1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-26 08:56:58 +00:00

merging next Merge branch 'next' of https://git.code.sf.net/p/gnss-sdr/cttc into next

This commit is contained in:
Carles Fernandez 2015-02-27 19:21:49 +01:00
commit e4bd312731
7 changed files with 290 additions and 284 deletions

View File

@ -85,9 +85,6 @@ FirFilter::FirFilter(ConfigurationInterface* configuration, std::string role,
fir_filter_fff_2_ = gr::filter::fir_filter_fff::make(1, taps_);
DLOG(INFO) << "I input_filter(" << fir_filter_fff_1_->unique_id() << ")";
DLOG(INFO) << "Q input_filter(" << fir_filter_fff_2_->unique_id() << ")";
//float_to_short_1_ = gr::blocks::float_to_short::make();
//float_to_short_2_ = gr::blocks::float_to_short::make();
//short_x2_to_cshort_ = make_short_x2_to_cshort();
float_to_complex_ = gr::blocks::float_to_complex::make();
if (dump_)
{

View File

@ -47,8 +47,18 @@ Pass_Through::Pass_Through(ConfigurationInterface* configuration, std::string ro
out_streams_(out_streams)
{
std::string default_item_type = "gr_complex";
item_type_ = configuration->property(role + ".item_type", default_item_type);
std::string input_type = configuration->property(role + ".input_item_type", default_item_type);
std::string output_type = configuration->property(role + ".output_item_type", default_item_type);
if(input_type.compare(output_type) != 0)
{
LOG(WARNING) << "input_item_type and output_item_type are different in a Pass_Through implementation! Taking "
<< input_type
<< ", but item_size will supersede it.";
}
item_type_ = configuration->property(role + ".item_type", input_type);
vector_size_ = configuration->property(role + ".vector_size", 1);
if(item_type_.compare("float") == 0)
{
item_size_ = sizeof(float);
@ -61,6 +71,10 @@ Pass_Through::Pass_Through(ConfigurationInterface* configuration, std::string ro
{
item_size_ = sizeof(int16_t);
}
else if(item_type_.compare("ishort") == 0)
{
item_size_ = sizeof(int16_t);
}
else if(item_type_.compare("cshort") == 0)
{
item_size_ = sizeof(lv_16sc_t);
@ -69,6 +83,10 @@ Pass_Through::Pass_Through(ConfigurationInterface* configuration, std::string ro
{
item_size_ = sizeof(int8_t);
}
else if(item_type_.compare("ibyte") == 0)
{
item_size_ = sizeof(int8_t);
}
else if(item_type_.compare("cbyte") == 0)
{
item_size_ = sizeof(lv_8sc_t);

