1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-03-28 14:27:03 +00:00

Deleted obsolete DLL_FLL_PLL GPS tracking. Deleted obsolete correlator.h and migrated all tracking in order to use the newer and optimized cpu_multicorrelator. Code simplification and code cleaning

This commit is contained in:
Javier Arribas 2016-04-06 14:57:44 +02:00
parent 970ba3feb8
commit eac888067f
7 changed files with 0 additions and 1660 deletions

View File

@ -1,163 +0,0 @@
/*!
* \file gps_l1_ca_dll_fll_pll_tracking.cc
* \brief Implementation of an adapter of a code DLL + carrier FLL/PLL tracking
* loop for GPS L1 C/A to a TrackingInterface
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* This file implements the code Delay Locked Loop (DLL) + carrier Phase
* Locked Loop (PLL) helped with a carrier Frequency Locked Loop (FLL)
* according to the algorithms described in:
* E.D. Kaplan and C. Hegarty, Understanding GPS. Principles and
* Applications, Second Edition, Artech House Publishers, 2005.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l1_ca_dll_fll_pll_tracking.h"
#include <glog/logging.h>
#include "GPS_L1_CA.h"
#include "configuration_interface.h"
using google::LogMessage;
GpsL1CaDllFllPllTracking::GpsL1CaDllFllPllTracking(
ConfigurationInterface* configuration,
std::string role,
unsigned int in_streams, unsigned int
out_streams,
boost::shared_ptr<gr::msg_queue> queue) :
role_(role),
in_streams_(in_streams),
out_streams_(out_streams),
queue_(queue)
{
DLOG(INFO) << "role " << role;
//################# CONFIGURATION PARAMETERS ########################
int fs_in;
int vector_length;
int f_if;
bool dump;
std::string dump_filename;
std::string item_type;
std::string default_item_type = "gr_complex";
float pll_bw_hz;
float fll_bw_hz;
float dll_bw_hz;
float early_late_space_chips;
int order;
item_type = configuration->property(role + ".item_type",default_item_type);
//vector_length = configuration->property(role + ".vector_length", 2048);
fs_in = configuration->property("GNSS-SDR.internal_fs_hz", 2048000);
f_if = configuration->property(role + ".if", 0);
dump = configuration->property(role + ".dump", false);
order = configuration->property(role + ".order", 2);
pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0);
fll_bw_hz = configuration->property(role + ".fll_bw_hz", 100.0);
dll_bw_hz = configuration->property(role + ".dll_bw_hz", 2.0);
early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.5);
std::string default_dump_filename = "./track_ch";
dump_filename = configuration->property(role + ".dump_filename",
default_dump_filename); //unused!
vector_length = std::round(fs_in / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
//################# MAKE TRACKING GNURadio object ###################
if (item_type.compare("gr_complex") == 0)
{
item_size_ = sizeof(gr_complex);
tracking_ = gps_l1_ca_dll_fll_pll_make_tracking_cc(
f_if,
fs_in,
vector_length,
queue_,
dump,
dump_filename,
order,
fll_bw_hz,
pll_bw_hz,
dll_bw_hz,
early_late_space_chips);
}
else
{
item_size_ = sizeof(gr_complex);
LOG(WARNING) << item_type << " unknown tracking item type.";
}
channel_ = 0;
channel_internal_queue_ = 0;
DLOG(INFO) << "tracking(" << tracking_->unique_id() << ")";
}
GpsL1CaDllFllPllTracking::~GpsL1CaDllFllPllTracking()
{}
void GpsL1CaDllFllPllTracking::start_tracking()
{
tracking_->start_tracking();
}
void GpsL1CaDllFllPllTracking::set_channel(unsigned int channel)
{
channel_ = channel;
tracking_->set_channel(channel);
}
void GpsL1CaDllFllPllTracking::set_channel_queue(
concurrent_queue<int> *channel_internal_queue)
{
channel_internal_queue_ = channel_internal_queue;
tracking_->set_channel_queue(channel_internal_queue_);
}
void GpsL1CaDllFllPllTracking::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
return tracking_->set_gnss_synchro(p_gnss_synchro);
}
void GpsL1CaDllFllPllTracking::connect(gr::top_block_sptr top_block)
{
if(top_block) { /* top_block is not null */};
//nothing to connect, now the tracking uses gr_sync_decimator
}
void GpsL1CaDllFllPllTracking::disconnect(gr::top_block_sptr top_block)
{
if(top_block) { /* top_block is not null */};
//nothing to disconnect, now the tracking uses gr_sync_decimator
}
gr::basic_block_sptr GpsL1CaDllFllPllTracking::get_left_block()
{
return tracking_;
}
gr::basic_block_sptr GpsL1CaDllFllPllTracking::get_right_block()
{
return tracking_;
}

