gnss-sdr/src/algorithms/libs/beidou_b1i_signal_replica.cc

171 lines
6.4 KiB
C++

/*!
* \file beidou_b1i_signal_replica.cc
* \brief This file implements various functions for BeiDou B1I signal replica
* generation
* \author Sergi Segura, 2018. sergi.segura.munoz(at)gmail.com
*
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "beidou_b1i_signal_replica.h"
#include <array>
#include <bitset>
#include <string>
const auto AUX_CEIL = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); };
void beidou_b1i_code_gen_int(own::span<int32_t> dest, int32_t prn, uint32_t chip_shift)
{
constexpr uint32_t code_length = 2046;
const std::array<int32_t, 63> phase1 = {1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 8, 8, 8, 9, 9, 10, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 8, 9, 9, 3, 5, 7, 4, 4, 5, 5, 5, 5, 6};
const std::array<int32_t, 63> phase2 = {3, 4, 5, 6, 8, 9, 10, 11, 7, 4, 5, 6, 8, 9, 10, 11, 5, 6, 8, 9, 10, 11, 6, 8, 9, 10, 11, 8, 9, 10, 11, 9, 10, 11, 10, 11, 11, 7, 4, 6, 8, 10, 11, 5, 9, 6, 8, 10, 11, 9, 9, 10, 11, 7, 7, 9, 5, 9, 6, 8, 10, 11, 9};
const std::array<int32_t, 63> phase3 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3};
std::bitset<code_length> G1{};
std::bitset<code_length> G2{};
std::bitset<11> G1_register(std::string("01010101010"));
std::bitset<11> G2_register(std::string("01010101010"));
bool feedback1;
bool feedback2;
bool aux;
uint32_t lcv;
uint32_t lcv2;
uint32_t delay;
int32_t prn_idx;
// compute delay array index for given PRN number
prn_idx = prn - 1;
// A simple error check
if ((prn_idx < 0) || (prn_idx > 62))
{
return;
}
// Generate G1 & G2 Register
for (lcv = 0; lcv < code_length; lcv++)
{
G1[lcv] = G1_register[0];
G2[lcv] = G2_register[-(phase1[prn_idx] - 11)] xor G2_register[-(phase2[prn_idx] - 11)] xor (phase3[prn_idx] ? G2_register[-(phase3[prn_idx] - 11)] : 0);
feedback1 = G1_register[0] xor G1_register[1] xor G1_register[2] xor G1_register[3] xor G1_register[4] xor G1_register[10];
feedback2 = G2_register[0] xor G2_register[2] xor G2_register[3] xor G2_register[6] xor G2_register[7] xor G2_register[8] xor G2_register[9] xor G2_register[10];
for (lcv2 = 0; lcv2 < 10; lcv2++)
{
G1_register[lcv2] = G1_register[lcv2 + 1];
G2_register[lcv2] = G2_register[lcv2 + 1];
}
G1_register[10] = feedback1;
G2_register[10] = feedback2;
}
// Set the delay
delay = code_length; // *********************************
delay += chip_shift;
delay %= code_length;
// Generate PRN from G1 and G2 Registers
for (lcv = 0; lcv < code_length; lcv++)
{
aux = G1[(lcv + chip_shift) % code_length] xor G2[delay];
if (aux == true)
{
dest[lcv] = 1;
}
else
{
dest[lcv] = -1;
}
delay++;
delay %= code_length;
}
}
void beidou_b1i_code_gen_float(own::span<float> dest, int32_t prn, uint32_t chip_shift)
{
constexpr uint32_t code_length = 2046;
std::array<int32_t, code_length> b1i_code_int{};
beidou_b1i_code_gen_int(own::span<int32_t>(b1i_code_int.data(), code_length), prn, chip_shift);
for (uint32_t ii = 0; ii < code_length; ++ii)
{
dest[ii] = static_cast<float>(b1i_code_int[ii]);
}
}
void beidou_b1i_code_gen_complex(own::span<std::complex<float>> dest, int32_t prn, uint32_t chip_shift)
{
constexpr uint32_t code_length = 2046;
std::array<int32_t, code_length> b1i_code_int{};
beidou_b1i_code_gen_int(own::span<int32_t>(b1i_code_int.data(), code_length), prn, chip_shift);
for (uint32_t ii = 0; ii < code_length; ++ii)
{
dest[ii] = std::complex<float>(static_cast<float>(b1i_code_int[ii]), 0.0F);
}
}
/*
* Generates complex BeiDou B1I code for the desired SV ID and sampled to specific sampling frequency
*/
void beidou_b1i_code_gen_complex_sampled(own::span<std::complex<float>> dest, uint32_t prn, int32_t sampling_freq, uint32_t chip_shift)
{
constexpr int32_t codeFreqBasis = 2046000; // chips per second
constexpr int32_t codeLength = 2046;
constexpr float tc = 1.0 / static_cast<float>(codeFreqBasis); // B1I chip period in sec
const auto samplesPerCode = static_cast<int32_t>(static_cast<double>(sampling_freq) / (static_cast<double>(codeFreqBasis) / static_cast<double>(codeLength)));
const float ts = 1.0F / static_cast<float>(sampling_freq); // Sampling period in sec
std::array<std::complex<float>, 2046> code_aux{};
int32_t codeValueIndex;
float aux;
beidou_b1i_code_gen_complex(code_aux, prn, chip_shift); // generate B1I code 1 sample per chip
for (int32_t i = 0; i < samplesPerCode; i++)
{
// === Digitizing ==================================================
// --- Make index array to read B1I code values --------------------
// The length of the index array depends on the sampling frequency -
// number of samples per millisecond (because one B1I code period is
// one millisecond).
aux = (ts * (static_cast<float>(i) + 1)) / tc;
codeValueIndex = AUX_CEIL(aux) - 1;
// --- Make the digitized version of the B1I code ------------------
// The upsampled code is made by selecting values from the B1I code
// chip array for the time instances of each sample.
if (i == samplesPerCode - 1)
{
// Correct the last index (due to number rounding issues)
dest[i] = code_aux[codeLength - 1];
}
else
{
dest[i] = code_aux[codeValueIndex]; // repeat the chip -> upsample
}
}
}