1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-06-25 22:43:14 +00:00

Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into doppler_rate

This commit is contained in:
Carles Fernandez 2018-08-22 17:30:21 +02:00
commit d364258b6e
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
69 changed files with 6023 additions and 2423 deletions

View File

@ -50,6 +50,7 @@ Daniel Fehr daniel.co@bluewin.ch Contributor
David Pubill david.pubill@cttc.cat Contributor
Fran Fabra fabra@ice.csic.es Contributor
Gabriel Araujo gabriel.araujo.5000@gmail.com Contributor
Gerald LaMountain gerald@gece.neu.edu Contributor
Leonardo Tonetto tonetto.dev@gmail.com Contributor
Mara Branzanti mara.branzanti@gmail.com Contributor
Marc Molina marc.molina.pena@gmail.com Contributor

View File

@ -270,7 +270,19 @@ if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
endif(${DARWIN_VERSION} MATCHES "10")
endif(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
#select the release build type by default to get optimization flags
# Define extra build types and select Release by default to get optimization flags
include(GnsssdrBuildTypes)
# Available options:
# - None: nothing set
# - Debug: -O2 -g
# - Release: -O3
# - RelWithDebInfo: -O3 -g
# - MinSizeRel: -Os
# - Coverage: -Wall -pedantic -pthread -g -O0 -fprofile-arcs -ftest-coverage
# - NoOptWithASM: -O0 -g -save-temps
# - O2WithASM: -O2 -g -save-temps
# - O3WithASM: -O3 -g -save-temps
# - ASAN: -Wall -Wextra -g -O2 -fsanitize=address -fno-omit-frame-pointer
if(NOT CMAKE_BUILD_TYPE)
if(ENABLE_GPERFTOOLS OR ENABLE_GPROF)
set(CMAKE_BUILD_TYPE "RelWithDebInfo")
@ -282,11 +294,9 @@ if(NOT CMAKE_BUILD_TYPE)
else(NOT CMAKE_BUILD_TYPE)
message(STATUS "Build type set to ${CMAKE_BUILD_TYPE}.")
endif(NOT CMAKE_BUILD_TYPE)
GNSSSDR_CHECK_BUILD_TYPE(${CMAKE_BUILD_TYPE})
set(CMAKE_BUILD_TYPE ${CMAKE_BUILD_TYPE} CACHE STRING "")
# Append -O2 optimization flag for Debug builds
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -O2")
# allow 'large' files in 32 bit builds
if(UNIX)
add_definitions( -D_LARGEFILE_SOURCE

