xx = pvt_sol.qr[0];
|
|
monitor_pvt.cov_yy = pvt_sol.qr[1];
|
|
monitor_pvt.cov_zz = pvt_sol.qr[2];
|
|
monitor_pvt.cov_xy = pvt_sol.qr[3];
|
|
monitor_pvt.cov_yz = pvt_sol.qr[4];
|
|
monitor_pvt.cov_zx = pvt_sol.qr[5];
|
|
|
|
// GEO user position Latitude [deg]
|
|
monitor_pvt.latitude = get_latitude();
|
|
// GEO user position Longitude [deg]
|
|
monitor_pvt.longitude = get_longitude();
|
|
// GEO user position Height [m]
|
|
monitor_pvt.height = get_height();
|
|
|
|
// NUMBER OF VALID SATS
|
|
monitor_pvt.valid_sats = pvt_sol.ns;
|
|
// RTKLIB solution status
|
|
monitor_pvt.solution_status = pvt_sol.stat;
|
|
// RTKLIB solution type (0:xyz-ecef,1:enu-baseline)
|
|
monitor_pvt.solution_type = pvt_sol.type;
|
|
// AR ratio factor for validation
|
|
monitor_pvt.AR_ratio_factor = pvt_sol.ratio;
|
|
// AR ratio threshold for validation
|
|
monitor_pvt.AR_ratio_threshold = pvt_sol.thres;
|
|
|
|
// GDOP / PDOP/ HDOP/ VDOP
|
|
monitor_pvt.gdop = dop_[0];
|
|
monitor_pvt.pdop = dop_[1];
|
|
monitor_pvt.hdop = dop_[2];
|
|
monitor_pvt.vdop = dop_[3];
|
|
|
|
// ######## LOG FILE #########
|
|
if (d_flag_dump_enabled == true)
|
|
{
|
|
// MULTIPLEXED FILE RECORDING - Record results to file
|
|
try
|
|
{
|
|
double tmp_double;
|
|
uint32_t tmp_uint32;
|
|
// TOW
|
|
tmp_uint32 = gnss_observables_map.begin()->second.TOW_at_current_symbol_ms;
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_uint32), sizeof(uint32_t));
|
|
// WEEK
|
|
tmp_uint32 = adjgpsweek(nav_data.eph[0].week);
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_uint32), sizeof(uint32_t));
|
|
// PVT GPS time
|
|
tmp_double = gnss_observables_map.begin()->second.RX_time;
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
// User clock offset [s]
|
|
tmp_double = rx_position_and_time(3);
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
|
|
// ECEF POS X,Y,X [m] + ECEF VEL X,Y,X [m/s] (6 x double)
|
|
tmp_double = pvt_sol.rr[0];
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
tmp_double = pvt_sol.rr[1];
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
tmp_double = pvt_sol.rr[2];
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
tmp_double = pvt_sol.rr[3];
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
tmp_double = pvt_sol.rr[4];
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
tmp_double = pvt_sol.rr[5];
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
|
|
// position variance/covariance (m^2) {c_xx,c_yy,c_zz,c_xy,c_yz,c_zx} (6 x double)
|
|
tmp_double = pvt_sol.qr[0];
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
tmp_double = pvt_sol.qr[1];
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
tmp_double = pvt_sol.qr[2];
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
tmp_double = pvt_sol.qr[3];
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
tmp_double = pvt_sol.qr[4];
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
tmp_double = pvt_sol.qr[5];
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
|
|
// GEO user position Latitude [deg]
|
|
tmp_double = get_latitude();
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
// GEO user position Longitude [deg]
|
|
tmp_double = get_longitude();
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
// GEO user position Height [m]
|
|
tmp_double = get_height();
|
|
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
|
|
|
// NUMBER OF VALID SATS
|
|
d_dump_file.write(reinterpret_cast<char *>(&pvt_sol.ns), sizeof(uint8_t));
|
|
// RTKLIB solution status
|
|
d_dump_file.write(reinterpret_cast<char *>(&pvt_sol.stat), sizeof(uint8_t));
|
|
// RTKLIB solution type (0:xyz-ecef,1:enu-baseline)
|
|
d_dump_file.write(reinterpret_cast<char *>(&pvt_sol.type), sizeof(uint8_t));
|
|
// AR ratio factor for validation
|
|
d_dump_file.write(reinterpret_cast<char *>(&pvt_sol.ratio), sizeof(float));
|
|
// AR ratio threshold for validation
|
|
d_dump_file.write(reinterpret_cast<char *>(&pvt_sol.thres), sizeof(float));
|
|
|
|
// GDOP / PDOP/ HDOP/ VDOP
|
|
d_dump_file.write(reinterpret_cast<char *>(&dop_[0]), sizeof(double));
|
|
d_dump_file.write(reinterpret_cast<char *>(&dop_[1]), sizeof(double));
|
|
d_dump_file.write(reinterpret_cast<char *>(&dop_[2]), sizeof(double));
|
|
d_dump_file.write(reinterpret_cast<char *>(&dop_[3]), sizeof(double));
|
|
}
|
|
catch (const std::ifstream::failure &e)
|
|
{
|
|
LOG(WARNING) << "Exception writing RTKLIB dump file " << e.what();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return is_valid_position();
|
|
}
|