1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-13 11:40:33 +00:00

- Small adjustments in GPS L2M tracking lock detector static thresholds.

- Added sample configuration file for dual frequency GPS L1 + L2
realtime operation for Teleorbit Flexiband Frontends (requires a
external hardware driver installed)
This commit is contained in:
Javier 2015-06-16 17:16:20 +02:00
parent c1f3b48be5
commit df48bf7342
3 changed files with 510 additions and 13 deletions

View File

@ -0,0 +1,497 @@
; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
GNSS-SDR.internal_fs_hz=2500000
;######### CONTROL_THREAD CONFIG ############
ControlThread.wait_for_flowgraph=false
;######### SUPL RRLP GPS assistance configuration #####
GNSS-SDR.SUPL_gps_enabled=false
GNSS-SDR.SUPL_read_gps_assistance_xml=true
GNSS-SDR.SUPL_gps_ephemeris_server=supl.nokia.com
GNSS-SDR.SUPL_gps_ephemeris_port=7275
GNSS-SDR.SUPL_gps_acquisition_server=supl.google.com
GNSS-SDR.SUPL_gps_acquisition_port=7275
GNSS-SDR.SUPL_MCC=244
GNSS-SDR.SUPL_MNS=5
GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource.implementation=Flexiband_Signal_Source
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;# FPGA firmware file
SignalSource.firmware_file=flexiband_III-1b.bit
;#RF_channels: Number of RF channels present in the frontend device, must agree the FPGA firmware file
SignalSource.RF_channels=2
;#frontend channels gain. Not usable yet!
SignalSource.gain1=0
SignalSource.gain2=0
SignalSource.gain3=0
;#frontend channels AGC
SignalSource.AGC=true
;# USB 3.0 packet buffer size (number of SuperSpeed packets)
SignalSource.usb_packet_buffer=128
;######################################################
;######### RF CHANNEL 0 SIGNAL CONDITIONER ############
;######################################################
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges,
;#the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter0.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
;# WARNING: Fraunhofer front-end hardwareconfigurations can difer. Signals available on http://www.iis.fraunhofer.de/de/ff/lok/leist/test/flexiband.html are centered on 0 Hz, ALL BANDS.
InputFilter0.IF=-205000
;#InputFilter0.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=8
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
Resampler0.implementation=Pass_Through
;######################################################
;######### RF CHANNEL 1 SIGNAL CONDITIONER ############
;######################################################
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner1.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
DataTypeAdapter1.implementation=Pass_Through
DataTypeAdapter1.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter1.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter_ch1.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges,
;#the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter1.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter1.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter1.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter1.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter1.band1_begin=0.0
InputFilter1.band1_end=0.45
InputFilter1.band2_begin=0.55
InputFilter1.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter1.ampl1_begin=1.0
InputFilter1.ampl1_end=1.0
InputFilter1.ampl2_begin=0.0
InputFilter1.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter1.band1_error=1.0
InputFilter1.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter1.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter1.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter1.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
;# WARNING: Fraunhofer front-end hardwareconfigurations can difer. Signals available on http://www.iis.fraunhofer.de/de/ff/lok/leist/test/flexiband.html are centered on 0 Hz, ALL BANDS.
InputFilter1.IF=100000
;#InputFilter1.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter1.decimation_factor=8
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
Resampler1.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 2 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner2.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 2 CONFIG ############
DataTypeAdapter2.implementation=Pass_Through
DataTypeAdapter2.item_type=gr_complex
;######### INPUT_FILTER 2 CONFIG ############
InputFilter2.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter2.dump=false
;#dump_filename: Log path and filename.
InputFilter2.dump_filename=../data/input_filter.dat
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter2.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter2.output_item_type=gr_complex
;######### RESAMPLER CONFIG 2 ############
;## Resamples the input data.
Resampler2.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=8
Channels_2S.count=8
;#count: Number of available Galileo satellite channels.
;Channels_Galileo.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
;# "1C" GPS L1 C/A
;# "2S" GPS L2 L2C (M)
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
;# "5X" GALILEO E5a I+Q
;# CHANNEL CONNECTION
Channel0.RF_channel_ID=0
Channel0.signal=1C
Channel1.RF_channel_ID=0
Channel1.signal=1C
Channel2.RF_channel_ID=0
Channel2.signal=1C
Channel3.RF_channel_ID=0
Channel3.signal=1C
Channel4.RF_channel_ID=0
Channel4.signal=1C
Channel5.RF_channel_ID=0
Channel5.signal=1C
Channel6.RF_channel_ID=0
Channel6.signal=1C
Channel7.RF_channel_ID=0
Channel7.signal=1C
Channel8.RF_channel_ID=1
Channel8.signal=2S
Channel9.RF_channel_ID=1
Channel9.signal=2S
Channel10.RF_channel_ID=1
Channel10.signal=2S
Channel11.RF_channel_ID=1
Channel11.signal=2S
Channel12.RF_channel_ID=1
Channel12.signal=2S
Channel13.RF_channel_ID=1
Channel13.signal=2S
Channel14.RF_channel_ID=1
Channel14.signal=2S
Channel15.RF_channel_ID=1
Channel15.signal=2S
Channel8.RF_channel_ID=1
Channel8.signal=2S
Channel9.RF_channel_ID=1
Channel9.signal=2S
Channel10.RF_channel_ID=1
Channel10.signal=2S
Channel11.RF_channel_ID=1
Channel11.signal=2S
Channel12.RF_channel_ID=1
Channel12.signal=2S
Channel13.RF_channel_ID=1
Channel13.signal=2S
Channel14.RF_channel_ID=1
Channel14.signal=2S
Channel15.RF_channel_ID=1
Channel15.signal=2S
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### ACQUISITION GLOBAL CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.coherent_integration_time_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_1C.threshold=0.008
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=250
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
;#maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition]
;#(should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_1C.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_1C.max_dwells=1
;######### ACQUISITION CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### TRACKING GLOBAL CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking]
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.dump=true
Tracking_1C.dump_filename=./tracking_ch_
Tracking_1C.pll_bw_hz=40.0;
Tracking_1C.dll_bw_hz=3.0;
Tracking_1C.fll_bw_hz=10.0;
Tracking_1C.order=3;
Tracking_1C.early_late_space_chips=0.5;
;# GPS L2C M
Acquisition_2S.dump=false
Acquisition_2S.dump_filename=./acq_dump.dat
Acquisition_2S.item_type=gr_complex
Acquisition_2S.if=0
Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S.threshold=0.0005
;Acquisition_2S.pfa=0.001
Acquisition_2S.doppler_max=5000
Acquisition_2S.doppler_min=-5000
Acquisition_2S.doppler_step=30
Acquisition_2S.max_dwells=1
Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_2S.item_type=gr_complex
Tracking_2S.if=0
Tracking_2S.dump=true
Tracking_2S.dump_filename=./tracking_ch_
Tracking_2S.pll_bw_hz=1.5;
Tracking_2S.dll_bw_hz=0.3;
Tracking_2S.fll_bw_hz=2.0;
Tracking_2S.order=3;
Tracking_2S.early_late_space_chips=0.5;
;######### TELEMETRY DECODER GPS L1 CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
TelemetryDecoder_1C.decimation_factor=20;
;######### TELEMETRY DECODER GPS L2 CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L2 M
TelemetryDecoder_2S.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_2S.dump=false
TelemetryDecoder_2S.decimation_factor=1;
;######### OBSERVABLES CONFIG ############
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.Mixed_Observables
Observables.implementation=GPS_L1_CA_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
PVT.implementation=GPS_L1_CA_PVT
;#averaging_depth: Number of PVT observations in the moving average algorithm
PVT.averaging_depth=10
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
PVT.flag_averaging=true
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# RINEX, KML, and NMEA output configuration
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;######### OUTPUT_FILTER CONFIG ############
;# Receiver output filter: Leave this block disabled in this version
OutputFilter.implementation=Null_Sink_Output_Filter
OutputFilter.filename=data/gnss-sdr.dat
OutputFilter.item_type=gr_complex