View File

@ -0,0 +1,219 @@
# Copyright (C) 2011-2018 (see AUTHORS file for a list of contributors)
#
# This file is part of GNSS-SDR.
#
# GNSS-SDR is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# GNSS-SDR is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
if(DEFINED __INCLUDED_GNSSSDR_BUILD_TYPES_CMAKE)
return()
endif()
set(__INCLUDED_GNSSSDR_BUILD_TYPES_CMAKE TRUE)
# Standard CMake Build Types and their basic CFLAGS:
# - None: nothing set
# - Debug: -O2 -g
# - Release: -O3
# - RelWithDebInfo: -O3 -g
# - MinSizeRel: -Os
# Additional Build Types, defined below:
# - NoOptWithASM: -O0 -g -save-temps
# - O2WithASM: -O2 -g -save-temps
# - O3WithASM: -O3 -g -save-temps
# Defines the list of acceptable cmake build types. When adding a new
# build type below, make sure to add it to this list.
list(APPEND AVAIL_BUILDTYPES
None Debug Release RelWithDebInfo MinSizeRel
Coverage NoOptWithASM O2WithASM O3WithASM ASAN
)
########################################################################
# GNSSSDR_CHECK_BUILD_TYPE(build type)
#
# Use this to check that the build type set in CMAKE_BUILD_TYPE on the
# commandline is one of the valid build types used by this project. It
# checks the value set in the cmake interface against the list of
# known build types in AVAIL_BUILDTYPES. If the build type is found,
# the function exits immediately. If nothing is found by the end of
# checking all available build types, we exit with an error and list
# the avialable build types.
########################################################################
function(GNSSSDR_CHECK_BUILD_TYPE settype)
string(TOUPPER ${settype} _settype)
foreach(btype ${AVAIL_BUILDTYPES})
string(TOUPPER ${btype} _btype)
if(${_settype} STREQUAL ${_btype})
return() # found it; exit cleanly
endif(${_settype} STREQUAL ${_btype})
endforeach(btype)
# Build type not found; error out
message(FATAL_ERROR "Build type '${settype}' not valid, must be one of: ${AVAIL_BUILDTYPES}")
endfunction(GNSSSDR_CHECK_BUILD_TYPE)
########################################################################
# For GCC and Clang, we can set a build type:
#
# -DCMAKE_BUILD_TYPE=Coverage
#
# This type uses no optimization (-O0), outputs debug symbols (-g) and
# outputs all intermediary files the build system produces, including
# all assembly (.s) files. Look in the build directory for these
# files.
# NOTE: This is not defined on Windows systems.
########################################################################
if(NOT WIN32)
set(CMAKE_CXX_FLAGS_COVERAGE "-Wall -pedantic -pthread -g -O0 -fprofile-arcs -ftest-coverage" CACHE STRING
"Flags used by the C++ compiler during Coverage builds." FORCE)
set(CMAKE_C_FLAGS_COVERAGE "-Wall -pedantic -pthread -g -O0 -fprofile-arcs -ftest-coverage" CACHE STRING
"Flags used by the C compiler during Coverage builds." FORCE)
set(CMAKE_EXE_LINKER_FLAGS_COVERAGE
"-W" CACHE STRING
"Flags used for linking binaries during Coverage builds." FORCE)
set(CMAKE_SHARED_LINKER_FLAGS_COVERAGE
"-W" CACHE STRING
"Flags used by the shared lib linker during Coverage builds." FORCE)
MARK_AS_ADVANCED(
CMAKE_CXX_FLAGS_COVERAGE
CMAKE_C_FLAGS_COVERAGE
CMAKE_EXE_LINKER_FLAGS_COVERAGE
CMAKE_SHARED_LINKER_FLAGS_COVERAGE)
endif(NOT WIN32)
########################################################################
# For GCC and Clang, we can set a build type:
#
# -DCMAKE_BUILD_TYPE=NoOptWithASM
#
# This type uses no optimization (-O0), outputs debug symbols (-g) and
# outputs all intermediary files the build system produces, including
# all assembly (.s) files. Look in the build directory for these
# files.
# NOTE: This is not defined on Windows systems.
########################################################################
if(NOT WIN32)
set(CMAKE_CXX_FLAGS_NOOPTWITHASM "-Wall -save-temps -g -O0" CACHE STRING
"Flags used by the C++ compiler during NoOptWithASM builds." FORCE)
set(CMAKE_C_FLAGS_NOOPTWITHASM "-Wall -save-temps -g -O0" CACHE STRING