View File

@ -51,50 +51,52 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
std::string default_dump_file = "./data/signal_source.dat";
std::string default_item_type = "cshort";
// UHD COMMON PARAMETERS
uhd::device_addr_t dev_addr;
device_address_= configuration->property(role + ".device_address", empty);
// When left empty, the device discovery routines will search all
// available transports on the system (ethernet, usb...).
// To narrow down the discovery process to a particular device,
// specify a transport key/value pair specific to your device.
if (empty.compare(device_address_) != 0) // if not empty
{
dev_addr["addr"] = device_address_;
}
// UHD COMMON PARAMETERS
uhd::device_addr_t dev_addr;
device_address_ = configuration->property(role + ".device_address", empty);
// When left empty, the device discovery routines will search all
// available transports on the system (ethernet, usb...).
// To narrow down the discovery process to a particular device,
// specify a transport key/value pair specific to your device.
if (empty.compare(device_address_) != 0) // if not empty
{
dev_addr["addr"] = device_address_;
}
subdevice_=configuration->property(role + ".subdevice", empty);
RF_channels_=configuration->property(role + ".RF_channels", 1);
sample_rate_ = configuration->property(role + ".sampling_frequency", (double)4.0e6);
item_type_ = configuration->property(role + ".item_type", default_item_type);
subdevice_ = configuration->property(role + ".subdevice", empty);
RF_channels_ = configuration->property(role + ".RF_channels", 1);
sample_rate_ = configuration->property(role + ".sampling_frequency", (double)4.0e6);
item_type_ = configuration->property(role + ".item_type", default_item_type);
if (RF_channels_==1)
{
// Single RF channel UHD operation (backward compatible config file format)
samples_.push_back(configuration->property(role + ".samples", 0));
dump_.push_back(configuration->property(role + ".dump", false));
dump_filename_.push_back(configuration->property(role + ".dump_filename", default_dump_file));
if (RF_channels_ == 1)
{
// Single RF channel UHD operation (backward compatible config file format)
samples_.push_back(configuration->property(role + ".samples", 0));
dump_.push_back(configuration->property(role + ".dump", false));
dump_filename_.push_back(configuration->property(role + ".dump_filename", default_dump_file));
freq_.push_back(configuration->property(role + ".freq", GPS_L1_FREQ_HZ));
gain_.push_back(configuration->property(role + ".gain", (double)50.0));
freq_.push_back(configuration->property(role + ".freq", GPS_L1_FREQ_HZ));
gain_.push_back(configuration->property(role + ".gain", (double)50.0));
IF_bandwidth_hz_.push_back(configuration->property(role + ".IF_bandwidth_hz", sample_rate_/2));
IF_bandwidth_hz_.push_back(configuration->property(role + ".IF_bandwidth_hz", sample_rate_/2));
}else{
// multiple RF channels selected
for (int i=0;i<RF_channels_;i++)
{
// Single RF channel UHD operation (backward compatible config file format)
samples_.push_back(configuration->property(role + ".samples" + boost::lexical_cast<std::string>(i), 0));
dump_.push_back(configuration->property(role + ".dump" + boost::lexical_cast<std::string>(i), false));
dump_filename_.push_back(configuration->property(role + ".dump_filename" + boost::lexical_cast<std::string>(i), default_dump_file));
}
else
{
// multiple RF channels selected
for (int i = 0; i < RF_channels_; i++)
{
// Single RF channel UHD operation (backward compatible config file format)
samples_.push_back(configuration->property(role + ".samples" + boost::lexical_cast<std::string>(i), 0));
