/*! * \file beidou_b1i_signal_replica.cc * \brief This file implements various functions for BeiDou B1I signal replica * generation * \author Sergi Segura, 2018. sergi.segura.munoz(at)gmail.com * * * ----------------------------------------------------------------------------- * * GNSS-SDR is a Global Navigation Satellite System software-defined receiver. * This file is part of GNSS-SDR. * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include "beidou_b1i_signal_replica.h" #include #include #include const auto AUX_CEIL = [](float x) { return static_cast(static_cast((x) + 1)); }; void beidou_b1i_code_gen_int(own::span dest, int32_t prn, uint32_t chip_shift) { constexpr uint32_t code_length = 2046; const std::array phase1 = {1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 8, 8, 8, 9, 9, 10, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 8, 9, 9, 3, 5, 7, 4, 4, 5, 5, 5, 5, 6}; const std::array phase2 = {3, 4, 5, 6, 8, 9, 10, 11, 7, 4, 5, 6, 8, 9, 10, 11, 5, 6, 8, 9, 10, 11, 6, 8, 9, 10, 11, 8, 9, 10, 11, 9, 10, 11, 10, 11, 11, 7, 4, 6, 8, 10, 11, 5, 9, 6, 8, 10, 11, 9, 9, 10, 11, 7, 7, 9, 5, 9, 6, 8, 10, 11, 9}; const std::array phase3 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3}; std::bitset G1{}; std::bitset G2{}; std::bitset<11> G1_register(std::string("01010101010")); std::bitset<11> G2_register(std::string("01010101010")); bool feedback1; bool feedback2; bool aux; uint32_t lcv; uint32_t lcv2; uint32_t delay; int32_t prn_idx; // compute delay array index for given PRN number prn_idx = prn - 1; // A simple error check if ((prn_idx < 0) || (prn_idx > 62)) { return; } // Generate G1 & G2 Register for (lcv = 0; lcv < code_length; lcv++) { G1[lcv] = G1_register[0]; G2[lcv] = G2_register[-(phase1[prn_idx] - 11)] xor G2_register[-(phase2[prn_idx] - 11)] xor (phase3[prn_idx] ? G2_register[-(phase3[prn_idx] - 11)] : 0); feedback1 = G1_register[0] xor G1_register[1] xor G1_register[2] xor G1_register[3] xor G1_register[4] xor G1_register[10]; feedback2 = G2_register[0] xor G2_register[2] xor G2_register[3] xor G2_register[6] xor G2_register[7] xor G2_register[8] xor G2_register[9] xor G2_register[10]; for (lcv2 = 0; lcv2 < 10; lcv2++) { G1_register[lcv2] = G1_register[lcv2 + 1]; G2_register[lcv2] = G2_register[lcv2 + 1]; } G1_register[10] = feedback1; G2_register[10] = feedback2; } // Set the delay delay = code_length; // ********************************* delay += chip_shift; delay %= code_length; // Generate PRN from G1 and G2 Registers for (lcv = 0; lcv < code_length; lcv++) { aux = G1[(lcv + chip_shift) % code_length] xor G2[delay]; if (aux == true) { dest[lcv] = 1; } else { dest[lcv] = -1; } delay++; delay %= code_length; } } void beidou_b1i_code_gen_float(own::span dest, int32_t prn, uint32_t chip_shift) { constexpr uint32_t code_length = 2046; std::array b1i_code_int{}; beidou_b1i_code_gen_int(own::span(b1i_code_int.data(), code_length), prn, chip_shift); for (uint32_t ii = 0; ii < code_length; ++ii) { dest[ii] = static_cast(b1i_code_int[ii]); } } void beidou_b1i_code_gen_complex(own::span> dest, int32_t prn, uint32_t chip_shift) { constexpr uint32_t code_length = 2046; std::array b1i_code_int{}; beidou_b1i_code_gen_int(own::span(b1i_code_int.data(), code_length), prn, chip_shift); for (uint32_t ii = 0; ii < code_length; ++ii) { dest[ii] = std::complex(static_cast(b1i_code_int[ii]), 0.0F); } } /* * Generates complex BeiDou B1I code for the desired SV ID and sampled to specific sampling frequency */ void beidou_b1i_code_gen_complex_sampled(own::span> dest, uint32_t prn, int32_t sampling_freq, uint32_t chip_shift) { constexpr int32_t codeFreqBasis = 2046000; // chips per second constexpr int32_t codeLength = 2046; constexpr float tc = 1.0 / static_cast(codeFreqBasis); // B1I chip period in sec const auto samplesPerCode = static_cast(static_cast(sampling_freq) / (static_cast(codeFreqBasis) / static_cast(codeLength))); const float ts = 1.0F / static_cast(sampling_freq); // Sampling period in sec std::array, 2046> code_aux{}; int32_t codeValueIndex; float aux; beidou_b1i_code_gen_complex(code_aux, prn, chip_shift); // generate B1I code 1 sample per chip for (int32_t i = 0; i < samplesPerCode; i++) { // === Digitizing ================================================== // --- Make index array to read B1I code values -------------------- // The length of the index array depends on the sampling frequency - // number of samples per millisecond (because one B1I code period is // one millisecond). aux = (ts * (static_cast(i) + 1)) / tc; codeValueIndex = AUX_CEIL(aux) - 1; // --- Make the digitized version of the B1I code ------------------ // The upsampled code is made by selecting values from the B1I code // chip array for the time instances of each sample. if (i == samplesPerCode - 1) { // Correct the last index (due to number rounding issues) dest[i] = code_aux[codeLength - 1]; } else { dest[i] = code_aux[codeValueIndex]; // repeat the chip -> upsample } } }