mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-12-14 12:10:34 +00:00
introducing new kernels
This commit is contained in:
parent
1bf645c98c
commit
eb1dbfe37b
@ -0,0 +1,170 @@
|
||||
/*!
|
||||
* \file volk_gnsssdr_16ic_resampler_16ic.h
|
||||
* \brief Volk protokernel: resample a 16 bits complex vector
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* Volk protokernel that multiplies two 16 bits vectors (8 bits the real part
|
||||
* and 8 bits the imaginary part) and accumulates them
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef INCLUDED_volk_gnsssdr_16ic_resampler_16ic_a_H
|
||||
#define INCLUDED_volk_gnsssdr_16ic_resampler_16ic_a_H
|
||||
|
||||
#include <math.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_common.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||
#include <volk_gnsssdr/saturated_arithmetic.h>
|
||||
|
||||
//#pragma STDC FENV_ACCESS ON
|
||||
|
||||
#ifdef LV_HAVE_GENERIC
|
||||
|
||||
//int round_int( float r ) {
|
||||
// return (r > 0.0) ? (r + 0.5) : (r - 0.5);
|
||||
//}
|
||||
/*!
|
||||
\brief Multiplies the two input complex vectors, point-by-point, storing the result in the third vector
|
||||
\param cVector The vector where the result will be stored
|
||||
\param aVector One of the vectors to be multiplied
|
||||
\param bVector One of the vectors to be multiplied
|
||||
\param num_points The number of complex values in aVector and bVector to be multiplied together, accumulated and stored into cVector
|
||||
*/
|
||||
static inline void volk_gnsssdr_16ic_resampler_16ic_generic(lv_16sc_t* result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, unsigned int num_output_samples, unsigned int code_length_chips)
|
||||
{
|
||||
int local_code_chip_index;
|
||||
//fesetround(FE_TONEAREST);
|
||||
for (unsigned int n = 0; n < num_output_samples; n++)
|
||||
{
|
||||
// resample code for current tap
|
||||
local_code_chip_index = round(code_phase_step_chips * (float)n + rem_code_phase_chips - 0.5f);
|
||||
if (local_code_chip_index < 0.0) local_code_chip_index += code_length_chips;
|
||||
if (local_code_chip_index > (code_length_chips-1)) local_code_chip_index -= code_length_chips;
|
||||
//std::cout<<"g["<<n<<"]="<<code_phase_step_chips*static_cast<float>(n) + rem_code_phase_chips-0.5f<<","<<local_code_chip_index<<" ";
|
||||
result[n] = local_code[local_code_chip_index];
|
||||
}
|
||||
//std::cout<<std::endl;
|
||||
}
|
||||
|
||||
#endif /*LV_HAVE_GENERIC*/
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE2
|
||||
#include <emmintrin.h>
|
||||
static inline void volk_gnsssdr_16ic_resampler_16ic_sse2(lv_16sc_t* result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, unsigned int num_output_samples, unsigned int code_length_chips)//, int* scratch_buffer, float* scratch_buffer_float)
|
||||
{
|
||||
_MM_SET_ROUNDING_MODE (_MM_ROUND_NEAREST);//_MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
|
||||
unsigned int number;
|
||||
const unsigned int quarterPoints = num_output_samples / 4;
|
||||
|
||||
lv_16sc_t* _result = result;
|
||||
|
||||
__attribute__((aligned(16))) int local_code_chip_index[4];
|
||||
__m128 _rem_code_phase, _code_phase_step_chips;
|
||||
__m128i _code_length_chips, _code_length_chips_minus1;
|
||||
__m128 _code_phase_out, _code_phase_out_with_offset;
|
||||
rem_code_phase_chips = rem_code_phase_chips - 0.5f;
|
||||
|
||||
_rem_code_phase = _mm_load1_ps(&rem_code_phase_chips); //load float to all four float values in m128 register
|
||||
_code_phase_step_chips = _mm_load1_ps(&code_phase_step_chips); //load float to all four float values in m128 register
|
||||
__attribute__((aligned(16))) int four_times_code_length_chips_minus1[4];
|
||||
four_times_code_length_chips_minus1[0] = code_length_chips-1;
|
||||
four_times_code_length_chips_minus1[1] = code_length_chips-1;
|
||||
four_times_code_length_chips_minus1[2] = code_length_chips-1;
|
||||
four_times_code_length_chips_minus1[3] = code_length_chips-1;
|
||||
|
||||
__attribute__((aligned(16))) int four_times_code_length_chips[4];
|
||||
four_times_code_length_chips[0] = code_length_chips;
|
||||
four_times_code_length_chips[1] = code_length_chips;
|
||||
four_times_code_length_chips[2] = code_length_chips;
|
||||
four_times_code_length_chips[3] = code_length_chips;
|
||||
|
||||
_code_length_chips = _mm_loadu_si128((__m128i*)&four_times_code_length_chips); //load float to all four float values in m128 register
|
||||
