/*! * \file magnitude_squared_test.cc * \brief This file implements tests for the computation of magnitude squared * in long arrays. * \author Carles Fernandez-Prades, 2014. cfernandez(at)cttc.es * * * ----------------------------------------------------------------------------- * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include #include #include #include #include #include #include DEFINE_int32(size_magnitude_test, 100000, "Size of the arrays used for magnitude testing"); TEST(MagnitudeSquaredTest, StandardCComplexImplementation) { auto* input = new std::complex[FLAGS_size_magnitude_test]; auto* output = new float[FLAGS_size_magnitude_test]; unsigned int number = 0; for (number = 0; number < static_cast(FLAGS_size_magnitude_test); number++) { input[number] = std::complex(0.0, 0.0); } std::chrono::time_point start, end; start = std::chrono::system_clock::now(); for (number = 0; number < static_cast(FLAGS_size_magnitude_test); number++) { output[number] = (input[number].real() * input[number].real()) + (input[number].imag() * input[number].imag()); } end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test << "-length complex vector in standard C computed in " << elapsed_seconds.count() * 1e6 << " microseconds\n"; delete[] input; delete[] output; ASSERT_LE(0, elapsed_seconds.count() * 1e6); } TEST(MagnitudeSquaredTest, C11ComplexImplementation) { const std::vector> input(FLAGS_size_magnitude_test); std::vector output(FLAGS_size_magnitude_test); int pos = 0; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); for (const auto& item : input) { output[pos++] = std::norm(item); } end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test << " complex vector (C++11-style) finished in " << elapsed_seconds.count() * 1e6 << " microseconds\n"; ASSERT_LE(0, elapsed_seconds.count() * 1e6); std::complex expected(0, 0); std::complex result(0, 0); for (const auto& item : output) { result += item; } ASSERT_EQ(expected, result); } TEST(MagnitudeSquaredTest, ArmadilloComplexImplementation) { arma::cx_fvec input(FLAGS_size_magnitude_test, arma::fill::zeros); arma::fvec output(FLAGS_size_magnitude_test); std::chrono::time_point start, end; start = std::chrono::system_clock::now(); output = arma::abs(arma::square(input)); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test << "-length vector using Armadillo computed in " << elapsed_seconds.count() * 1e6 << " microseconds\n"; ASSERT_LE(0, elapsed_seconds.count() * 1e6); } TEST(MagnitudeSquaredTest, VolkComplexImplementation) { auto* input = static_cast*>(volk_gnsssdr_malloc(FLAGS_size_magnitude_test * sizeof(std::complex), volk_gnsssdr_get_alignment())); std::fill_n(input, FLAGS_size_magnitude_test, std::complex(0.0, 0.0)); auto* output = static_cast(volk_gnsssdr_malloc(FLAGS_size_magnitude_test * sizeof(float), volk_gnsssdr_get_alignment())); std::chrono::time_point start, end; start = std::chrono::system_clock::now(); volk_32fc_magnitude_squared_32f(output, input, static_cast(FLAGS_size_magnitude_test)); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test << "-length vector using VOLK computed in " << elapsed_seconds.count() * 1e6 << " microseconds\n"; volk_gnsssdr_free(input); volk_gnsssdr_free(output); ASSERT_LE(0, elapsed_seconds.count() * 1e6); } TEST(MagnitudeSquaredTest, VolkComplexImplementationAlloc) { volk_gnsssdr::vector> input(FLAGS_size_magnitude_test); // or: input(FLAGS_size_magnitude_test, std::complex(0.0, 0.0)); std::fill_n(input.begin(), FLAGS_size_magnitude_test, std::complex(0.0, 0.0)); volk_gnsssdr::vector output(FLAGS_size_magnitude_test); std::chrono::time_point start, end; start = std::chrono::system_clock::now(); volk_32fc_magnitude_squared_32f(output.data(), input.data(), static_cast(FLAGS_size_magnitude_test)); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test << "-length vector using VOLK ALLOC computed in " << elapsed_seconds.count() * 1e6 << " microseconds\n"; ASSERT_LE(0, elapsed_seconds.count() * 1e6); } // volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);