"Flags used by the C compiler during NoOptWithASM builds." FORCE)
set(CMAKE_EXE_LINKER_FLAGS_NOOPTWITHASM
"-W" CACHE STRING
"Flags used for linking binaries during NoOptWithASM builds." FORCE)
set(CMAKE_SHARED_LINKER_FLAGS_NOOPTWITHASM
"-W" CACHE STRING
"Flags used by the shared lib linker during NoOptWithASM builds." FORCE)
MARK_AS_ADVANCED(
CMAKE_CXX_FLAGS_NOOPTWITHASM
CMAKE_C_FLAGS_NOOPTWITHASM
CMAKE_EXE_LINKER_FLAGS_NOOPTWITHASM
CMAKE_SHARED_LINKER_FLAGS_NOOPTWITHASM)
endif(NOT WIN32)
########################################################################
# For GCC and Clang, we can set a build type:
#
# -DCMAKE_BUILD_TYPE=O2WithASM
#
# This type uses level 2 optimization (-O2), outputs debug symbols
# (-g) and outputs all intermediary files the build system produces,
# including all assembly (.s) files. Look in the build directory for
# these files.
# NOTE: This is not defined on Windows systems.
########################################################################
if(NOT WIN32)
set(CMAKE_CXX_FLAGS_O2WITHASM "-Wall -save-temps -g -O2" CACHE STRING
"Flags used by the C++ compiler during O2WithASM builds." FORCE)
set(CMAKE_C_FLAGS_O2WITHASM "-Wall -save-temps -g -O2" CACHE STRING
"Flags used by the C compiler during O2WithASM builds." FORCE)
set(CMAKE_EXE_LINKER_FLAGS_O2WITHASM
"-W" CACHE STRING
"Flags used for linking binaries during O2WithASM builds." FORCE)
set(CMAKE_SHARED_LINKER_FLAGS_O2WITHASM
"-W" CACHE STRING
"Flags used by the shared lib linker during O2WithASM builds." FORCE)
MARK_AS_ADVANCED(
CMAKE_CXX_FLAGS_O2WITHASM
CMAKE_C_FLAGS_O2WITHASM
CMAKE_EXE_LINKER_FLAGS_O2WITHASM
CMAKE_SHARED_LINKER_FLAGS_O2WITHASM)
endif(NOT WIN32)
########################################################################
# For GCC and Clang, we can set a build type:
#
# -DCMAKE_BUILD_TYPE=O3WithASM
#
# This type uses level 3 optimization (-O3), outputs debug symbols
# (-g) and outputs all intermediary files the build system produces,
# including all assembly (.s) files. Look in the build directory for
# these files.
# NOTE: This is not defined on Windows systems.
########################################################################
if(NOT WIN32)
set(CMAKE_CXX_FLAGS_O3WITHASM "-Wall -save-temps -g -O3" CACHE STRING
"Flags used by the C++ compiler during O3WithASM builds." FORCE)
set(CMAKE_C_FLAGS_O3WITHASM "-Wall -save-temps -g -O3" CACHE STRING
"Flags used by the C compiler during O3WithASM builds." FORCE)
set(CMAKE_EXE_LINKER_FLAGS_O3WITHASM
"-W" CACHE STRING
"Flags used for linking binaries during O3WithASM builds." FORCE)
set(CMAKE_SHARED_LINKER_FLAGS_O3WITHASM
"-W" CACHE STRING
"Flags used by the shared lib linker during O3WithASM builds." FORCE)
MARK_AS_ADVANCED(
CMAKE_CXX_FLAGS_O3WITHASM
CMAKE_C_FLAGS_O3WITHASM
CMAKE_EXE_LINKER_FLAGS_O3WITHASM
CMAKE_SHARED_LINKER_FLAGS_O3WITHASM)
endif(NOT WIN32)
########################################################################
# For GCC and Clang, we can set a build type:
#
# -DCMAKE_BUILD_TYPE=ASAN
#
# This type creates an address sanitized build (-fsanitize=address)
# and defaults to the DebugParanoid linker flags.
# NOTE: This is not defined on Windows systems.
########################################################################
if(NOT WIN32)
set(CMAKE_CXX_FLAGS_ASAN "-Wall -Wextra -g -O2 -fsanitize=address -fno-omit-frame-pointer" CACHE STRING
"Flags used by the C++ compiler during Address Sanitized builds." FORCE)
set(CMAKE_C_FLAGS_ASAN "-Wall -Wextra -g -O2 -fsanitize=address -fno-omit-frame-pointer" CACHE STRING
"Flags used by the C compiler during Address Sanitized builds." FORCE)
set(CMAKE_EXE_LINKER_FLAGS_ASAN
"-W" CACHE STRING
"Flags used for linking binaries during Address Sanitized builds." FORCE)
set(CMAKE_SHARED_LINKER_FLAGS_ASAN
"-W" CACHE STRING
"Flags used by the shared lib linker during Address Sanitized builds." FORCE)
MARK_AS_ADVANCED(
CMAKE_CXX_FLAGS_ASAN
CMAKE_C_FLAGS_ASAN
CMAKE_EXE_LINKER_FLAGS_ASAN
CMAKE_SHARED_LINKER_ASAN)
endif(NOT WIN32)