_code_length_chips_minus1 = _mm_loadu_si128((__m128i*)&four_times_code_length_chips_minus1); //load float to all four float values in m128 register
|
||||
|
||||
__m128i negative_indexes, overflow_indexes, _code_phase_out_int, _code_phase_out_int_neg, _code_phase_out_int_over;
|
||||
|
||||
__m128i zero = _mm_setzero_si128();
|
||||
|
||||
__attribute__((aligned(16))) float init_idx_float[4] = { 0.0f, 1.0f, 2.0f, 3.0f };
|
||||
__m128 _4output_index = _mm_load_ps(init_idx_float);
|
||||
__attribute__((aligned(16))) float init_4constant_float[4] = { 4.0f, 4.0f, 4.0f, 4.0f };
|
||||
__m128 _4constant_float = _mm_load_ps(init_4constant_float);
|
||||
|
||||
//__attribute__((aligned(16))) int output_indexes[4];
|
||||
|
||||
for(number = 0; number < quarterPoints; number++)
|
||||
{
|
||||
_code_phase_out = _mm_mul_ps(_code_phase_step_chips, _4output_index); //compute the code phase point with the phase step
|
||||
_code_phase_out_with_offset = _mm_add_ps(_code_phase_out, _rem_code_phase); //add the phase offset
|
||||
_code_phase_out_int = _mm_cvtps_epi32(_code_phase_out_with_offset); //convert to integer
|
||||
|
||||
negative_indexes = _mm_cmplt_epi32(_code_phase_out_int, zero); //test for negative values
|
||||
_code_phase_out_int_neg = _mm_add_epi32(_code_phase_out_int, _code_length_chips); //the negative values branch
|
||||
//_code_phase_out_int_over=_mm_or_si128(_mm_and_si128(_code_phase_out_int_neg,_code_phase_out_int),_mm_andnot_si128(negative_indexes,_code_phase_out_int));
|
||||
_code_phase_out_int_neg = _mm_xor_si128(_code_phase_out_int, _mm_and_si128( negative_indexes, _mm_xor_si128( _code_phase_out_int_neg, _code_phase_out_int )));
|
||||
|
||||
overflow_indexes = _mm_cmpgt_epi32(_code_phase_out_int_neg, _code_length_chips_minus1); //test for overflow values
|
||||
_code_phase_out_int_over = _mm_sub_epi32(_code_phase_out_int_neg, _code_length_chips); //the negative values branch
|
||||
_code_phase_out_int_over = _mm_xor_si128(_code_phase_out_int_neg, _mm_and_si128( overflow_indexes, _mm_xor_si128( _code_phase_out_int_over, _code_phase_out_int_neg )));
|
||||
|
||||
_mm_storeu_si128((__m128i*)local_code_chip_index, _code_phase_out_int_over); // Store the results back
|
||||
|
||||
//_mm_store_ps((float*)_scratch_buffer_float,_code_phase_out_with_offset);
|
||||
|
||||
//todo: optimize the local code lookup table with intrinsics, if possible
|
||||
*_result++ = local_code[local_code_chip_index[0]];
|
||||
*_result++ = local_code[local_code_chip_index[1]];
|
||||
*_result++ = local_code[local_code_chip_index[2]];
|
||||
*_result++ = local_code[local_code_chip_index[3]];
|
||||
|
||||
_4output_index = _mm_add_ps(_4output_index, _4constant_float);
|
||||
//_scratch_buffer_float+=4;
|
||||
|
||||
}
|
||||
|
||||
for(number = quarterPoints * 4; number < num_output_samples; number++)
|
||||
{
|
||||
local_code_chip_index[0] = (int)(code_phase_step_chips * (float)number + rem_code_phase_chips + 0.5f);
|
||||
if (local_code_chip_index[0] < 0.0) local_code_chip_index[0] += code_length_chips - 1;
|
||||
if (local_code_chip_index[0] > (code_length_chips - 1)) local_code_chip_index[0] -= code_length_chips;
|
||||
*_result++ = local_code[local_code_chip_index[0]];
|
||||
//*_scratch_buffer_float++=code_phase_step_chips*static_cast<float>(number)+rem_code_phase_chips;
|
||||
}
|
||||
|
||||
// for(unsigned int n=0;n<num_output_samples;n++)
|
||||
// {
|
||||
//
|
||||
// std::cout<<"s["<<n<<"]="<<scratch_buffer_float[n]<<","<<scratch_buffer[n]<<" ";
|
||||
// }
|
||||
// std::cout<<std::endl;
|
||||
}
|
||||
|
||||
#endif /* LV_HAVE_SSE2 */
|
||||
|
||||
#endif /*INCLUDED_volk_gnsssdr_16ic_resampler_16ic_a_H*/
|
@ -0,0 +1,152 @@
|
||||
/*!
|
||||
* \file volk_gnsssdr_16ic_x2_dot_prod_16ic.h
|
||||
* \brief Volk protokernel: multiplies two 16 bits vectors and accumulates them
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* Volk protokernel that multiplies two 16 bits vectors (8 bits the real part
|
||||
* and 8 bits the imaginary part) and accumulates them
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef INCLUDED_volk_gnsssdr_16ic_x2_dot_prod_16ic_u_H
|
||||
#define INCLUDED_volk_gnsssdr_16ic_x2_dot_prod_16ic_u_H
|
||||
|
||||
#include <inttypes.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_common.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||
#include <volk_gnsssdr/saturated_arithmetic.h>
|
||||
|
||||
|
||||
#ifdef LV_HAVE_GENERIC
|
||||
/*!