View File

@ -50,7 +50,7 @@ GpsL2MDllPllTracking::GpsL2MDllPllTracking(
role_(role), in_streams_(in_streams), out_streams_(out_streams),
queue_(queue)
{
LOG(INFO) << "role " << role;
DLOG(INFO) << "role " << role;
//################# CONFIGURATION PARAMETERS ########################
int fs_in;
int vector_length;

View File

@ -53,10 +53,10 @@
/*!
* \todo Include in definition header file
*/
#define CN0_ESTIMATION_SAMPLES 20
#define MINIMUM_VALID_CN0 25
#define MAXIMUM_LOCK_FAIL_COUNTER 50
#define CARRIER_LOCK_THRESHOLD 0.85
#define GPS_L2M_CN0_ESTIMATION_SAMPLES 10
#define GPS_L2M_MINIMUM_VALID_CN0 25
#define GPS_L2M_MAXIMUM_LOCK_FAIL_COUNTER 50
#define GPS_L2M_CARRIER_LOCK_THRESHOLD 0.75
using google::LogMessage;
@ -158,11 +158,11 @@ gps_l2_m_dll_pll_tracking_cc::gps_l2_m_dll_pll_tracking_cc(
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES];
d_Prompt_buffer = new gr_complex[GPS_L2M_CN0_ESTIMATION_SAMPLES];
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
d_carrier_lock_threshold = GPS_L2M_CARRIER_LOCK_THRESHOLD;
systemName["G"] = std::string("GPS");
@ -358,7 +358,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
float acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = (d_sample_counter - (d_acq_sample_stamp-d_current_prn_length_samples));
acq_trk_shif_correction_samples = fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
acq_trk_shif_correction_samples = -fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);//+(1.5*(d_fs_in/GPS_L2_M_CODE_RATE_HZ)));
// /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE
//d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / static_cast<double>(d_fs_in));
@ -457,7 +457,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
if (d_cn0_estimation_counter < GPS_L2M_CN0_ESTIMATION_SAMPLES)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt;
@ -467,11 +467,11 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L2_M_CODE_LENGTH_CHIPS);
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, GPS_L2M_CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L2_M_CODE_LENGTH_CHIPS);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, GPS_L2M_CN0_ESTIMATION_SAMPLES);
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < GPS_L2M_MINIMUM_VALID_CN0)
{
d_carrier_lock_fail_counter++;
}
@ -479,7 +479,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
}
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
if (d_carrier_lock_fail_counter > GPS_L2M_MAXIMUM_LOCK_FAIL_COUNTER)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";