View File

@ -1,99 +0,0 @@
/*!
* \file gps_l1_ca_dll_fll_pll_tracking.h
* \brief Interface of an adapter of a code DLL + carrier FLL/PLL tracking
* loop for GPS L1 C/A to a TrackingInterface
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* This is the interface of a code Delay Locked Loop (DLL) + carrier
* Phase Locked Loop (PLL) helped with a carrier Frequency Locked Loop (FLL)
* according to the algorithms described in:
* E.D. Kaplan and C. Hegarty, Understanding GPS. Principles and
* Applications, Second Edition, Artech House Publishers, 2005.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GPS_L1_CA_DLL_FLL_PLL_TRACKING_H_
#define GNSS_SDR_GPS_L1_CA_DLL_FLL_PLL_TRACKING_H_
#include <string>
#include <gnuradio/msg_queue.h>
#include "tracking_interface.h"
#include "gps_l1_ca_dll_fll_pll_tracking_cc.h"
class ConfigurationInterface;
/*!
* \brief This class implements a code DLL + carrier PLL/FLL Assisted tracking loop
*/
class GpsL1CaDllFllPllTracking : public TrackingInterface
{
public:
GpsL1CaDllFllPllTracking(ConfigurationInterface* configuration,
std::string role,
unsigned int in_streams,
unsigned int out_streams,
boost::shared_ptr<gr::msg_queue> queue);
virtual ~GpsL1CaDllFllPllTracking();
std::string role()
{
return role_;
}
//! Returns "GPS_L1_CA_DLL_FLL_PLL_Tracking"
std::string implementation()
{
return "GPS_L1_CA_DLL_FLL_PLL_Tracking";
}
size_t item_size()
{
return item_size_;
}
void connect(gr::top_block_sptr top_block);
void disconnect(gr::top_block_sptr top_block);
gr::basic_block_sptr get_left_block();
gr::basic_block_sptr get_right_block();
void set_channel(unsigned int channel);
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
void start_tracking();
private:
gps_l1_ca_dll_fll_pll_tracking_cc_sptr tracking_;
size_t item_size_;
unsigned int channel_;
std::string role_;
unsigned int in_streams_;
unsigned int out_streams_;
boost::shared_ptr<gr::msg_queue> queue_;
concurrent_queue<int> *channel_internal_queue_;
};
#endif // GPS_L1_CA_DLL_FLL_PLL_TRACKING_H_