|
||||
\brief Multiplies the two input complex vectors and accumulates them, storing the result in the third vector
|
||||
\param cVector The vector where the accumulated result will be stored
|
||||
\param aVector One of the vectors to be multiplied and accumulated
|
||||
\param bVector One of the vectors to be multiplied and accumulated
|
||||
\param num_points The number of complex values in aVector and bVector to be multiplied together, accumulated and stored into cVector
|
||||
*/
|
||||
static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_generic(lv_16sc_t* result, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
|
||||
{
|
||||
result[0] = lv_cmake((int16_t)0, (int16_t)0);
|
||||
for (unsigned int n = 0; n < num_points; n++)
|
||||
{
|
||||
//r*a.r - i*a.i, i*a.r + r*a.i
|
||||
//result[0]+=in_a[n]*in_b[n];
|
||||
lv_16sc_t tmp = in_a[n] * in_b[n];
|
||||
result[0] = lv_cmake(sat_adds16b(lv_creal(result[0]), lv_creal(tmp)), sat_adds16b(lv_cimag(result[0]), lv_cimag(tmp) ));
|
||||
//result[0].real(sat_adds16b(result[0].real(),lv_creal(tmp)));
|
||||
//result[0].imag(sat_adds16b(result[0].imag(),tmp.imag()));
|
||||
}
|
||||
}
|
||||
|
||||
#endif /*LV_HAVE_GENERIC*/
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE2
|
||||
#include <emmintrin.h>
|
||||
static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
|
||||
{
|
||||
|
||||
lv_16sc_t dotProduct = lv_cmake((int16_t)0, (int16_t)0);
|
||||
|
||||
const unsigned int sse_iters = num_points / 4;
|
||||
|
||||
const lv_16sc_t* _in_a = in_a;
|
||||
const lv_16sc_t* _in_b = in_b;
|
||||
lv_16sc_t* _out = out;
|
||||
|
||||
if (sse_iters > 0)
|
||||
{
|
||||
__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, realcacc, imagcacc, result;
|
||||
|
||||
realcacc = _mm_setzero_si128();
|
||||
imagcacc = _mm_setzero_si128();
|
||||
|
||||
mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
|
||||
mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
|
||||
|
||||
for(unsigned int number = 0; number < sse_iters; number++)
|
||||
{
|
||||
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
|
||||
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
|
||||
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
|
||||
a = _mm_loadu_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
||||
b = _mm_loadu_si128((__m128i*)_in_b);
|
||||
c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
|
||||
|
||||
c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
|
||||
real = _mm_subs_epi16 (c,c_sr);
|
||||
|
||||
b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
|
||||
a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
|
||||
|
||||
imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
|
||||
imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
|
||||
|
||||
imag = _mm_adds_epi16(imag1, imag2); //with saturation aritmetic!
|
||||
|
||||
realcacc = _mm_adds_epi16 (realcacc, real);
|
||||
imagcacc = _mm_adds_epi16 (imagcacc, imag);
|
||||
|
||||
_in_a += 4;
|
||||
_in_b += 4;
|
||||
}
|
||||
|
||||
realcacc = _mm_and_si128 (realcacc, mask_real);
|
||||
imagcacc = _mm_and_si128 (imagcacc, mask_imag);
|
||||
|
||||
result = _mm_or_si128 (realcacc, imagcacc);
|
||||
|
||||
__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
||||
|
||||
_mm_storeu_si128((__m128i*)dotProductVector,result); // Store the results back into the dot product vector
|
||||
|
||||
for (int i = 0; i < 4; ++i)
|
||||
{
|
||||
dotProduct = lv_cmake(sat_adds16b(lv_creal(dotProduct), lv_creal(dotProductVector[i])), sat_adds16b(lv_cimag(dotProduct), lv_cimag(dotProductVector[i])));
|
||||
//dotProduct.real(sat_adds16b(lv_creal(dotProduct),lv_creal(dotProductVector[i])));
|
||||
//dotProduct.imag(sat_adds16b(lv_cimag(dotProduct),lv_cimag(dotProductVector[i])));
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; i < (num_points % 4); ++i)
|
||||
{
|
||||
//dotProduct += (*_in_a++) * (*_in_b++);
|
||||
lv_16sc_t tmp = (*_in_a++) * (*_in_b++);
|
||||