View File

@ -0,0 +1,63 @@
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [samples per second].
GNSS-SDR.internal_fs_sps=2000000
GNSS-SDR.internal_fs_hz=2000000
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=File_Signal_Source
SignalSource.filename=/home/glamountain/gnss-sdr/data/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat
SignalSource.item_type=ishort
SignalSource.sampling_frequency=4000000
SignalSource.freq=1575420000
SignalSource.samples=0
;######### SIGNAL_CONDITIONER CONFIG ############
SignalConditioner.implementation=Signal_Conditioner
DataTypeAdapter.implementation=Ishort_To_Complex
InputFilter.implementation=Pass_Through
InputFilter.item_type=gr_complex
Resampler.implementation=Direct_Resampler
Resampler.sample_freq_in=4000000
Resampler.sample_freq_out=2000000
Resampler.item_type=gr_complex
;######### CHANNELS GLOBAL CONFIG ############
Channels_1C.count=8
Channels.in_acquisition=1
Channel.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=gr_complex
Acquisition_1C.threshold=0.008
Acquisition_1C.doppler_max=10000
Acquisition_1C.doppler_step=250
Acquisition_1C.dump=false
Acquisition_1C.dump_filename=../data/kalman/acq_dump
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_KF_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.pll_bw_hz=40.0;
Tracking_1C.dll_bw_hz=4.0;
Tracking_1C.order=3;
Tracking_1C.dump=true
Tracking_1C.dump_filename=../data/kalman/epl_tracking_ch_
Tracking_1C.bce_run = true;
Tracking_1C.p_transient = 0;
Tracking_1C.s_transient = 100;
;######### TELEMETRY DECODER GPS CONFIG ############
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
;######### OBSERVABLES CONFIG ############
Observables.implementation=GPS_L1_CA_Observables
;######### PVT CONFIG ############
PVT.implementation=GPS_L1_CA_PVT
PVT.averaging_depth=100
PVT.flag_averaging=true
PVT.output_rate_ms=10
PVT.display_rate_ms=500

View File

@ -0,0 +1,211 @@
; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [samples per second].
;GNSS-SDR.internal_fs_sps=6826700
GNSS-SDR.internal_fs_sps=2560000
;GNSS-SDR.internal_fs_sps=4096000
;GNSS-SDR.internal_fs_sps=5120000
;######### SIGNAL_SOURCE CONFIG ############
;#implementation: Use [File_Signal_Source] [Nsr_File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource.implementation=Nsr_File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/home/javier/signals/ifen/E1L1_FE0_Band0.stream ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=byte
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource.sampling_frequency=20480000
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq=1575420000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file. Disable this option in this version
SignalSource.repeat=false
;#dump: Dump the Signal source data to a file. Disable this option in this version
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Pass_Through
DataTypeAdapter.item_type=float
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
InputFilter.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse
;#reponse given a set of band edges, the desired reponse on those bands,
;#and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter.input_item_type=float
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter.sampling_frequency=20480000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.IF=5499998.47412109
;# Decimation factor after the frequency tranaslating block
InputFilter.decimation_factor=8
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=8
Channels.in_acquisition=1
#Channel.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.dump=false
Acquisition_1C.dump_filename=./acq_dump.dat
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#use_CFAR_algorithm: If enabled, acquisition estimates the input signal power to implement CFAR detection algorithms
;#notice that this affects the Acquisition threshold range!
Acquisition_1C.use_CFAR_algorithm=false;
;#threshold: Acquisition threshold
Acquisition_1C.threshold=10
;Acquisition_1C.pfa=0.01
Acquisition_1C.doppler_max=5000
Acquisition_1C.doppler_step=100
;######### TRACKING GPS CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_KF_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.dump=true
Tracking_1C.dump_filename=../data/epl_tracking_ch_
Tracking_1C.pll_bw_hz=15.0;
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.order=3;
;######### TELEMETRY DECODER GPS CONFIG ############
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
TelemetryDecoder_1C.decimation_factor=1;
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
PVT.output_rate_ms=100
PVT.display_rate_ms=500
PVT.dump_filename=./PVT
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
PVT.flag_nmea_tty_port=false;
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
PVT.dump=true

View File

@ -504,7 +504,7 @@ bool RtklibPvt::save_assistance_to_XML()
LOG(INFO) << "SUPL: Try to save GPS ephemeris to XML file " << eph_xml_filename_;
std::map<int, Gps_Ephemeris> eph_map = pvt_->get_GPS_L1_ephemeris_map();
if (eph_map.size() > 0)
if (eph_map.empty() == false)
{
try
{