View File

@ -1,690 +0,0 @@
/*!
* \file gps_l1_ca_dll_fll_pll_tracking_cc.cc
* \brief Implementation of a code DLL + carrier FLL/PLL tracking block
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* This file implements the code Delay Locked Loop (DLL) + carrier
* Phase Locked Loop (PLL) helped with a carrier Frequency Locked Loop (FLL)
* according to the algorithms described in:
* E.D. Kaplan and C. Hegarty, Understanding GPS. Principles and
* Applications, Second Edition, Artech House Publishers, 2005.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l1_ca_dll_fll_pll_tracking_cc.h"
#include <cmath>
#include <iostream>
#include <sstream>
#include <boost/lexical_cast.hpp>
#include <glog/logging.h>
#include <volk/volk.h>
#include <gnuradio/io_signature.h>
#include "gps_sdr_signal_processing.h"
#include "GPS_L1_CA.h"
#include "tracking_discriminators.h"
#include "lock_detectors.h"
#include "control_message_factory.h"
/*!
* \todo Include in definition header file
*/
#define CN0_ESTIMATION_SAMPLES 20
#define MINIMUM_VALID_CN0 25
#define MAXIMUM_LOCK_FAIL_COUNTER 50
#define CARRIER_LOCK_THRESHOLD 0.85
using google::LogMessage;
gps_l1_ca_dll_fll_pll_tracking_cc_sptr gps_l1_ca_dll_fll_pll_make_tracking_cc(
long if_freq,
long fs_in,
unsigned
int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump, std::string dump_filename,
int order,
float fll_bw_hz,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips)
{
return gps_l1_ca_dll_fll_pll_tracking_cc_sptr(new Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc(if_freq,
fs_in, vector_length, queue, dump, dump_filename, order, fll_bw_hz, pll_bw_hz,dll_bw_hz,
early_late_space_chips));
}
void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::forecast (int noutput_items, gr_vector_int &ninput_items_required)
{
if (noutput_items != 0)
{
ninput_items_required[0] = d_vector_length * 2; //set the required available samples in each call
}
}
Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump,
std::string dump_filename,
int order,
float fll_bw_hz,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips) :
gr::block("Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
// initialize internal vars
d_queue = queue;
d_dump = dump;
d_acquisition_gnss_synchro = NULL;
d_if_freq = static_cast<double>(if_freq);
d_fs_in = static_cast<double>(fs_in);
d_vector_length = vector_length;
d_early_late_spc_chips = static_cast<double>(early_late_space_chips); // Define early-late offset (in chips)
d_dump_filename = dump_filename;
// Initialize tracking variables ==========================================
d_carrier_loop_filter.set_params(fll_bw_hz, pll_bw_hz,order);
d_code_loop_filter = Tracking_2nd_DLL_filter(GPS_L1_CA_CODE_PERIOD);
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
// Get space for a vector with the C/A code replica sampled 1x/chip
d_ca_code = static_cast<gr_complex*>(volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS + 2) * sizeof(gr_complex), volk_get_alignment()));
// Get space for the resampled early / prompt / late local replicas
d_early_code = static_cast<gr_complex*>(volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment()));
d_prompt_code = static_cast<gr_complex*>(volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment()));
d_late_code = static_cast<gr_complex*>(volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment()));
// space for carrier wipeoff and signal baseband vectors
d_carr_sign = static_cast<gr_complex*>(volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment()));
// correlator outputs (scalar)
d_Early = static_cast<gr_complex*>(volk_malloc(sizeof(gr_complex), volk_get_alignment()));
d_Prompt = static_cast<gr_complex*>(volk_malloc(sizeof(gr_complex), volk_get_alignment()));
d_Late = static_cast<gr_complex*>(volk_malloc(sizeof(gr_complex), volk_get_alignment()));
// sample synchronization
d_sample_counter = 0;
d_acq_sample_stamp = 0;
d_last_seg = 0;// this is for debug output only
d_code_phase_samples = 0;
d_enable_tracking = false;
d_current_prn_length_samples = static_cast<int>(d_vector_length);
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES];
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
systemName["G"] = std::string("GPS");
systemName["R"] = std::string("GLONASS");
systemName["S"] = std::string("SBAS");
systemName["E"] = std::string("Galileo");
systemName["C"] = std::string("Compass");
d_channel_internal_queue = 0;
//d_acquisition_gnss_synchro = 0;
d_channel = 0;
d_acq_carrier_doppler_hz = 0.0;
d_carrier_doppler_hz = 0;
d_code_freq_hz = 0.0;
d_rem_carr_phase = 0.0;
d_rem_code_phase_samples = 0.0;
d_acq_code_phase_samples = 0;
d_acq_carrier_doppler_hz = 0.0;
d_acc_carrier_phase_rad = 0.0;
d_acc_code_phase_samples = 0;
d_FLL_discriminator_hz = 0.0;
d_pull_in = false;
d_FLL_wait = 1;
}
void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::start_tracking()
{
/*
* correct the code phase according to the delay between acq and trk
*/
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
float acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);
acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / d_fs_in;
//doppler effect
// Fd=(C/(C+Vr))*F
double radial_velocity;
radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_hz = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
T_chip_mod_seconds = 1 / d_code_freq_hz;
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * d_fs_in;
d_current_prn_length_samples = round(T_prn_mod_samples);
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * d_fs_in;
double T_prn_diff_seconds;
T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff;
N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * d_fs_in), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
}
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz);
d_FLL_wait = 1;
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
gps_l1_ca_code_gen_complex(&d_ca_code[1], d_acquisition_gnss_synchro->PRN, 0);
d_ca_code[0] = d_ca_code[static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS)];
d_ca_code[static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) + 1] = d_ca_code[1];
d_carrier_lock_fail_counter = 0;
d_Prompt_prev = 0;
d_rem_code_phase_samples = 0;
d_rem_carr_phase = 0;
d_FLL_discriminator_hz = 0;
d_rem_code_phase_samples = 0;
d_acc_carrier_phase_rad = 0;
std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0,1);