dotProduct = lv_cmake( sat_adds16b(lv_creal(dotProduct), lv_creal(tmp)), sat_adds16b(lv_cimag(dotProduct), lv_cimag(tmp)));
|
||||
//dotProduct.real(sat_adds16b(lv_creal(dotProduct),lv_creal(tmp)));
|
||||
//dotProduct.imag(sat_adds16b(lv_cimag(dotProduct),lv_cimag(tmp)));
|
||||
}
|
||||
|
||||
*_out = dotProduct;
|
||||
}
|
||||
#endif /* LV_HAVE_SSE2 */
|
||||
|
||||
#endif /*INCLUDED_volk_gnsssdr_16ic_x2_dot_prod_16ic_u_H*/
|
@ -79,6 +79,8 @@ std::vector<volk_gnsssdr_test_case_t> init_test_list(volk_gnsssdr_test_params_t
|
||||
(VOLK_INIT_TEST(volk_gnsssdr_64f_accumulator_64f, test_params))
|
||||
(VOLK_INIT_TEST(volk_gnsssdr_32fc_convert_8ic, test_params))
|
||||
(VOLK_INIT_TEST(volk_gnsssdr_32fc_convert_16ic, test_params))
|
||||
(VOLK_INIT_TEST(volk_gnsssdr_16ic_x2_dot_prod_16ic, test_params))
|
||||
(VOLK_INIT_TEST(volk_gnsssdr_16ic_resampler_16ic, test_params))
|
||||
;
|
||||
|
||||
return test_cases;
|
||||
|
@ -170,6 +170,14 @@ typedef void (*volk_gnsssdr_fn_1arg_s8ic)(void *, lv_8sc_t, unsigned int, const
|
||||
typedef void (*volk_gnsssdr_fn_2arg_s8ic)(void *, void *, lv_8sc_t, unsigned int, const char*);
|
||||
typedef void (*volk_gnsssdr_fn_3arg_s8ic)(void *, void *, void *, lv_8sc_t, unsigned int, const char*);
|
||||
|
||||
//typedef void (*volk_gnsssdr_fn_1arg_s16i)(void *, int16_t, unsigned int, const char*); //one input vector, one scalar int16_t input
|
||||
//typedef void (*volk_gnsssdr_fn_2arg_s16i)(void *, void *, int16_t, unsigned int, const char*);
|
||||
//typedef void (*volk_gnsssdr_fn_3arg_s16i)(void *, void *, void *, int16_t, unsigned int, const char*);
|
||||
//typedef void (*volk_gnsssdr_fn_1arg_s16ic)(void *, lv_16sc_t, unsigned int, const char*); //one input vector, one scalar lv_16sc_t vector input
|
||||
//typedef void (*volk_gnsssdr_fn_2arg_s16ic)(void *, void *, lv_16sc_t, unsigned int, const char*);
|
||||
//typedef void (*volk_gnsssdr_fn_3arg_s16ic)(void *, void *, void *, lv_16sc_t, unsigned int, const char*);
|
||||
typedef void (*volk_gnsssdr_fn_6arg_s16ic)(void *, void *, void *, void *, void *, void *, lv_16sc_t, unsigned int, const char*);
|
||||
|
||||
typedef void (*volk_gnsssdr_fn_8arg)(void *, void *, void *, void *, void *, void *, void *, void *, unsigned int, const char*);
|
||||
typedef void (*volk_gnsssdr_fn_8arg_s32f)(void *, void *, void *, void *, void *, void *, void *, void *, float, unsigned int, const char*);
|
||||
typedef void (*volk_gnsssdr_fn_8arg_s32fc)(void *, void *, void *, void *, void *, void *, void *, void *, lv_32fc_t, unsigned int, const char*);
|
||||
|
@ -36,11 +36,14 @@
|
||||
#include <iostream>
|
||||
#include <gnuradio/fxpt.h> // fixed point sine and cosine
|
||||
|
||||
#include "volk_gnsssdr/volk_gnsssdr.h"
|
||||
|
||||
#define LV_HAVE_GENERIC
|
||||
#define LV_HAVE_SSE2
|
||||
#include "volk_gnsssdr_16ic_x2_dot_prod_16ic.h"
|
||||
|
||||
//#include "volk_gnsssdr_16ic_x2_dot_prod_16ic.h"
|
||||
#include "volk_gnsssdr_16ic_x2_multiply_16ic.h"
|
||||
#include "volk_gnsssdr_16ic_resampler_16ic.h"
|
||||
//#include "volk_gnsssdr_16ic_resampler_16ic.h"
|
||||
#include "volk_gnsssdr_16ic_xn_resampler_16ic_xn.h"
|
||||
#include "volk_gnsssdr_16ic_xn_dot_prod_16ic_xn.h"
|
||||
|
||||
|
@ -1,171 +0,0 @@
|
||||
/*!
|
||||
* \file volk_gnsssdr_16ic_resampler_16ic.h
|
||||
* \brief Volk protokernel: resample a 16 bits complex vector
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* Volk protokernel that multiplies two 16 bits vectors (8 bits the real part
|
||||
* and 8 bits the imaginary part) and accumulates them
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef INCLUDED_volk_gnsssdr_16ic_resampler_16ic_a_H
|
||||
#define INCLUDED_volk_gnsssdr_16ic_resampler_16ic_a_H
|
||||
|
||||
#include <volk_gnsssdr/volk_gnsssdr_common.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||
#include <cmath>
|
||||
//#pragma STDC FENV_ACCESS ON
|
||||
|
||||
#ifdef LV_HAVE_GENERIC
|
||||
|
||||
//int round_int( float r ) {
|
||||
// return (r > 0.0) ? (r + 0.5) : (r - 0.5);
|
||||
//}
|
||||
/*!