View File

@ -412,7 +412,7 @@ rtklib_pvt_cc::~rtklib_pvt_cc()
// save GPS L2CM ephemeris to XML file
std::string file_name = "eph_GPS_CNAV.xml";
if (d_ls_pvt->gps_cnav_ephemeris_map.size() > 0)
if (d_ls_pvt->gps_cnav_ephemeris_map.empty() == false)
{
try
{
@ -435,7 +435,7 @@ rtklib_pvt_cc::~rtklib_pvt_cc()
// save GPS L1 CA ephemeris to XML file
file_name = "eph_GPS_L1CA.xml";
if (d_ls_pvt->gps_ephemeris_map.size() > 0)
if (d_ls_pvt->gps_ephemeris_map.empty() == false)
{
try
{
@ -458,7 +458,7 @@ rtklib_pvt_cc::~rtklib_pvt_cc()
// save Galileo E1 ephemeris to XML file
file_name = "eph_Galileo_E1.xml";
if (d_ls_pvt->galileo_ephemeris_map.size() > 0)
if (d_ls_pvt->galileo_ephemeris_map.empty() == false)
{
try
{
@ -481,7 +481,7 @@ rtklib_pvt_cc::~rtklib_pvt_cc()
// save GLONASS GNAV ephemeris to XML file
file_name = "eph_GLONASS_GNAV.xml";
if (d_ls_pvt->glonass_gnav_ephemeris_map.size() > 0)
if (d_ls_pvt->glonass_gnav_ephemeris_map.empty() == false)
{
try
{
@ -573,28 +573,28 @@ int rtklib_pvt_cc::work(int noutput_items, gr_vector_const_void_star& input_item
}
try
{
if (d_ls_pvt->gps_ephemeris_map.size() > 0)
if (d_ls_pvt->gps_ephemeris_map.empty() == false)
{
if (tmp_eph_iter_gps != d_ls_pvt->gps_ephemeris_map.end())
{
d_rtcm_printer->lock_time(d_ls_pvt->gps_ephemeris_map.find(in[i][epoch].PRN)->second, in[i][epoch].RX_time, in[i][epoch]); // keep track of locking time
}
}
if (d_ls_pvt->galileo_ephemeris_map.size() > 0)
if (d_ls_pvt->galileo_ephemeris_map.empty() == false)
{
if (tmp_eph_iter_gal != d_ls_pvt->galileo_ephemeris_map.end())
{
d_rtcm_printer->lock_time(d_ls_pvt->galileo_ephemeris_map.find(in[i][epoch].PRN)->second, in[i][epoch].RX_time, in[i][epoch]); // keep track of locking time
}
}
if (d_ls_pvt->gps_cnav_ephemeris_map.size() > 0)
if (d_ls_pvt->gps_cnav_ephemeris_map.empty() == false)
{
if (tmp_eph_iter_cnav != d_ls_pvt->gps_cnav_ephemeris_map.end())
{
d_rtcm_printer->lock_time(d_ls_pvt->gps_cnav_ephemeris_map.find(in[i][epoch].PRN)->second, in[i][epoch].RX_time, in[i][epoch]); // keep track of locking time
}
}
if (d_ls_pvt->glonass_gnav_ephemeris_map.size() > 0)
if (d_ls_pvt->glonass_gnav_ephemeris_map.empty() == false)
{
if (tmp_eph_iter_glo_gnav != d_ls_pvt->glonass_gnav_ephemeris_map.end())
{
@ -616,7 +616,7 @@ int rtklib_pvt_cc::work(int noutput_items, gr_vector_const_void_star& input_item
}
// ############ 2 COMPUTE THE PVT ################################
if (gnss_observables_map.size() > 0)
if (gnss_observables_map.empty() == false)
{
double current_RX_time = gnss_observables_map.begin()->second.RX_time;
uint32_t current_RX_time_ms = static_cast<uint32_t>(current_RX_time * 1000.0);

