1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-07-04 10:53:17 +00:00
gnss-sdr/src/tests/unit-tests/arithmetic/magnitude_squared_test.cc
2020-07-28 16:57:15 +02:00

150 lines
5.8 KiB
C++

/*!
* \file magnitude_squared_test.cc
* \brief This file implements tests for the computation of magnitude squared
* in long arrays.
* \author Carles Fernandez-Prades, 2014. cfernandez(at)cttc.es
*
*
* -----------------------------------------------------------------------------
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include <armadillo>
#include <volk/volk.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <volk_gnsssdr/volk_gnsssdr_alloc.h>
#include <algorithm>
#include <chrono>
#include <complex>
DEFINE_int32(size_magnitude_test, 100000, "Size of the arrays used for magnitude testing");
TEST(MagnitudeSquaredTest, StandardCComplexImplementation)
{
auto* input = new std::complex<float>[FLAGS_size_magnitude_test];
auto* output = new float[FLAGS_size_magnitude_test];
unsigned int number = 0;
for (number = 0; number < static_cast<unsigned int>(FLAGS_size_magnitude_test); number++)
{
input[number] = std::complex<float>(0.0, 0.0);
}
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
for (number = 0; number < static_cast<unsigned int>(FLAGS_size_magnitude_test); number++)
{
output[number] = (input[number].real() * input[number].real()) + (input[number].imag() * input[number].imag());
}
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test
<< "-length complex vector in standard C computed in " << elapsed_seconds.count() * 1e6
<< " microseconds\n";
delete[] input;
delete[] output;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
}
TEST(MagnitudeSquaredTest, C11ComplexImplementation)
{
const std::vector<std::complex<float>> input(FLAGS_size_magnitude_test);
std::vector<float> output(FLAGS_size_magnitude_test);
int pos = 0;
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
for (const auto& item : input)
{
output[pos++] = std::norm(item);
}
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test
<< " complex<float> vector (C++11-style) finished in " << elapsed_seconds.count() * 1e6
<< " microseconds\n";
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
std::complex<float> expected(0, 0);
std::complex<float> result(0, 0);
for (const auto& item : output)
{
result += item;
}
ASSERT_EQ(expected, result);
}
TEST(MagnitudeSquaredTest, ArmadilloComplexImplementation)
{
arma::cx_fvec input(FLAGS_size_magnitude_test, arma::fill::zeros);
arma::fvec output(FLAGS_size_magnitude_test);
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
output = arma::abs(arma::square(input));
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test
<< "-length vector using Armadillo computed in " << elapsed_seconds.count() * 1e6
<< " microseconds\n";
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
}
TEST(MagnitudeSquaredTest, VolkComplexImplementation)
{
auto* input = static_cast<std::complex<float>*>(volk_gnsssdr_malloc(FLAGS_size_magnitude_test * sizeof(std::complex<float>), volk_gnsssdr_get_alignment()));
std::fill_n(input, FLAGS_size_magnitude_test, std::complex<float>(0.0, 0.0));
auto* output = static_cast<float*>(volk_gnsssdr_malloc(FLAGS_size_magnitude_test * sizeof(float), volk_gnsssdr_get_alignment()));
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
volk_32fc_magnitude_squared_32f(output, input, static_cast<unsigned int>(FLAGS_size_magnitude_test));
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test
<< "-length vector using VOLK computed in " << elapsed_seconds.count() * 1e6
<< " microseconds\n";
volk_gnsssdr_free(input);
volk_gnsssdr_free(output);
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
}
TEST(MagnitudeSquaredTest, VolkComplexImplementationAlloc)
{
volk_gnsssdr::vector<std::complex<float>> input(FLAGS_size_magnitude_test); // or: input(FLAGS_size_magnitude_test, std::complex<float>(0.0, 0.0));
std::fill_n(input.begin(), FLAGS_size_magnitude_test, std::complex<float>(0.0, 0.0));
volk_gnsssdr::vector<float> output(FLAGS_size_magnitude_test);
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
volk_32fc_magnitude_squared_32f(output.data(), input.data(), static_cast<unsigned int>(FLAGS_size_magnitude_test));
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test
<< "-length vector using VOLK ALLOC computed in " << elapsed_seconds.count() * 1e6
<< " microseconds\n";
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
}
// volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);