|
||||
\brief Multiplies the two input complex vectors, point-by-point, storing the result in the third vector
|
||||
\param cVector The vector where the result will be stored
|
||||
\param aVector One of the vectors to be multiplied
|
||||
\param bVector One of the vectors to be multiplied
|
||||
\param num_points The number of complex values in aVector and bVector to be multiplied together, accumulated and stored into cVector
|
||||
*/
|
||||
static inline void volk_gnsssdr_16ic_resampler_16ic_generic(lv_16sc_t* result, const lv_16sc_t* local_code, float rem_code_phase_chips ,float code_phase_step_chips, unsigned int num_output_samples, unsigned int code_length_chips)
|
||||
{
|
||||
int local_code_chip_index;
|
||||
//fesetround(FE_TONEAREST);
|
||||
for (unsigned int n = 0; n < num_output_samples; n++)
|
||||
{
|
||||
// resample code for current tap
|
||||
local_code_chip_index = round(code_phase_step_chips*static_cast<float>(n) + rem_code_phase_chips-0.5f);
|
||||
if (local_code_chip_index < 0.0) local_code_chip_index += code_length_chips;
|
||||
if (local_code_chip_index > (code_length_chips-1)) local_code_chip_index -= code_length_chips;
|
||||
//std::cout<<"g["<<n<<"]="<<code_phase_step_chips*static_cast<float>(n) + rem_code_phase_chips-0.5f<<","<<local_code_chip_index<<" ";
|
||||
result[n] = local_code[local_code_chip_index];
|
||||
}
|
||||
//std::cout<<std::endl;
|
||||
}
|
||||
|
||||
#endif /*LV_HAVE_GENERIC*/
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE2
|
||||
#include <emmintrin.h>
|
||||
static inline void volk_gnsssdr_16ic_resampler_16ic_sse2(lv_16sc_t* result, const lv_16sc_t* local_code, float rem_code_phase_chips ,float code_phase_step_chips, unsigned int num_output_samples, int code_length_chips)//, int* scratch_buffer, float* scratch_buffer_float)
|
||||
{
|
||||
|
||||
_MM_SET_ROUNDING_MODE (_MM_ROUND_NEAREST);//_MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
|
||||
unsigned int number;
|
||||
const unsigned int quarterPoints = num_output_samples / 4;
|
||||
|
||||
lv_16sc_t* _result = result;
|
||||
|
||||
__attribute__((aligned(16))) int local_code_chip_index[4];
|
||||
__m128 _rem_code_phase,_code_phase_step_chips;
|
||||
__m128i _code_length_chips,_code_length_chips_minus1;
|
||||
__m128 _code_phase_out,_code_phase_out_with_offset;
|
||||
rem_code_phase_chips=rem_code_phase_chips-0.5f;
|
||||
|
||||
_rem_code_phase = _mm_load1_ps(&rem_code_phase_chips); //load float to all four float values in m128 register
|
||||
_code_phase_step_chips = _mm_load1_ps(&code_phase_step_chips); //load float to all four float values in m128 register
|
||||
__attribute__((aligned(16))) int four_times_code_length_chips_minus1[4];
|
||||
four_times_code_length_chips_minus1[0]=code_length_chips-1;
|
||||
four_times_code_length_chips_minus1[1]=code_length_chips-1;
|
||||
four_times_code_length_chips_minus1[2]=code_length_chips-1;
|
||||
four_times_code_length_chips_minus1[3]=code_length_chips-1;
|
||||
|
||||
__attribute__((aligned(16))) int four_times_code_length_chips[4];
|
||||
four_times_code_length_chips[0]=code_length_chips;
|
||||
four_times_code_length_chips[1]=code_length_chips;
|
||||
four_times_code_length_chips[2]=code_length_chips;
|
||||
four_times_code_length_chips[3]=code_length_chips;
|
||||
|
||||
_code_length_chips = _mm_loadu_si128((__m128i*)&four_times_code_length_chips); //load float to all four float values in m128 register
|
||||
_code_length_chips_minus1 = _mm_loadu_si128((__m128i*)&four_times_code_length_chips_minus1); //load float to all four float values in m128 register
|
||||
|
||||
__m128i negative_indexes, overflow_indexes,_code_phase_out_int, _code_phase_out_int_neg,_code_phase_out_int_over;
|
||||
|
||||
__m128i zero=_mm_setzero_si128();
|
||||
|
||||
|
||||
__attribute__((aligned(16))) float init_idx_float[4] = { 0.0f, 1.0f, 2.0f, 3.0f };
|
||||
__m128 _4output_index=_mm_load_ps(init_idx_float);
|
||||
__attribute__((aligned(16))) float init_4constant_float[4] = { 4.0f, 4.0f, 4.0f, 4.0f };
|
||||
__m128 _4constant_float=_mm_load_ps(init_4constant_float);
|
||||
|
||||
//__attribute__((aligned(16))) int output_indexes[4];
|
||||
|
||||
for(number=0;number < quarterPoints; number++){
|
||||
_code_phase_out = _mm_mul_ps(_code_phase_step_chips, _4output_index); //compute the code phase point with the phase step
|
||||
_code_phase_out_with_offset = _mm_add_ps(_code_phase_out,_rem_code_phase); //add the phase offset
|
||||
_code_phase_out_int=_mm_cvtps_epi32(_code_phase_out_with_offset); //convert to integer
|
||||
|
||||
negative_indexes=_mm_cmplt_epi32 (_code_phase_out_int, zero); //test for negative values
|
||||
_code_phase_out_int_neg=_mm_add_epi32(_code_phase_out_int,_code_length_chips); //the negative values branch
|
||||
//_code_phase_out_int_over=_mm_or_si128(_mm_and_si128(_code_phase_out_int_neg,_code_phase_out_int),_mm_andnot_si128(negative_indexes,_code_phase_out_int));
|
||||
_code_phase_out_int_neg=_mm_xor_si128(_code_phase_out_int,_mm_and_si128( negative_indexes,_mm_xor_si128( _code_phase_out_int_neg, _code_phase_out_int )));
|
||||
|
||||
overflow_indexes=_mm_cmpgt_epi32 (_code_phase_out_int_neg, _code_length_chips_minus1); //test for overflow values
|
||||
_code_phase_out_int_over=_mm_sub_epi32(_code_phase_out_int_neg,_code_length_chips); //the negative values branch
|
||||
_code_phase_out_int_over=_mm_xor_si128(_code_phase_out_int_neg,_mm_and_si128( overflow_indexes,_mm_xor_si128( _code_phase_out_int_over, _code_phase_out_int_neg )));
|
||||
|
||||
_mm_storeu_si128((__m128i*)local_code_chip_index,_code_phase_out_int_over); // Store the results back
|
||||
|
||||
//_mm_store_ps((float*)_scratch_buffer_float,_code_phase_out_with_offset);
|
||||
|
||||
//todo: optimize the local code lookup table with intrinsics, if possible
|
||||
*_result++=local_code[local_code_chip_index[0]];
|
||||
*_result++=local_code[local_code_chip_index[1]];
|
||||
*_result++=local_code[local_code_chip_index[2]];
|
||||
*_result++=local_code[local_code_chip_index[3]];
|
||||
|
||||
_4output_index = _mm_add_ps(_4output_index,_4constant_float);
|
||||
//_scratch_buffer_float+=4;
|
||||
|
||||
}
|
||||
|
||||
for(number = quarterPoints * 4;number < num_output_samples; number++){
|
||||
local_code_chip_index[0]=static_cast<int>(code_phase_step_chips*static_cast<float>(number) + rem_code_phase_chips+0.5f);
|
||||
if (local_code_chip_index[0] < 0.0) local_code_chip_index[0] += code_length_chips-1;
|
||||
if (local_code_chip_index[0] > (code_length_chips-1)) local_code_chip_index[0] -= code_length_chips;
|
||||
*_result++=local_code[local_code_chip_index[0]];
|
||||
//*_scratch_buffer_float++=code_phase_step_chips*static_cast<float>(number)+rem_code_phase_chips;
|
||||
}
|
||||
|
||||
// for(unsigned int n=0;n<num_output_samples;n++)
|
||||
// {
|
||||
//
|
||||
// std::cout<<"s["<<n<<"]="<<scratch_buffer_float[n]<<","<<scratch_buffer[n]<<" ";
|
||||
// }
|
||||
// std::cout<<std::endl;
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
#endif /* LV_HAVE_SSE2 */
|
||||
|
||||
#endif /*INCLUDED_volk_gnsssdr_16ic_resampler_16ic_a_H*/
|
@ -1,152 +0,0 @@
|
||||
/*!