dump_.push_back(configuration->property(role + ".dump" + boost::lexical_cast<std::string>(i), false));
dump_filename_.push_back(configuration->property(role + ".dump_filename" + boost::lexical_cast<std::string>(i), default_dump_file));
freq_.push_back(configuration->property(role + ".freq" + boost::lexical_cast<std::string>(i), GPS_L1_FREQ_HZ));
gain_.push_back(configuration->property(role + ".gain" + boost::lexical_cast<std::string>(i), (double)50.0));
freq_.push_back(configuration->property(role + ".freq" + boost::lexical_cast<std::string>(i), GPS_L1_FREQ_HZ));
gain_.push_back(configuration->property(role + ".gain" + boost::lexical_cast<std::string>(i), (double)50.0));
IF_bandwidth_hz_.push_back(configuration->property(role + ".IF_bandwidth_hz" + boost::lexical_cast<std::string>(i), sample_rate_/2));
}
}
IF_bandwidth_hz_.push_back(configuration->property(role + ".IF_bandwidth_hz" + boost::lexical_cast<std::string>(i), sample_rate_/2));
}
}
// 1. Make the uhd driver instance
//uhd_source_= uhd::usrp::multi_usrp::make(dev_addr);
@ -108,44 +110,44 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
if (item_type_.compare("cbyte") == 0)
{
item_size_ = sizeof(lv_8sc_t);
uhd_stream_args_=uhd::stream_args_t("sc8");
uhd_stream_args_ = uhd::stream_args_t("sc8");
}
else if (item_type_.compare("cshort") == 0)
{
item_size_ = sizeof(lv_16sc_t);
uhd_stream_args_=uhd::stream_args_t("sc16");
uhd_stream_args_ = uhd::stream_args_t("sc16");
}
else if (item_type_.compare("gr_complex") == 0)
{
item_size_ = sizeof(gr_complex);
uhd_stream_args_=uhd::stream_args_t("fc32");
uhd_stream_args_ = uhd::stream_args_t("fc32");
}
else
{
LOG(WARNING) << item_type_ << " unrecognized item type. Using cshort.";
item_size_ = sizeof(lv_16sc_t);
uhd_stream_args_=uhd::stream_args_t("sc16");
uhd_stream_args_ = uhd::stream_args_t("sc16");
}
// select the number of channels and the subdevice specifications
for (int i=0;i<RF_channels_;i++)
{
uhd_stream_args_.channels.push_back(i);
}
for (int i = 0; i< RF_channels_; i++)
{
uhd_stream_args_.channels.push_back(i);
}
// 1.2 Make the UHD source object
uhd_source_ = gr::uhd::usrp_source::make(dev_addr, uhd_stream_args_);
// Set subdevice specification string for USRP family devices. It is composed of:
// <motherboard slot name>:<daughterboard frontend name>
// For motherboards: All USRP family motherboards have a first slot named A:.
// The USRP1 has two daughterboard subdevice slots, known as A: and B:.
// For daughterboards, see http://files.ettus.com/uhd_docs/manual/html/dboards.html
// "0" is valid for DBSRX, DBSRX2, WBX Series
// Set subdevice specification string for USRP family devices. It is composed of:
// <motherboard slot name>:<daughterboard frontend name>
// For motherboards: All USRP family motherboards have a first slot named A:.
// The USRP1 has two daughterboard subdevice slots, known as A: and B:.
// For daughterboards, see http://files.ettus.com/uhd_docs/manual/html/dboards.html
// "0" is valid for DBSRX, DBSRX2, WBX Series
// Dual channel example: "A:0 B:0"
// TODO: Add support for multiple motherboards (i.e. four channels "A:0 B:0 A:1 B1")
uhd_source_->set_subdev_spec(subdevice_, 0);
uhd_source_->set_subdev_spec(subdevice_, 0);
// 2.1 set sampling clock reference
// Set the clock source for the usrp device.
@ -159,70 +161,69 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
std::cout << boost::format("Sampling Rate for the USRP device: %f [sps]...") % (uhd_source_->get_samp_rate()) << std::endl;
LOG(INFO) << boost::format("Sampling Rate for the USRP device: %f [sps]...") % (uhd_source_->get_samp_rate());