// DEBUG OUTPUT
std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// enable tracking Gnss_Satellite(systemName[&d_acquisition_gnss_synchro->System], d_acquisition_gnss_synchro->PRN)
d_pull_in = true;
d_enable_tracking = true;
LOG(INFO) << "PULL-IN Doppler [Hz]= " << d_carrier_doppler_hz
<< " Code Phase correction [samples]=" << delay_correction_samples
<< " PULL-IN Code Phase [samples]= " << d_acq_code_phase_samples << std::endl;
}
void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::update_local_code()
{
double tcode_chips;
double rem_code_phase_chips;
double code_phase_step_chips;
int early_late_spc_samples;
int epl_loop_length_samples;
int associated_chip_index;
int code_length_chips = static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS);
code_phase_step_chips = d_code_freq_hz / d_fs_in;
rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_hz / d_fs_in);
// unified loop for E, P, L code vectors
tcode_chips = -rem_code_phase_chips;
// Alternative EPL code generation (40% of speed improvement!)
early_late_spc_samples = round(d_early_late_spc_chips/code_phase_step_chips);
epl_loop_length_samples = d_current_prn_length_samples + early_late_spc_samples*2;
for (int i = 0; i < epl_loop_length_samples; i++)
{
associated_chip_index = 1 + round(fmod(tcode_chips - d_early_late_spc_chips, code_length_chips));
d_early_code[i] = d_ca_code[associated_chip_index];
tcode_chips = tcode_chips + code_phase_step_chips;
}
memcpy(d_prompt_code, &d_early_code[early_late_spc_samples], d_current_prn_length_samples * sizeof(gr_complex));
memcpy(d_late_code, &d_early_code[early_late_spc_samples*2], d_current_prn_length_samples * sizeof(gr_complex));
}
void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::update_local_carrier()
{
double phase, phase_step;
phase_step = GPS_TWO_PI * d_carrier_doppler_hz / d_fs_in;
phase = d_rem_carr_phase;
for(int i = 0; i < d_current_prn_length_samples; i++)
{
d_carr_sign[i] = gr_complex(cos(phase), -sin(phase));
phase += phase_step;
}
d_rem_carr_phase = fmod(phase, GPS_TWO_PI);
d_acc_carrier_phase_rad -= d_acc_carrier_phase_rad + phase;
}
Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::~Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc()
{
d_dump_file.close();
volk_free(d_ca_code);
volk_free(d_prompt_code);
volk_free(d_late_code);
volk_free(d_early_code);
volk_free(d_carr_sign);
volk_free(d_Early);
volk_free(d_Prompt);
volk_free(d_Late);
delete[] d_Prompt_buffer;
}
int Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
double code_error_chips = 0;
double code_error_filt_chips = 0;
double correlation_time_s = 0;
double PLL_discriminator_hz = 0;
double carr_nco_hz = 0;
// get the sample in and out pointers
const gr_complex* in = (gr_complex*) input_items[0]; // block input samples pointer
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; // block output streams pointer
d_Prompt_prev = *d_Prompt; // for the FLL discriminator
if (d_enable_tracking == true)
{
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data;
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
/*
* Receiver signal alignment
*/
if (d_pull_in == true)
{
int samples_offset;
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<double>(acq_to_trk_delay_samples), static_cast<double>(d_current_prn_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
// /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
d_pull_in = false;
consume_each(samples_offset); //shift input to perform alignment with local replica
// make an output to not stop the rest of the processing blocks
current_synchro_data.Prompt_I = 0.0;
current_synchro_data.Prompt_Q = 0.0;
current_synchro_data.Tracking_timestamp_secs = static_cast<double>(d_sample_counter) / d_fs_in;
current_synchro_data.Carrier_phase_rads = 0.0;
current_synchro_data.Code_phase_secs = 0.0;
current_synchro_data.CN0_dB_hz = 0.0;
current_synchro_data.Flag_valid_tracking = false;
current_synchro_data.Flag_valid_pseudorange = false;
*out[0] = current_synchro_data;
return 1;
}
update_local_code();
update_local_carrier();
// perform Early, Prompt and Late correlation
d_correlator.Carrier_wipeoff_and_EPL_volk(d_current_prn_length_samples,
in,
d_carr_sign,
d_early_code,
d_prompt_code,
d_late_code,
d_Early,
d_Prompt,
d_Late);
// check for samples consistency (this should be done before in the receiver / here only if the source is a file)
if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true )// or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true)
{
const int samples_available = ninput_items[0];
d_sample_counter = d_sample_counter + samples_available;
LOG(WARNING) << "Detected NaN samples at sample number " << d_sample_counter;
consume_each(samples_available);
// make an output to not stop the rest of the processing blocks
current_synchro_data.Prompt_I = 0.0;
current_synchro_data.Prompt_Q = 0.0;
current_synchro_data.Tracking_timestamp_secs = static_cast<double>(d_sample_counter) / d_fs_in;
current_synchro_data.Carrier_phase_rads = 0.0;
current_synchro_data.Code_phase_secs = 0.0;
current_synchro_data.CN0_dB_hz = 0.0;
current_synchro_data.Flag_valid_tracking = false;
current_synchro_data.Flag_valid_pseudorange = false;
*out[0] = current_synchro_data;
return 1;
}
/*
* DLL, FLL, and PLL discriminators
*/
// Compute DLL error
code_error_chips = dll_nc_e_minus_l_normalized(*d_Early, *d_Late);
// Compute DLL filtered error
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips);
//compute FLL error
correlation_time_s = (static_cast<double>(d_current_prn_length_samples)) / d_fs_in;
if (d_FLL_wait == 1)
{
d_Prompt_prev = *d_Prompt;
d_FLL_discriminator_hz = 0.0;
d_FLL_wait = 0;
}
else
{
d_FLL_discriminator_hz = fll_four_quadrant_atan(d_Prompt_prev, *d_Prompt, 0, correlation_time_s) / GPS_TWO_PI;
d_Prompt_prev = *d_Prompt;
d_FLL_wait = 1;
}
// Compute PLL error
PLL_discriminator_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / GPS_TWO_PI;
/*
* DLL and FLL+PLL filter and get current carrier Doppler and code frequency
*/
carr_nco_hz = d_carrier_loop_filter.get_carrier_error(d_FLL_discriminator_hz, PLL_discriminator_hz, correlation_time_s);
d_carrier_doppler_hz = d_if_freq + carr_nco_hz;
d_code_freq_hz = GPS_L1_CA_CODE_RATE_HZ + (((d_carrier_doppler_hz + d_if_freq) * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
/*!
* \todo Improve the lock detection algorithm!
*/
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt;