|
||||
* \file volk_gnsssdr_16ic_x2_dot_prod_16ic.h
|
||||
* \brief Volk protokernel: multiplies two 16 bits vectors and accumulates them
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* Volk protokernel that multiplies two 16 bits vectors (8 bits the real part
|
||||
* and 8 bits the imaginary part) and accumulates them
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef INCLUDED_volk_gnsssdr_16ic_x2_dot_prod_16ic_u_H
|
||||
#define INCLUDED_volk_gnsssdr_16ic_x2_dot_prod_16ic_u_H
|
||||
|
||||
#include <volk_gnsssdr/volk_gnsssdr_common.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include "saturated_arithmetic.h"
|
||||
|
||||
#ifdef LV_HAVE_GENERIC
|
||||
/*!
|
||||
\brief Multiplies the two input complex vectors and accumulates them, storing the result in the third vector
|
||||
\param cVector The vector where the accumulated result will be stored
|
||||
\param aVector One of the vectors to be multiplied and accumulated
|
||||
\param bVector One of the vectors to be multiplied and accumulated
|
||||
\param num_points The number of complex values in aVector and bVector to be multiplied together, accumulated and stored into cVector
|
||||
*/
|
||||
static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_generic(lv_16sc_t* result, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
|
||||
{
|
||||
result[0]=lv_16sc_t(0,0);
|
||||
for (unsigned int n=0;n<num_points;n++)
|
||||
{
|
||||
//r*a.r - i*a.i, i*a.r + r*a.i
|
||||
//result[0]+=in_a[n]*in_b[n];
|
||||
lv_16sc_t tmp=in_a[n]*in_b[n];
|
||||
result[0].real(sat_adds16b(result[0].real(),tmp.real()));
|
||||
result[0].imag(sat_adds16b(result[0].imag(),tmp.imag()));
|
||||
}
|
||||
}
|
||||
|
||||
#endif /*LV_HAVE_GENERIC*/
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE2
|
||||
#include <emmintrin.h>
|
||||
static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
|
||||
{
|
||||
|
||||
lv_16sc_t dotProduct=lv_16sc_t(0,0);
|
||||
|
||||
const unsigned int sse_iters = num_points / 4;
|
||||
|
||||
const lv_16sc_t* _in_a = in_a;
|
||||
const lv_16sc_t* _in_b = in_b;
|
||||
lv_16sc_t* _out = out;
|
||||
|
||||
if (sse_iters>0)
|
||||
{
|
||||
|
||||
|
||||
__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, realcacc, imagcacc, result;
|
||||
|
||||
realcacc = _mm_setzero_si128();
|
||||
imagcacc = _mm_setzero_si128();
|
||||
|
||||
mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
|
||||
mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
|
||||
|
||||
for(unsigned int number = 0;number < sse_iters; number++)
|
||||
{
|
||||
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
|
||||
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
|
||||
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
|
||||
a = _mm_loadu_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
||||
b = _mm_loadu_si128((__m128i*)_in_b);
|
||||
c=_mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
|
||||
|
||||
c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
|
||||
real = _mm_subs_epi16 (c,c_sr);
|
||||
|
||||
b_sl = _mm_slli_si128(b,2); // b3.r, b2.i ....
|
||||
a_sl = _mm_slli_si128(a,2); // a3.r, a2.i ....
|
||||
|
||||
imag1 = _mm_mullo_epi16(a,b_sl); // a3.i*b3.r, ....
|
||||
imag2 = _mm_mullo_epi16(b,a_sl); // b3.i*a3.r, ....
|
||||
|
||||
imag = _mm_adds_epi16(imag1,imag2); //with saturation aritmetic!