std::vector<std::string> sensor_names;
std::vector<std::string> sensor_names;
for (int i=0;i<RF_channels_;i++)
{
// 3. Tune the usrp device to the desired center frequency
uhd_source_->set_center_freq(freq_.at(i),i);
std::cout << boost::format("Actual USRP center freq.: %f [Hz]...") % (uhd_source_->get_center_freq(i)) << std::endl << std::endl;
LOG(INFO) << boost::format("Actual USRP center freq. set to: %f [Hz]...") % (uhd_source_->get_center_freq(i));
for (int i = 0; i < RF_channels_; i++)
{
// 3. Tune the usrp device to the desired center frequency
uhd_source_->set_center_freq(freq_.at(i),i);
std::cout << boost::format("Actual USRP center freq.: %f [Hz]...") % (uhd_source_->get_center_freq(i)) << std::endl << std::endl;
LOG(INFO) << boost::format("Actual USRP center freq. set to: %f [Hz]...") % (uhd_source_->get_center_freq(i));
// TODO: Assign the remnant IF from the PLL tune error
std::cout << boost::format("PLL Frequency tune error %f [Hz]...") % (uhd_source_->get_center_freq(i) - freq_.at(i)) << std::endl;
LOG(INFO) << boost::format("PLL Frequency tune error %f [Hz]...") % (uhd_source_->get_center_freq(i) - freq_.at(i));
// TODO: Assign the remnant IF from the PLL tune error
std::cout << boost::format("PLL Frequency tune error %f [Hz]...") % (uhd_source_->get_center_freq(i) - freq_.at(i)) << std::endl;
LOG(INFO) << boost::format("PLL Frequency tune error %f [Hz]...") % (uhd_source_->get_center_freq(i) - freq_.at(i));
// 4. set the gain for the daughterboard
uhd_source_->set_gain(gain_.at(i),i);
std::cout << boost::format("Actual daughterboard gain set to: %f dB...") % uhd_source_->get_gain(i) << std::endl;
LOG(INFO) << boost::format("Actual daughterboard gain set to: %f dB...") % uhd_source_->get_gain(i);
// 4. set the gain for the daughterboard
uhd_source_->set_gain(gain_.at(i),i);
std::cout << boost::format("Actual daughterboard gain set to: %f dB...") % uhd_source_->get_gain(i) << std::endl;
LOG(INFO) << boost::format("Actual daughterboard gain set to: %f dB...") % uhd_source_->get_gain(i);
//5. Set the bandpass filter on the RF frontend
std::cout << boost::format("Setting RF bandpass filter bandwidth to: %f [Hz]...") % IF_bandwidth_hz_.at(i) << std::endl;
uhd_source_->set_bandwidth(IF_bandwidth_hz_.at(i),i);
//5. Set the bandpass filter on the RF frontend
std::cout << boost::format("Setting RF bandpass filter bandwidth to: %f [Hz]...") % IF_bandwidth_hz_.at(i) << std::endl;
uhd_source_->set_bandwidth(IF_bandwidth_hz_.at(i),i);
//set the antenna (optional)
//uhd_source_->set_antenna(ant);
//set the antenna (optional)
//uhd_source_->set_antenna(ant);
// We should wait? #include <boost/thread.hpp>
// boost::this_thread::sleep(boost::posix_time::seconds(1));
// We should wait? #include <boost/thread.hpp>
// boost::this_thread::sleep(boost::posix_time::seconds(1));
// Check out the status of the lo_locked sensor (boolean for LO lock state)
sensor_names = uhd_source_->get_sensor_names(i);
if (std::find(sensor_names.begin(), sensor_names.end(), "lo_locked") != sensor_names.end())
{
uhd::sensor_value_t lo_locked = uhd_source_->get_sensor("lo_locked", i);
std::cout << boost::format("Check for front-end %s ...") % lo_locked.to_pp_string() << " is ";
if (lo_locked.to_bool() == true)
{
std::cout << "Locked" << std::endl;
}
else
{
std::cout << "UNLOCKED!" <<std::endl;
}
//UHD_ASSERT_THROW(lo_locked.to_bool());
}
}
// Check out the status of the lo_locked sensor (boolean for LO lock state)
sensor_names = uhd_source_->get_sensor_names(i);
if (std::find(sensor_names.begin(), sensor_names.end(), "lo_locked") != sensor_names.end())
{