d_cn0_estimation_counter++;
}
else
{
d_cn0_estimation_counter = 0;
//d_CN0_SNV_dB_Hz = gps_l1_ca_CN0_SNV(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in);
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L1_CA_CODE_LENGTH_CHIPS);
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
// ###### TRACKING UNLOCK NOTIFICATION #####
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
}
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
std::unique_ptr<ControlMessageFactory> cmf(new ControlMessageFactory());
if (d_queue != gr::msg_queue::sptr())
{
d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
}
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
}
}
// ########## DEBUG OUTPUT
/*!
* \todo The stop timer has to be moved to the signal source!
*/
// debug: Second counter in channel 0
if (d_channel == 0)
{
if (floor(d_sample_counter/d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
LOG(INFO) << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]";
}
}
else
{
if (floor(d_sample_counter/d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter/d_fs_in);
LOG(INFO) << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]";
}
}
//predict the next loop PRN period length prediction
double T_chip_seconds;
double T_prn_seconds;
double T_prn_samples;
double K_blk_samples;
T_chip_seconds = 1 / static_cast<double>(d_code_freq_hz);
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * d_fs_in;
float code_error_filt_samples;
code_error_filt_samples = GPS_L1_CA_CODE_PERIOD * code_error_filt_chips * GPS_L1_CA_CHIP_PERIOD * static_cast<double>(d_fs_in); //[seconds]
d_acc_code_phase_samples = d_acc_code_phase_samples + code_error_filt_samples;
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_samples;
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete sample
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error
// ########### Output the tracking data to navigation and PVT ##########
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
// Tracking_timestamp_secs is aligned with the PRN start sample
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples) / (double)d_fs_in;
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + static_cast<double>(d_rem_code_phase_samples))/static_cast<double>(d_fs_in);
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, Code_phase_secs=0
current_synchro_data.Code_phase_secs = 0;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_tracking = true;
current_synchro_data.Flag_valid_symbol_output = true;
current_synchro_data.correlation_length_ms = 1;
current_synchro_data.Flag_valid_pseudorange = false;
*out[0] = current_synchro_data;
}
else
{
// ########## DEBUG OUTPUT (TIME ONLY for channel 0 when tracking is disabled)
/*!
* \todo The stop timer has to be moved to the signal source!
*/
// stream to collect cout calls to improve thread safety
std::stringstream tmp_str_stream;
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
if (d_channel == 0)
{
// debug: Second counter in channel 0
tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush;
std::cout << tmp_str_stream.rdbuf() << std::flush;
}
}
*d_Early = gr_complex(0,0);
*d_Prompt = gr_complex(0,0);
*d_Late = gr_complex(0,0);
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output streams pointer
d_acquisition_gnss_synchro->Flag_valid_pseudorange = false;
d_acquisition_gnss_synchro->Flag_valid_symbol_output = false;
*out[0] = *d_acquisition_gnss_synchro;
}
if(d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
float prompt_I;
float prompt_Q;
float tmp_E, tmp_P, tmp_L;
float tmp_float;
double tmp_double;
prompt_I = (*d_Prompt).real();
prompt_Q = (*d_Prompt).imag();
tmp_E = std::abs<float>(*d_Early);
tmp_P = std::abs<float>(*d_Prompt);
tmp_L = std::abs<float>(*d_Late);
try
{
// EPR
d_dump_file.write((char*)&tmp_E, sizeof(float));
d_dump_file.write((char*)&tmp_P, sizeof(float));
d_dump_file.write((char*)&tmp_L, sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write((char*)&prompt_I, sizeof(float));
d_dump_file.write((char*)&prompt_Q, sizeof(float));
// PRN start sample stamp
d_dump_file.write((char*)&d_sample_counter, sizeof(unsigned long int));
// accumulated carrier phase
tmp_float = (float)d_acc_carrier_phase_rad;
d_dump_file.write((char*)&tmp_float, sizeof(float));
// carrier and code frequency
tmp_float = (float)d_carrier_doppler_hz;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_float = (float)d_code_freq_hz;
d_dump_file.write((char*)&tmp_float, sizeof(float));
//PLL commands
tmp_float = (float)PLL_discriminator_hz;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_float = (float)carr_nco_hz;
d_dump_file.write((char*)&tmp_float, sizeof(float));
//DLL commands
tmp_float = (float)code_error_chips;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_float = (float)code_error_filt_chips;
d_dump_file.write((char*)&tmp_float, sizeof(float));
// CN0 and carrier lock test
tmp_float = (float)d_CN0_SNV_dB_Hz;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_float = (float)d_carrier_lock_test;
d_dump_file.write((char*)&tmp_float, sizeof(float));
// AUX vars (for debug purposes)
tmp_float = (float)d_rem_code_phase_samples;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_double = (double)(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
catch (std::ifstream::failure e)
{
LOG(INFO) << "Exception writing trk dump file "<< e.what() << std::endl;
}
}
consume_each(d_current_prn_length_samples); // this is necessary in gr::block derivates
d_sample_counter += d_current_prn_length_samples; //count for the processed samples
if((noutput_items == 0) || (ninput_items[0] == 0))
{
LOG(WARNING) << "noutput_items = 0";
}
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
}
void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::set_channel(unsigned int channel)
{
d_channel = channel;
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions ( std::ifstream::failbit | std::ifstream::badbit );
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
}
catch (std::ifstream::failure e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
}
}
}
}
void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::set_channel_queue(concurrent_queue<int> *channel_internal_queue)
{
d_channel_internal_queue = channel_internal_queue;
}
void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
d_acquisition_gnss_synchro=p_gnss_synchro;
}