|
||||
|
||||
realcacc = _mm_adds_epi16 (realcacc, real);
|
||||
imagcacc = _mm_adds_epi16 (imagcacc, imag);
|
||||
|
||||
_in_a += 4;
|
||||
_in_b += 4;
|
||||
|
||||
}
|
||||
|
||||
|
||||
realcacc = _mm_and_si128 (realcacc, mask_real);
|
||||
imagcacc = _mm_and_si128 (imagcacc, mask_imag);
|
||||
|
||||
result = _mm_or_si128 (realcacc, imagcacc);
|
||||
|
||||
__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
||||
|
||||
_mm_storeu_si128((__m128i*)dotProductVector,result); // Store the results back into the dot product vector
|
||||
|
||||
for (int i = 0; i<4; ++i)
|
||||
{
|
||||
dotProduct.real(sat_adds16b(dotProduct.real(),dotProductVector[i].real()));
|
||||
dotProduct.imag(sat_adds16b(dotProduct.imag(),dotProductVector[i].imag()));
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; i<(num_points % 4); ++i)
|
||||
{
|
||||
//dotProduct += (*_in_a++) * (*_in_b++);
|
||||
lv_16sc_t tmp=(*_in_a++) * (*_in_b++);
|
||||
dotProduct.real(sat_adds16b(dotProduct.real(),tmp.real()));
|
||||
dotProduct.imag(sat_adds16b(dotProduct.imag(),tmp.imag()));
|
||||
|
||||
}
|
||||
|
||||
*_out = dotProduct;
|
||||
}
|
||||
#endif /* LV_HAVE_SSE2 */
|
||||
|
||||
#endif /*INCLUDED_volk_gnsssdr_16ic_x2_dot_prod_16ic_u_H*/
|
@ -38,7 +38,7 @@
|
||||
|
||||
|
||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||
#include "saturated_arithmetic.h"
|
||||
#include <volk_gnsssdr/saturated_arithmetic.h>
|
||||
|
||||
#ifdef LV_HAVE_GENERIC
|
||||
/*!
|
||||
@ -50,18 +50,17 @@
|
||||
*/
|
||||
static inline void volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_generic(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_16sc_t** in_a, unsigned int num_points, int num_a_vectors)
|
||||
{
|
||||
for (int n_vec=0;n_vec<num_a_vectors;n_vec++)
|
||||
{
|
||||
result[n_vec]=lv_cmake(0,0);
|
||||
for (unsigned int n=0;n<num_points;n++)
|
||||
{
|
||||
//r*a.r - i*a.i, i*a.r + r*a.i
|
||||
//result[n_vec]+=in_common[n]*in_a[n_vec][n];
|
||||
lv_16sc_t tmp=in_common[n]*in_a[n_vec][n];
|
||||
result[n_vec]=lv_cmake(sat_adds16b(lv_creal(result[n_vec]),lv_creal(tmp)),sat_adds16b(lv_cimag(result[n_vec]),lv_cimag(tmp)));
|
||||
}
|
||||
|
||||
}
|
||||
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||
{
|
||||
result[n_vec] = lv_cmake(0,0);
|
||||
for (unsigned int n = 0; n < num_points; n++)
|
||||
{
|
||||
//r*a.r - i*a.i, i*a.r + r*a.i
|
||||
//result[n_vec]+=in_common[n]*in_a[n_vec][n];
|
||||
lv_16sc_t tmp = in_common[n]*in_a[n_vec][n];
|
||||
result[n_vec] = lv_cmake(sat_adds16b(lv_creal(result[n_vec]), lv_creal(tmp)), sat_adds16b(lv_cimag(result[n_vec]), lv_cimag(tmp)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /*LV_HAVE_GENERIC*/
|
||||
@ -71,99 +70,92 @@ static inline void volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_generic(lv_16sc_t* resu
|
||||
#include <emmintrin.h>
|
||||
static inline void volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_a_sse2(lv_16sc_t* out, const lv_16sc_t* in_common, const lv_16sc_t** in_a, unsigned int num_points, int num_a_vectors)
|
||||
{
|
||||
|
||||
lv_16sc_t dotProduct=lv_cmake(0,0);
|
||||
lv_16sc_t dotProduct = lv_cmake(0,0);
|
||||
|
||||
const unsigned int sse_iters = num_points / 4;
|
||||
|
||||
const lv_16sc_t** _in_a = in_a;
|
||||
const lv_16sc_t* _in_common = in_common;
|
||||
lv_16sc_t* _out = out;
|
||||
const lv_16sc_t** _in_a = in_a;
|
||||
const lv_16sc_t* _in_common = in_common;
|
||||
lv_16sc_t* _out = out;
|
||||
|
||||
if (sse_iters>0)
|
||||
if (sse_iters > 0)
|
||||
{
|
||||
__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
||||
|
||||
__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
||||
//todo dyn mem reg
|
||||
|
||||
//todo dyn mem reg
|
||||
__m128i* realcacc;
|
||||
__m128i* imagcacc;
|
||||
|
||||
__m128i* realcacc;
|
||||
__m128i* imagcacc;
|
||||
realcacc=(__m128i*)calloc(num_a_vectors,sizeof(__m128i)); //calloc also sets memory to 0
|
||||
imagcacc=(__m128i*)calloc(num_a_vectors,sizeof(__m128i)); //calloc also sets memory to 0
|
||||
|
||||
realcacc=(__m128i*)calloc(num_a_vectors,sizeof(__m128i)); //calloc also sets memory to 0
|
||||
imagcacc=(__m128i*)calloc(num_a_vectors,sizeof(__m128i)); //calloc also sets memory to 0
|
||||
__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
|
||||
|
||||
mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
|
||||
mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
|
||||
|
||||
__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
|
||||
for(unsigned int number = 0; number < sse_iters; number++)
|
||||
{
|
||||
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
|
||||
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
|
||||
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
|
||||
|
||||
mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
|
||||
mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
|
||||
b = _mm_loadu_si128((__m128i*)_in_common); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
||||
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||
{
|
||||
a = _mm_loadu_si128((__m128i*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
||||
|
||||
for(unsigned int number = 0;number < sse_iters; number++)
|
||||
{
|
||||
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
|
||||
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
|
||||
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
|
||||
c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
|
||||
|
||||
b = _mm_loadu_si128((__m128i*)_in_common); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
||||
for (int n_vec=0;n_vec<num_a_vectors;n_vec++)
|
||||
{
|
||||
c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
|
||||
real = _mm_subs_epi16 (c, c_sr);
|
||||
|
||||
a = _mm_loadu_si128((__m128i*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
||||
b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
|
||||
a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
|
||||
|
||||
c=_mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
|
||||
imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
|
||||
imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
|
||||
|
||||
c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
|
||||
real = _mm_subs_epi16 (c,c_sr);
|
||||
imag = _mm_adds_epi16(imag1, imag2);
|
||||
|
||||
b_sl = _mm_slli_si128(b,2); // b3.r, b2.i ....