uhd::sensor_value_t lo_locked = uhd_source_->get_sensor("lo_locked", i);
std::cout << boost::format("Check for front-end %s ...") % lo_locked.to_pp_string() << " is ";
if (lo_locked.to_bool() == true)
{
std::cout << "Locked" << std::endl;
}
else
{
std::cout << "UNLOCKED!" <<std::endl;
}
//UHD_ASSERT_THROW(lo_locked.to_bool());
}
}
for (int i=0;i<RF_channels_;i++)
{
if (samples_.at(i) != 0)
{
LOG(INFO) << "RF_channel "<<i<<" Send STOP signal after " << samples_.at(i) << " samples";
valve_.push_back(gnss_sdr_make_valve(item_size_, samples_.at(i), queue_));
DLOG(INFO) << "valve(" << valve_.at(i)->unique_id() << ")";
}
if (dump_.at(i))
{
LOG(INFO) << "RF_channel "<<i<< "Dumping output into file " << dump_filename_.at(i);
file_sink_.push_back(gr::blocks::file_sink::make(item_size_, dump_filename_.at(i).c_str()));
DLOG(INFO) << "file_sink(" << file_sink_.at(i)->unique_id() << ")";
}
}
for (int i = 0; i < RF_channels_; i++)
{
if (samples_.at(i) != 0)
{
LOG(INFO) << "RF_channel "<<i<<" Send STOP signal after " << samples_.at(i) << " samples";
valve_.push_back(gnss_sdr_make_valve(item_size_, samples_.at(i), queue_));
DLOG(INFO) << "valve(" << valve_.at(i)->unique_id() << ")";
}
if (dump_.at(i))
{
LOG(INFO) << "RF_channel "<<i<< "Dumping output into file " << dump_filename_.at(i);
file_sink_.push_back(gr::blocks::file_sink::make(item_size_, dump_filename_.at(i).c_str()));
DLOG(INFO) << "file_sink(" << file_sink_.at(i)->unique_id() << ")";
}
}
}
@ -230,56 +231,55 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
UhdSignalSource::~UhdSignalSource()
{}
void UhdSignalSource::connect(gr::top_block_sptr top_block)
{
for (int i=0;i<RF_channels_;i++)
{
if (samples_.at(i) != 0)
{
top_block->connect(uhd_source_, i, valve_.at(i), 0);
DLOG(INFO) << "connected usrp source to valve RF Channel "<< i;
if (dump_.at(i))
{
top_block->connect(valve_.at(i), 0, file_sink_.at(i), 0);
DLOG(INFO) << "connected valve to file sink RF Channel "<< i;
}
}
else
{
if (dump_.at(i))
{
top_block->connect(uhd_source_, i, file_sink_.at(i), 0);
DLOG(INFO) << "connected usrp source to file sink RF Channel "<< i;
}
}
}
for (int i = 0; i < RF_channels_; i++)
{
if (samples_.at(i) != 0)
{
top_block->connect(uhd_source_, i, valve_.at(i), 0);
DLOG(INFO) << "connected usrp source to valve RF Channel "<< i;
if (dump_.at(i))
{
top_block->connect(valve_.at(i), 0, file_sink_.at(i), 0);
DLOG(INFO) << "connected valve to file sink RF Channel "<< i;
}
}
else
{
if (dump_.at(i))
{
top_block->connect(uhd_source_, i, file_sink_.at(i), 0);
DLOG(INFO) << "connected usrp source to file sink RF Channel "<< i;
}
}
}
}
void UhdSignalSource::disconnect(gr::top_block_sptr top_block)
{
for (int i=0;i<RF_channels_;i++)
{
if (samples_.at(i) != 0)
{
top_block->disconnect(uhd_source_, i, valve_.at(i), 0);
LOG(INFO) << "UHD source disconnected";
if (dump_.at(i))
{
top_block->disconnect(valve_.at(i), 0, file_sink_.at(i), 0);
}
}
else
{
if (dump_.at(i))
{
top_block->disconnect(uhd_source_, i, file_sink_.at(i), 0);
}
}
}
for (int i = 0; i < RF_channels_; i++)
{
if (samples_.at(i) != 0)
{
top_block->disconnect(uhd_source_, i, valve_.at(i), 0);
LOG(INFO) << "UHD source disconnected";
if (dump_.at(i))
{
top_block->disconnect(valve_.at(i), 0, file_sink_.at(i), 0);
}
}
else
{
if (dump_.at(i))
{
top_block->disconnect(uhd_source_, i, file_sink_.at(i), 0);
}
}
}
}
@ -294,9 +294,10 @@ gr::basic_block_sptr UhdSignalSource::get_left_block()
gr::basic_block_sptr UhdSignalSource::get_right_block()
{
return get_right_block(0);
return get_right_block(0);
}
gr::basic_block_sptr UhdSignalSource::get_right_block(int RF_channel)
{
if (samples_.at(RF_channel) != 0)