View File

@ -1,206 +0,0 @@
/*!
* \file gps_l1_ca_dll_fll_pll_tracking_cc.h
* \brief Interface of a code DLL + carrier FLL/PLL tracking block
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* This is the interface of a code Delay Locked Loop (DLL) +
* carrier Phase Locked Loop (PLL) helped with a carrier Frequency Locked
* Loop (FLL) according to the algorithms described in:
* E.D. Kaplan and C. Hegarty, Understanding GPS. Principles and
* Applications, Second Edition, Artech House Publishers, 2005.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GPS_L1_CA_DLL_FLL_PLL_TRACKING_CC_H
#define GNSS_SDR_GPS_L1_CA_DLL_FLL_PLL_TRACKING_CC_H
#include <fstream>
#include <map>
#include <string>
#include <gnuradio/block.h>
#include <gnuradio/msg_queue.h>
#include "concurrent_queue.h"
#include "tracking_FLL_PLL_filter.h"
#include "tracking_2nd_DLL_filter.h"
#include "gnss_synchro.h"
#include "correlator.h"
class Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc;
typedef boost::shared_ptr<Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc>
gps_l1_ca_dll_fll_pll_tracking_cc_sptr;
gps_l1_ca_dll_fll_pll_tracking_cc_sptr
gps_l1_ca_dll_fll_pll_make_tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump,
std::string dump_filename,
int order,
float fll_bw_hz,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
/*!
* \brief This class implements a DLL and a FLL assisted PLL tracking loop block
*/
class Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc: public gr::block
{
public:
~Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc();
void set_channel(unsigned int channel);
void start_tracking();
void update_local_code();
void update_local_carrier();
void set_FLL_and_PLL_BW(float fll_bw_hz,float pll_bw_hz);
/*
* \brief Satellite signal synchronization parameters uses shared memory between acquisition and tracking
*/
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
/*
* \brief just like gr_block::general_work, only this arranges to call consume_each for you
*
* The user must override work to define the signal processing code
*/
int general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
void forecast (int noutput_items, gr_vector_int &ninput_items_required);
private:
friend gps_l1_ca_dll_fll_pll_tracking_cc_sptr
gps_l1_ca_dll_fll_pll_make_tracking_cc(
long if_freq,
long fs_in, unsigned
int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump,
std::string dump_filename,
int order,
float fll_bw_hz,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc(
long if_freq,
long fs_in, unsigned
int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump,
std::string dump_filename,
int order,
float fll_bw_hz,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
void CN0_estimation_and_lock_detectors();
// class private vars
Gnss_Synchro* d_acquisition_gnss_synchro;
boost::shared_ptr<gr::msg_queue> d_queue;
concurrent_queue<int> *d_channel_internal_queue;
unsigned int d_vector_length;
bool d_dump;
unsigned int d_channel;
int d_last_seg;
double d_if_freq;
double d_fs_in;
gr_complex* d_ca_code;
gr_complex* d_early_code;
gr_complex* d_late_code;
gr_complex* d_prompt_code;
gr_complex* d_carr_sign;
gr_complex* d_Early;
gr_complex* d_Prompt;
gr_complex* d_Late;
gr_complex d_Prompt_prev;
double d_early_late_spc_chips;
double d_carrier_doppler_hz;
double d_code_freq_hz;
double d_code_phase_samples;
int d_current_prn_length_samples;
//int d_next_prn_length_samples;
int d_FLL_wait;
double d_rem_carr_phase;
double d_rem_code_phase_samples;
//double d_next_rem_code_phase_samples;
bool d_pull_in;
// acquisition
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// correlator
Correlator d_correlator;
// FLL + PLL filter
double d_FLL_discriminator_hz; // This is a class variable because FLL needs to have memory
Tracking_FLL_PLL_filter d_carrier_loop_filter;
double d_acc_carrier_phase_rad;
double d_acc_code_phase_samples;
Tracking_2nd_DLL_filter d_code_loop_filter;
unsigned long int d_sample_counter;
unsigned long int d_acq_sample_stamp;
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
bool d_enable_tracking;
std::string d_dump_filename;
std::ofstream d_dump_file;
std::map<std::string, std::string> systemName;
std::string sys;
};
#endif //GNSS_SDR_GPS_L1_CA_DLL_FLL_PLL_TRACKING_CC_H