|
||||
a_sl = _mm_slli_si128(a,2); // a3.r, a2.i ....
|
||||
realcacc[n_vec] = _mm_adds_epi16 (realcacc[n_vec], real);
|
||||
imagcacc[n_vec] = _mm_adds_epi16 (imagcacc[n_vec], imag);
|
||||
|
||||
imag1 = _mm_mullo_epi16(a,b_sl); // a3.i*b3.r, ....
|
||||
imag2 = _mm_mullo_epi16(b,a_sl); // b3.i*a3.r, ....
|
||||
}
|
||||
_in_common += 4;
|
||||
}
|
||||
|
||||
imag = _mm_adds_epi16(imag1,imag2);
|
||||
for (int n_vec=0;n_vec<num_a_vectors;n_vec++)
|
||||
{
|
||||
realcacc[n_vec] = _mm_and_si128 (realcacc[n_vec], mask_real);
|
||||
imagcacc[n_vec] = _mm_and_si128 (imagcacc[n_vec], mask_imag);
|
||||
|
||||
realcacc[n_vec] = _mm_adds_epi16 (realcacc[n_vec], real);
|
||||
imagcacc[n_vec] = _mm_adds_epi16 (imagcacc[n_vec], imag);
|
||||
result = _mm_or_si128 (realcacc[n_vec], imagcacc[n_vec]);
|
||||
|
||||
}
|
||||
_in_common += 4;
|
||||
|
||||
}
|
||||
|
||||
for (int n_vec=0;n_vec<num_a_vectors;n_vec++)
|
||||
{
|
||||
realcacc[n_vec] = _mm_and_si128 (realcacc[n_vec], mask_real);
|
||||
imagcacc[n_vec] = _mm_and_si128 (imagcacc[n_vec], mask_imag);
|
||||
|
||||
result = _mm_or_si128 (realcacc[n_vec], imagcacc[n_vec]);
|
||||
|
||||
_mm_storeu_si128((__m128i*)dotProductVector,result); // Store the results back into the dot product vector
|
||||
dotProduct=lv_cmake(0,0);
|
||||
for (int i = 0; i<4; ++i)
|
||||
{
|
||||
|
||||
dotProduct=lv_cmake(sat_adds16b(lv_creal(dotProduct),lv_creal(dotProductVector[i])),
|
||||
sat_adds16b(lv_cimag(dotProduct),lv_cimag(dotProductVector[i])));
|
||||
}
|
||||
_out[n_vec]=dotProduct;
|
||||
}
|
||||
free(realcacc);
|
||||
free(imagcacc);
|
||||
_mm_storeu_si128((__m128i*)dotProductVector, result); // Store the results back into the dot product vector
|
||||
dotProduct = lv_cmake(0,0);
|
||||
for (int i = 0; i<4; ++i)
|
||||
{
|
||||
dotProduct = lv_cmake(sat_adds16b(lv_creal(dotProduct), lv_creal(dotProductVector[i])),
|
||||
sat_adds16b(lv_cimag(dotProduct), lv_cimag(dotProductVector[i])));
|
||||
}
|
||||
_out[n_vec] = dotProduct;
|
||||
}
|
||||
free(realcacc);
|
||||
free(imagcacc);
|
||||
}
|
||||
|
||||
for (int n_vec=0;n_vec<num_a_vectors;n_vec++)
|
||||
{
|
||||
for(unsigned int n = sse_iters * 4;n < num_points; n++){
|
||||
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||
{
|
||||
for(unsigned int n = sse_iters * 4;n < num_points; n++){
|
||||
|
||||
lv_16sc_t tmp=in_common[n]*in_a[n_vec][n];
|
||||
lv_16sc_t tmp = in_common[n]*in_a[n_vec][n];
|
||||
|
||||
_out[n_vec]=lv_cmake(sat_adds16b(lv_creal(_out[n_vec]),lv_creal(tmp)),
|
||||
sat_adds16b(lv_cimag(_out[n_vec]),lv_cimag(tmp)));
|
||||
|
||||
}
|
||||
}
|
||||
_out[n_vec] = lv_cmake(sat_adds16b(lv_creal(_out[n_vec]), lv_creal(tmp)),
|
||||
sat_adds16b(lv_cimag(_out[n_vec]), lv_cimag(tmp)));
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
#endif /* LV_HAVE_SSE2 */
|
||||
|
Loading…
Reference in New Issue
Block a user