View File

@ -128,11 +128,11 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetSignalSource(
std::shared_ptr<ConfigurationInterface> configuration, boost::shared_ptr<gr::msg_queue> queue, int ID)
{
std::string default_implementation = "File_Signal_Source";
std::string role="SignalSource";//backwards compatibility for old conf files
if (ID!=-1)
{
role="SignalSource"+ boost::lexical_cast<std::string>(ID);
}
std::string role = "SignalSource"; //backwards compatibility for old conf files
if (ID != -1)
{
role = "SignalSource" + boost::lexical_cast<std::string>(ID);
}
std::string implementation = configuration->property(role + ".implementation", default_implementation);
LOG(INFO) << "Getting SignalSource with implementation " << implementation;
return GetBlock(configuration, role, implementation, 0, 1, queue);
@ -145,21 +145,21 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetSignalConditioner(
{
std::string default_implementation = "Pass_Through";
//backwards compatibility for old conf files
std::string role_conditioner="SignalConditioner" ;
std::string role_datatypeadapter="DataTypeAdapter";
std::string role_inputfilter="InputFilter";
std::string role_resampler="Resampler";
std::string role_conditioner = "SignalConditioner" ;
std::string role_datatypeadapter = "DataTypeAdapter";
std::string role_inputfilter = "InputFilter";
std::string role_resampler = "Resampler";
if (ID!=-1)
{
role_conditioner="SignalConditioner" + boost::lexical_cast<std::string>(ID);
role_datatypeadapter="DataTypeAdapter" + boost::lexical_cast<std::string>(ID);
role_inputfilter="InputFilter" + boost::lexical_cast<std::string>(ID);
role_resampler="Resampler" + boost::lexical_cast<std::string>(ID);
}
if (ID != -1)
{
role_conditioner = "SignalConditioner" + boost::lexical_cast<std::string>(ID);
role_datatypeadapter = "DataTypeAdapter" + boost::lexical_cast<std::string>(ID);
role_inputfilter = "InputFilter" + boost::lexical_cast<std::string>(ID);
role_resampler = "Resampler" + boost::lexical_cast<std::string>(ID);
}
std::string signal_conditioner = configuration->property(
role_conditioner+".implementation", default_implementation);
role_conditioner + ".implementation", default_implementation);
std::string data_type_adapter;
std::string input_filter;
@ -173,11 +173,11 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetSignalConditioner(
else
{
data_type_adapter = configuration->property(
role_datatypeadapter + ".implementation", default_implementation);
role_datatypeadapter + ".implementation", default_implementation);
input_filter = configuration->property(
role_inputfilter + ".implementation", default_implementation);
role_inputfilter + ".implementation", default_implementation);
resampler = configuration->property(
role_resampler + ".implementation", default_implementation);
role_resampler + ".implementation", default_implementation);
}
LOG(INFO) << "Getting SignalConditioner with DataTypeAdapter implementation: "
@ -189,7 +189,7 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetSignalConditioner(
{
//instantiate the array version
std::unique_ptr<GNSSBlockInterface> conditioner_(new ArraySignalConditioner(configuration.get(), GetBlock(configuration,
role_datatypeadapter, data_type_adapter, 1, 1, queue).release(), GetBlock(
role_datatypeadapter, data_type_adapter, 1, 1, queue).release(), GetBlock(
configuration,role_inputfilter, input_filter, 1, 1, queue).release(),
GetBlock(configuration,role_resampler, resampler, 1, 1, queue).release(),
role_conditioner, "Signal_Conditioner", queue));
@ -199,7 +199,7 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetSignalConditioner(
{
//single-antenna version
std::unique_ptr<GNSSBlockInterface> conditioner_(new SignalConditioner(configuration.get(), GetBlock(configuration,
role_datatypeadapter, data_type_adapter, 1, 1, queue).release(), GetBlock(
role_datatypeadapter, data_type_adapter, 1, 1, queue).release(), GetBlock(
configuration,role_inputfilter, input_filter, 1, 1, queue).release(),
GetBlock(configuration,role_resampler, resampler, 1, 1, queue).release(),
role_conditioner, "Signal_Conditioner", queue));