View File

@ -1,201 +0,0 @@
/*!
* \file correlator.cc
* \brief Highly optimized vector correlator class
* \authors <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* </ul>
*
* Class that implements a high optimized vector correlator class.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "correlator.h"
#include <volk/volk.h>
#if USING_VOLK_CW_EPL_CORR_CUSTOM
#define LV_HAVE_SSE3
#include "volk_cw_epl_corr.h"
#endif
unsigned long Correlator::next_power_2(unsigned long v)
{
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
void Correlator::Carrier_wipeoff_and_EPL_generic(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code,gr_complex* E_out, gr_complex* P_out, gr_complex* L_out)
{
gr_complex bb_signal_sample(0,0);
*E_out = 0;
*P_out = 0;
*L_out = 0;
// perform Early, Prompt and Late correlation
for(int i=0; i < signal_length_samples; ++i)
{
//Perform the carrier wipe-off
bb_signal_sample = input[i] * carrier[i];
// Now get early, late, and prompt values for each
*E_out += bb_signal_sample * E_code[i];
*P_out += bb_signal_sample * P_code[i];
*L_out += bb_signal_sample * L_code[i];
}
}
void Correlator::Carrier_wipeoff_and_EPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out)
{
gr_complex* bb_signal = static_cast<gr_complex*>(volk_malloc(signal_length_samples * sizeof(gr_complex), volk_get_alignment()));
volk_32fc_x2_multiply_32fc(bb_signal, input, carrier, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(E_out, bb_signal, E_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(P_out, bb_signal, P_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(L_out, bb_signal, L_code, signal_length_samples);
volk_free(bb_signal);
}
//void Correlator::Carrier_wipeoff_and_EPL_volk_IQ(int prn_length_samples,int integration_time ,const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out)
//{
// gr_complex* bb_signal = static_cast<gr_complex*>(volk_malloc(signal_length_samples * sizeof(gr_complex), volk_get_alignment()));
// volk_32fc_x2_multiply_32fc(bb_signal, input, carrier, integration_time * prn_length_samples);
// volk_32fc_x2_dot_prod_32fc(E_out, bb_signal, E_code, integration_time * prn_length_samples);
// volk_32fc_x2_dot_prod_32fc(P_out, bb_signal, P_code, integration_time * prn_length_samples);
// volk_32fc_x2_dot_prod_32fc(L_out, bb_signal, L_code, integration_time * prn_length_samples);
// // Vector of Prompts of I code
// for (int i = 0; i < integration_time; i++)
// {
// volk_32fc_x2_dot_prod_32fc(&P_data_out[i], &bb_signal[i*prn_length_samples], P_data_code, prn_length_samples);
// }
//
// volk_free(bb_signal);
//}
void Correlator::Carrier_wipeoff_and_EPL_volk_IQ(int signal_length_samples ,const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out)
{
gr_complex* bb_signal = static_cast<gr_complex*>(volk_malloc(signal_length_samples * sizeof(gr_complex), volk_get_alignment()));
volk_32fc_x2_multiply_32fc(bb_signal, input, carrier, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(E_out, bb_signal, E_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(P_out, bb_signal, P_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(L_out, bb_signal, L_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(P_data_out, bb_signal, P_data_code, signal_length_samples);
volk_free(bb_signal);
}
void Correlator::Carrier_wipeoff_and_VEPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* VE_code, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* VL_code, gr_complex* VE_out, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* VL_out)
{
gr_complex* bb_signal = static_cast<gr_complex*>(volk_malloc(signal_length_samples * sizeof(gr_complex), volk_get_alignment()));
volk_32fc_x2_multiply_32fc(bb_signal, input, carrier, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(VE_out, bb_signal, VE_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(E_out, bb_signal, E_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(P_out, bb_signal, P_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(L_out, bb_signal, L_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(VL_out, bb_signal, VL_code, signal_length_samples);
volk_free(bb_signal);
}
Correlator::Correlator ()
{}
Correlator::~Correlator ()
{}
#if USING_VOLK_CW_EPL_CORR_CUSTOM
void Correlator::Carrier_wipeoff_and_EPL_volk_custom(int signal_length_samples, const gr_complex* input, gr_complex* carrier,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out)
{
volk_cw_epl_corr_u(input, carrier, E_code, P_code, L_code, E_out, P_out, L_out, signal_length_samples);
}
#endif
void Correlator::Carrier_rotate_and_EPL_volk(int signal_length_samples,
const gr_complex* input,
gr_complex *phase_as_complex,
gr_complex phase_inc_as_complex,
const gr_complex* E_code,
const gr_complex* P_code,
const gr_complex* L_code,
gr_complex* E_out,
gr_complex* P_out,
gr_complex* L_out )
{
gr_complex* bb_signal = static_cast<gr_complex*>(volk_malloc(signal_length_samples * sizeof(gr_complex), volk_get_alignment()));
volk_32fc_s32fc_x2_rotator_32fc(bb_signal, input, phase_inc_as_complex, phase_as_complex, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(E_out, bb_signal, E_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(P_out, bb_signal, P_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(L_out, bb_signal, L_code, signal_length_samples);
volk_free(bb_signal);
}
void Correlator::Carrier_rotate_and_VEPL_volk(int signal_length_samples,
const gr_complex* input,
gr_complex *phase_as_complex,
gr_complex phase_inc_as_complex,
const gr_complex* VE_code,
const gr_complex* E_code,
const gr_complex* P_code,
const gr_complex* L_code,
const gr_complex* VL_code,
gr_complex* VE_out,
gr_complex* E_out,
gr_complex* P_out,
gr_complex* L_out,
gr_complex* VL_out )
{
gr_complex* bb_signal = static_cast<gr_complex*>(volk_malloc(signal_length_samples * sizeof(gr_complex), volk_get_alignment()));
volk_32fc_s32fc_x2_rotator_32fc(bb_signal, input, phase_inc_as_complex, phase_as_complex, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(VE_out, bb_signal, VE_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(E_out, bb_signal, E_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(P_out, bb_signal, P_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(L_out, bb_signal, L_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(VL_out, bb_signal, VL_code, signal_length_samples);
volk_free(bb_signal);
}

View File

@ -1,99 +0,0 @@
/*!
* \file correlator.h
* \brief High optimized vector correlator class
* \authors <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* </ul>
*
* Class that implements a high optimized vector correlator class
* using the volk library
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_CORRELATOR_H_
#define GNSS_SDR_CORRELATOR_H_
#include <gnuradio/gr_complex.h>
#if !defined(GENERIC_ARCH) && HAVE_SSE3
#define USING_VOLK_CW_EPL_CORR_CUSTOM 1
#endif
/*!
* \brief Class that implements carrier wipe-off and correlators.
*
* Implemented versions:
* - Generic: Standard C++ implementation.
* - Volk: uses VOLK (Vector-Optimized Library of Kernels) and uses the processor's SIMD instruction sets. See http://gnuradio.org/redmine/projects/gnuradio/wiki/Volk
*
*/
class Correlator
{
public:
Correlator();
~Correlator();
void Carrier_wipeoff_and_EPL_generic(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out);
void Carrier_wipeoff_and_EPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out);
void Carrier_wipeoff_and_VEPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* VE_code, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* VL_code, gr_complex* VE_out, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* VL_out);
// void Carrier_wipeoff_and_EPL_volk_IQ(int prn_length_samples,int integration_time ,const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out);
void Carrier_wipeoff_and_EPL_volk_IQ(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out);
void Carrier_rotate_and_EPL_volk(int signal_length_samples,
const gr_complex* input,
gr_complex *phase_as_complex,
gr_complex phase_inc_as_complex,
const gr_complex* E_code,
const gr_complex* P_code,
const gr_complex* L_code,
gr_complex* E_out,
gr_complex* P_out,
gr_complex* L_out );
void Carrier_rotate_and_VEPL_volk(int signal_length_samples,
const gr_complex* input,
gr_complex *phase_as_complex,
gr_complex phase_inc_as_complex,
const gr_complex* VE_code,
const gr_complex* E_code,
const gr_complex* P_code,
const gr_complex* L_code,
const gr_complex* VL_code,
gr_complex* VE_out,
gr_complex* E_out,
gr_complex* P_out,
gr_complex* L_out,
gr_complex* VL_out );
#if USING_VOLK_CW_EPL_CORR_CUSTOM
void Carrier_wipeoff_and_EPL_volk_custom(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out);
#endif
private:
unsigned long next_power_2(unsigned long v);
};
#endif