View File

@ -496,7 +496,8 @@ bool rtklib_solver::get_PVT(const std::map<int, Gnss_Synchro>& gnss_observables_
if (rtk_.ssat[i].vsat[0] == 1) used_sats++;
}
double azel[used_sats * 2];
std::vector<double> azel;
azel.reserve(used_sats * 2);
unsigned int index_aux = 0;
for (unsigned int i = 0; i < MAXSAT; i++)
{
@ -507,7 +508,7 @@ bool rtklib_solver::get_PVT(const std::map<int, Gnss_Synchro>& gnss_observables_
index_aux++;
}
}
if (index_aux > 0) dops(index_aux, azel, 0.0, dop_);
if (index_aux > 0) dops(index_aux, azel.data(), 0.0, dop_);
this->set_valid_position(true);
arma::vec rx_position_and_time(4);

View File

@ -280,7 +280,8 @@ void galileo_e5a_noncoherentIQ_acquisition_caf_cc::init()
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_doppler_step = 0U;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_mag = 0.0;
d_input_power = 0.0;
const double GALILEO_TWO_PI = 6.283185307179600;
@ -328,7 +329,8 @@ void galileo_e5a_noncoherentIQ_acquisition_caf_cc::set_state(int state)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
@ -376,7 +378,8 @@ int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items
//restart acquisition variables
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
@ -633,7 +636,7 @@ int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
d_gnss_synchro->Acq_doppler_step = d_doppler_step;
// 5- Compute the test statistics and compare to the threshold
d_test_statistics = d_mag / d_input_power;
}

View File

@ -151,10 +151,10 @@ void galileo_pcps_8ms_acquisition_cc::init()
d_gnss_synchro->Flag_valid_symbol_output = false;
d_gnss_synchro->Flag_valid_pseudorange = false;
d_gnss_synchro->Flag_valid_word = false;
d_gnss_synchro->Acq_doppler_step = 0U;
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_mag = 0.0;
d_input_power = 0.0;
const double GALILEO_TWO_PI = 6.283185307179600;
@ -188,7 +188,8 @@ void galileo_pcps_8ms_acquisition_cc::set_state(int state)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
@ -219,7 +220,8 @@ int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
//restart acquisition variables
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
@ -328,6 +330,7 @@ int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
d_gnss_synchro->Acq_doppler_step = d_doppler_step;
}
// Record results to file if required

View File

@ -261,7 +261,7 @@ void pcps_acquisition::init()
d_gnss_synchro->Flag_valid_symbol_output = false;
d_gnss_synchro->Flag_valid_pseudorange = false;
d_gnss_synchro->Flag_valid_word = false;
d_gnss_synchro->Acq_doppler_step = 0U;
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
@ -334,6 +334,7 @@ void pcps_acquisition::set_state(int32_t state)
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;
@ -725,6 +726,7 @@ void pcps_acquisition::acquisition_core(uint64_t samp_count)
d_gnss_synchro->Acq_delay_samples = static_cast<double>(std::fmod(static_cast<float>(indext), acq_parameters.samples_per_code));
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = samp_count;
d_gnss_synchro->Acq_doppler_step = acq_parameters.doppler_step2;
}
lk.lock();
@ -865,6 +867,7 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;

View File

@ -180,10 +180,10 @@ void pcps_acquisition_fine_doppler_cc::init()
d_gnss_synchro->Flag_valid_symbol_output = false;
d_gnss_synchro->Flag_valid_pseudorange = false;
d_gnss_synchro->Flag_valid_word = false;
d_gnss_synchro->Acq_doppler_step = 0U;
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_state = 0;
}
@ -295,6 +295,7 @@ double pcps_acquisition_fine_doppler_cc::compute_CAF()
d_gnss_synchro->Acq_delay_samples = static_cast<double>(index_time);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(index_doppler * d_doppler_step - d_config_doppler_max);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
d_gnss_synchro->Acq_doppler_step = d_doppler_step;
return d_test_statistics;
}
@ -461,7 +462,8 @@ void pcps_acquisition_fine_doppler_cc::set_state(int state)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_well_count = 0;
d_test_statistics = 0.0;
d_active = true;