View File

@ -57,10 +57,10 @@ public:
GNSSBlockFactory();
virtual ~GNSSBlockFactory();
std::unique_ptr<GNSSBlockInterface> GetSignalSource(std::shared_ptr<ConfigurationInterface> configuration,
boost::shared_ptr<gr::msg_queue> queue, int ID=-1);
boost::shared_ptr<gr::msg_queue> queue, int ID = -1);
std::unique_ptr<GNSSBlockInterface> GetSignalConditioner(std::shared_ptr<ConfigurationInterface> configuration,
boost::shared_ptr<gr::msg_queue> queue, int ID=-1);
boost::shared_ptr<gr::msg_queue> queue, int ID = -1);
std::unique_ptr<GNSSBlockInterface> GetPVT(std::shared_ptr<ConfigurationInterface> configuration,
boost::shared_ptr<gr::msg_queue> queue);

View File

@ -54,16 +54,13 @@ GNSSFlowgraph::GNSSFlowgraph(std::shared_ptr<ConfigurationInterface> configurati
connected_ = false;
running_ = false;
configuration_ = configuration;
//std::shared_ptr<std::vector<std::shared_ptr<GNSSBlockInterface>>> blocks_ = std::make_shared<std::vector<std::shared_ptr<GNSSBlockInterface>>>();
queue_ = queue;
init();
}
GNSSFlowgraph::~GNSSFlowgraph()
{
//blocks_->clear();
}
{}
void GNSSFlowgraph::start()
{
@ -87,6 +84,7 @@ void GNSSFlowgraph::start()
running_ = true;
}
void GNSSFlowgraph::stop()
{
for (unsigned int i = 0; i < channels_count_; i++)
@ -113,45 +111,41 @@ void GNSSFlowgraph::connect()
return;
}
for (int i = 0; i < sources_count_; i++)
{
try
{
sig_source_.at(i)->connect(top_block_);
}
catch (std::exception& e)
{
LOG(INFO) << "Can't connect signal source block " << i << " internally";
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
}
for (int i = 0; i < sources_count_; i++)
{
try
{
sig_source_.at(i)->connect(top_block_);
}
catch (std::exception& e)
{
LOG(INFO) << "Can't connect signal source block " << i << " internally";
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
}
// Signal Source > Signal conditioner >
for (int i = 0; i < sources_count_; i++)
{
try
{
sig_conditioner_.at(i)->connect(top_block_);
}
catch (std::exception& e)
{
LOG(INFO) << "Can't connect signal conditioner block " << i << " internally";
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
}
for (int i = 0; i < sources_count_; i++)
{
try
{
sig_conditioner_.at(i)->connect(top_block_);
}
catch (std::exception& e)
{
LOG(INFO) << "Can't connect signal conditioner block " << i << " internally";
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
}
for (unsigned int i = 0; i < channels_count_; i++)
{
try
{
//auto chan_ = std::move(blocks_->at(i));
//std::shared_ptr<ChannelInterface> chan = std::dynamic_pointer_cast<ChannelInterface>(chan_);
//channels_.push_back(chan);
channels_.at(i)->connect(top_block_);
}
catch (std::exception& e)
@ -165,7 +159,6 @@ void GNSSFlowgraph::connect()
try
{
//observables_ = std::move(blocks_->at(2));
observables_->connect(top_block_);
}
catch (std::exception& e)
@ -179,7 +172,6 @@ void GNSSFlowgraph::connect()
// Signal Source > Signal conditioner >> Channels >> Observables > PVT
try
{
//pvt_ = std::move(blocks_->at(3));
pvt_->connect(top_block_);
}
catch (std::exception& e)
@ -193,7 +185,6 @@ void GNSSFlowgraph::connect()
// Signal Source > Signal conditioner >> Channels >> Observables > PVT > Output Filter
try
{
//output_filter_ = std::move(blocks_->at(4));
output_filter_->connect(top_block_);
}
catch (std::exception& e)
@ -207,39 +198,37 @@ void GNSSFlowgraph::connect()
DLOG(INFO) << "blocks connected internally";
// Signal Source (i) > Signal conditioner (i) >
for (int i = 0; i < sources_count_; i++)
{
try
{
//TODO: Remove this array implementation and create generic multistream connector
//(if a signal source has more than 1 stream, then connect it to the multistream signal conditioner)
if(sig_source_.at(i)->implementation().compare("Raw_Array_Signal_Source") == 0)
{
//Multichannel Array
std::cout << "ARRAY MODE" << std::endl;
for (int j = 0; j < GNSS_SDR_ARRAY_SIGNAL_CONDITIONER_CHANNELS; j++)
{
std::cout << "connecting ch "<< j << std::endl;
top_block_->connect(sig_source_.at(i)->get_right_block(), j, sig_conditioner_.at(i)->get_left_block(), j);
}
}
else
{
//single channel
top_block_->connect(sig_source_.at(i)->get_right_block(), 0, sig_conditioner_.at(i)->get_left_block(), 0);
}
for (int i = 0; i < sources_count_; i++)
{
try
{
//TODO: Remove this array implementation and create generic multistream connector
//(if a signal source has more than 1 stream, then connect it to the multistream signal conditioner)
if(sig_source_.at(i)->implementation().compare("Raw_Array_Signal_Source") == 0)
{
//Multichannel Array
std::cout << "ARRAY MODE" << std::endl;
for (int j = 0; j < GNSS_SDR_ARRAY_SIGNAL_CONDITIONER_CHANNELS; j++)
{
std::cout << "connecting ch "<< j << std::endl;
top_block_->connect(sig_source_.at(i)->get_right_block(), j, sig_conditioner_.at(i)->get_left_block(), j);
}
}
else
{
//single channel
top_block_->connect(sig_source_.at(i)->get_right_block(), 0, sig_conditioner_.at(i)->get_left_block(), 0);
}
}
catch (std::exception& e)
{
LOG(WARNING) << "Can't connect signal source " << i << " to signal conditioner " << i;
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
}
}
catch (std::exception& e)
{
LOG(WARNING) << "Can't connect signal source " << i << " to signal conditioner " << i;
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
}
DLOG(INFO) << "Signal source connected to signal conditioner";
// Signal conditioner (selected_signal_source) >> channels (i) (dependent of their associated SignalSource_ID)
@ -247,21 +236,21 @@ void GNSSFlowgraph::connect()
for (unsigned int i = 0; i < channels_count_; i++)