View File

@ -1,202 +0,0 @@
/*!
* \file volk_cw_epl_corr.h
* \brief Implements the carrier wipe-off function and the Early-Prompt-Late
* correlators in a single SSE-enabled loop.
*
* \author Javier Arribas 2012, jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_VOLK_CW_EPL_CORR_H_
#define GNSS_SDR_VOLK_CW_EPL_CORR_H_
#include <inttypes.h>
#include <stdio.h>
#include <volk/volk_complex.h>
#include <float.h>
#include <string.h>
/*!
* TODO: Code the SSE4 version and benchmark it
*/
#ifdef LV_HAVE_SSE3
#include <pmmintrin.h>
/*!
\brief Performs the carrier wipe-off mixing and the Early, Prompt, and Late correlation
\param input The input signal input
\param carrier The carrier signal input
\param E_code Early PRN code replica input
\param P_code Early PRN code replica input
\param L_code Early PRN code replica input
\param E_out Early correlation output
\param P_out Early correlation output
\param L_out Early correlation output
\param num_points The number of complex values in vectors
*/
static inline void volk_cw_epl_corr_u(const lv_32fc_t* input, const lv_32fc_t* carrier, const lv_32fc_t* E_code, const lv_32fc_t* P_code, const lv_32fc_t* L_code, lv_32fc_t* E_out, lv_32fc_t* P_out, lv_32fc_t* L_out, unsigned int num_points)
{
unsigned int number = 0;
const unsigned int halfPoints = num_points / 2;
lv_32fc_t dotProduct_E;
memset(&dotProduct_E, 0x0, 2*sizeof(float));
lv_32fc_t dotProduct_P;
memset(&dotProduct_P, 0x0, 2*sizeof(float));
lv_32fc_t dotProduct_L;
memset(&dotProduct_L, 0x0, 2*sizeof(float));
// Aux vars
__m128 x, y, yl, yh, z, tmp1, tmp2, z_E, z_P, z_L;
z_E = _mm_setzero_ps();
z_P = _mm_setzero_ps();
z_L = _mm_setzero_ps();
//input and output vectors
//lv_32fc_t* _input_BB = input_BB;
const lv_32fc_t* _input = input;
const lv_32fc_t* _carrier = carrier;
const lv_32fc_t* _E_code = E_code;
const lv_32fc_t* _P_code = P_code;
const lv_32fc_t* _L_code = L_code;
for(;number < halfPoints; number++)
{
// carrier wipe-off (vector point-to-point product)
x = _mm_loadu_ps((float*)_input); // Load the ar + ai, br + bi as ar,ai,br,bi
y = _mm_loadu_ps((float*)_carrier); // Load the cr + ci, dr + di as cr,ci,dr,di
yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
//_mm_storeu_ps((float*)_input_BB,z); // Store the results back into the _input_BB container
// correlation E,P,L (3x vector scalar product)
// Early
//x = _mm_load_ps((float*)_input_BB); // Load the ar + ai, br + bi as ar,ai,br,bi
x = z;
y = _mm_load_ps((float*)_E_code); // Load the cr + ci, dr + di as cr,ci,dr,di
yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
z_E = _mm_add_ps(z_E, z); // Add the complex multiplication results together
// Prompt
//x = _mm_load_ps((float*)_input_BB); // Load the ar + ai, br + bi as ar,ai,br,bi
y = _mm_load_ps((float*)_P_code); // Load the cr + ci, dr + di as cr,ci,dr,di
yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di
x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
tmp1 = _mm_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
z_P = _mm_add_ps(z_P, z); // Add the complex multiplication results together
// Late
//x = _mm_load_ps((float*)_input_BB); // Load the ar + ai, br + bi as ar,ai,br,bi
y = _mm_load_ps((float*)_L_code); // Load the cr + ci, dr + di as cr,ci,dr,di
yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di
x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
tmp1 = _mm_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
z_L = _mm_add_ps(z_L, z); // Add the complex multiplication results together
/*pointer increment*/
_carrier += 2;
_input += 2;
//_input_BB += 2;
_E_code += 2;
_P_code += 2;
_L_code +=2;
}
__VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector_E[2];
__VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector_P[2];
__VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector_L[2];
//__VOLK_ATTR_ALIGNED(16) lv_32fc_t _input_BB;
_mm_store_ps((float*)dotProductVector_E,z_E); // Store the results back into the dot product vector
_mm_store_ps((float*)dotProductVector_P,z_P); // Store the results back into the dot product vector
_mm_store_ps((float*)dotProductVector_L,z_L); // Store the results back into the dot product vector
dotProduct_E += ( dotProductVector_E[0] + dotProductVector_E[1] );
dotProduct_P += ( dotProductVector_P[0] + dotProductVector_P[1] );
dotProduct_L += ( dotProductVector_L[0] + dotProductVector_L[1] );
if((num_points % 2) != 0)
{
//_input_BB = (*_input) * (*_carrier);
dotProduct_E += (*_input) * (*_E_code)*(*_carrier);
dotProduct_P += (*_input) * (*_P_code)*(*_carrier);
dotProduct_L += (*_input) * (*_L_code)*(*_carrier);
}
*E_out = dotProduct_E;
*P_out = dotProduct_P;
*L_out = dotProduct_L;
}
#endif /* LV_HAVE_SSE */
#endif /* GNSS_SDR_VOLK_CW_EPL_CORR_H_ */