{
selected_signal_source = configuration_->property("Channel" + boost::lexical_cast<std::string>(i) +".SignalSource_ID", 0);
try
{
top_block_->connect(sig_conditioner_.at(selected_signal_source)->get_right_block(), 0,
channels_.at(i)->get_left_block(), 0);
selected_signal_source = configuration_->property("Channel" + boost::lexical_cast<std::string>(i) + ".SignalSource_ID", 0);
try
{
top_block_->connect(sig_conditioner_.at(selected_signal_source)->get_right_block(), 0,
channels_.at(i)->get_left_block(), 0);
}
catch (std::exception& e)
{
LOG(WARNING) << "Can't connect signal conditioner "<<selected_signal_source<<" to channel " << i;
LOG(WARNING) << "Can't connect signal conditioner " << selected_signal_source << " to channel " << i;
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
DLOG(INFO) << "signal conditioner "<<selected_signal_source<<" connected to channel " << i;
DLOG(INFO) << "signal conditioner " << selected_signal_source << " connected to channel " << i;
// Signal Source > Signal conditioner >> Channels >> Observables
try
@ -279,7 +268,7 @@ void GNSSFlowgraph::connect()
//discriminate between systems
//TODO: add a specific string member to the channel template, and not re-use the implementation field!
while (channels_.at(i)->implementation()!= available_GNSS_signals_.front().get_satellite().get_system())
while (channels_.at(i)->implementation() != available_GNSS_signals_.front().get_satellite().get_system())
{
available_GNSS_signals_.push_back(available_GNSS_signals_.front());
available_GNSS_signals_.pop_front();
@ -300,8 +289,8 @@ void GNSSFlowgraph::connect()
LOG(INFO) << "Channel " << i
<< " connected to observables in standby mode";
}
}
/*
* Connect the observables output of each channel to the PVT block
*/
@ -461,19 +450,21 @@ void GNSSFlowgraph::init()
// 1. read the number of RF front-ends available (one file_source per RF front-end)
sources_count_ = configuration_->property("Receiver.sources_count", 1);
if (sources_count_>1)
{
for (int i = 0; i < sources_count_; i++)
{
std::cout<<"creating source "<<i<<std::endl;
sig_source_.push_back(block_factory_->GetSignalSource(configuration_, queue_,i));
sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, queue_, i));
}
}else{
//backwards compatibility for old config files
sig_source_.push_back(block_factory_->GetSignalSource(configuration_, queue_,-1));
sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, queue_, -1));
}
if (sources_count_ > 1)
{
for (int i = 0; i < sources_count_; i++)
{
std::cout << "Creating signal source " << i << std::endl;
sig_source_.push_back(block_factory_->GetSignalSource(configuration_, queue_, i));
sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, queue_, i));
}
}
else
{
//backwards compatibility for old config files
sig_source_.push_back(block_factory_->GetSignalSource(configuration_, queue_, -1));
sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, queue_, -1));
}
observables_ = block_factory_->GetObservables(configuration_, queue_);
pvt_ = block_factory_->GetPVT(configuration_, queue_);
@ -484,7 +475,7 @@ void GNSSFlowgraph::init()
channels_count_ = channels->size();
for (unsigned int i = 0; i < channels_count_; i++)
{
std::shared_ptr<GNSSBlockInterface> chan_ = std::move(channels->at(i));
std::shared_ptr<GNSSBlockInterface> chan_ = std::move(channels->at(i));
channels_.push_back(std::dynamic_pointer_cast<ChannelInterface>(chan_));
}
@ -498,6 +489,7 @@ void GNSSFlowgraph::init()
DLOG(INFO) << "Blocks instantiated. " << channels_count_ << " channels.";
}
void GNSSFlowgraph::set_signals_list()
{
/*
@ -569,8 +561,8 @@ void GNSSFlowgraph::set_signals_list()
available_gnss_prn_iter != available_galileo_prn.end();
available_gnss_prn_iter++)
{
// available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("Galileo"),
// *available_gnss_prn_iter), std::string("1B")));
// available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("Galileo"),
// *available_gnss_prn_iter), std::string("1B")));
available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("Galileo"),
*available_gnss_prn_iter), default_signal));
}
@ -611,17 +603,16 @@ void GNSSFlowgraph::set_signals_list()
}
// **** FOR DEBUGGING THE LIST OF GNSS SIGNALS ****
// std::cout<<"default_system="<<default_system<<std::endl;
// std::cout<<"default_signal="<<default_signal<<std::endl;
// std::list<Gnss_Signal>::iterator available_gnss_list_iter;
// for (available_gnss_list_iter = available_GNSS_signals_.begin(); available_gnss_list_iter
// != available_GNSS_signals_.end(); available_gnss_list_iter++)
// {
// std::cout << *available_gnss_list_iter << std::endl;
// }
// **** FOR DEBUGGING THE LIST OF GNSS SIGNALS ****
// std::cout<<"default_system="<<default_system<<std::endl;
// std::cout<<"default_signal="<<default_signal<<std::endl;
// std::list<Gnss_Signal>::iterator available_gnss_list_iter;
// for (available_gnss_list_iter = available_GNSS_signals_.begin(); available_gnss_list_iter
// != available_GNSS_signals_.end(); available_gnss_list_iter++)
// {
// std::cout << *available_gnss_list_iter << std::endl;
// }
}

View File

@ -124,7 +124,6 @@ private:
std::string config_file_;
std::shared_ptr<ConfigurationInterface> configuration_;
std::shared_ptr<GNSSBlockFactory> block_factory_;
//std::shared_ptr<std::vector<std::shared_ptr<GNSSBlockInterface>>> blocks_ = std::make_shared<std::vector<std::shared_ptr<GNSSBlockInterface>>>();
std::vector<std::shared_ptr<GNSSBlockInterface>> sig_source_;
std::vector<std::shared_ptr<GNSSBlockInterface>> sig_conditioner_;