View File

@ -150,10 +150,10 @@ void pcps_assisted_acquisition_cc::init()
d_gnss_synchro->Flag_valid_symbol_output = false;
d_gnss_synchro->Flag_valid_pseudorange = false;
d_gnss_synchro->Flag_valid_word = false;
d_gnss_synchro->Acq_doppler_step = 0U;
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_input_power = 0.0;
d_state = 0;
@ -279,6 +279,7 @@ double pcps_assisted_acquisition_cc::search_maximum()
d_gnss_synchro->Acq_delay_samples = static_cast<double>(index_time);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(index_doppler * d_doppler_step + d_doppler_min);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
d_gnss_synchro->Acq_doppler_step = d_doppler_step;
// Record results to file if required
if (d_dump)

View File

@ -165,10 +165,10 @@ void pcps_cccwsr_acquisition_cc::init()
d_gnss_synchro->Flag_valid_symbol_output = false;
d_gnss_synchro->Flag_valid_pseudorange = false;
d_gnss_synchro->Flag_valid_word = false;
d_gnss_synchro->Acq_doppler_step = 0U;
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_mag = 0.0;
d_input_power = 0.0;
@ -203,7 +203,8 @@ void pcps_cccwsr_acquisition_cc::set_state(int state)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
@ -234,7 +235,8 @@ int pcps_cccwsr_acquisition_cc::general_work(int noutput_items,
//restart acquisition variables
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
@ -354,6 +356,7 @@ int pcps_cccwsr_acquisition_cc::general_work(int noutput_items,
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
d_gnss_synchro->Acq_doppler_step = d_doppler_step;
}
// Record results to file if required

View File

@ -290,10 +290,10 @@ void pcps_opencl_acquisition_cc::init()
d_gnss_synchro->Flag_valid_symbol_output = false;
d_gnss_synchro->Flag_valid_pseudorange = false;
d_gnss_synchro->Flag_valid_word = false;
d_gnss_synchro->Acq_doppler_step = 0U;
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_mag = 0.0;
d_input_power = 0.0;
@ -450,6 +450,7 @@ void pcps_opencl_acquisition_cc::acquisition_core_volk()
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = samplestamp;
d_gnss_synchro->Acq_doppler_step = d_doppler_step;
// 5- Compute the test statistics and compare to the threshold
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
@ -613,6 +614,7 @@ void pcps_opencl_acquisition_cc::acquisition_core_opencl()
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = samplestamp;
d_gnss_synchro->Acq_doppler_step = d_doppler_step;
// 5- Compute the test statistics and compare to the threshold
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
@ -676,7 +678,8 @@ void pcps_opencl_acquisition_cc::set_state(int state)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
@ -708,7 +711,8 @@ int pcps_opencl_acquisition_cc::general_work(int noutput_items,
//restart acquisition variables
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;

View File

@ -199,7 +199,8 @@ void pcps_quicksync_acquisition_cc::init()
//DLOG(INFO) << "START init";
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_mag = 0.0;
d_input_power = 0.0;
@ -236,7 +237,8 @@ void pcps_quicksync_acquisition_cc::set_state(int state)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
@ -279,7 +281,8 @@ int pcps_quicksync_acquisition_cc::general_work(int noutput_items,
//restart acquisition variables
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
@ -456,6 +459,7 @@ int pcps_quicksync_acquisition_cc::general_work(int noutput_items,
d_gnss_synchro->Acq_delay_samples = static_cast<double>(d_possible_delay[indext]);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
d_gnss_synchro->Acq_doppler_step = d_doppler_step;
/* 5- Compute the test statistics and compare to the threshold d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;*/
d_test_statistics = d_mag / d_input_power;

View File

@ -166,10 +166,10 @@ void pcps_tong_acquisition_cc::init()
d_gnss_synchro->Flag_valid_symbol_output = false;
d_gnss_synchro->Flag_valid_pseudorange = false;
d_gnss_synchro->Flag_valid_word = false;
d_gnss_synchro->Acq_doppler_step = 0U;
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_mag = 0.0;
d_input_power = 0.0;
@ -211,7 +211,8 @@ void pcps_tong_acquisition_cc::set_state(int state)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_dwell_count = 0;
d_tong_count = d_tong_init_val;
d_mag = 0.0;
@ -250,7 +251,8 @@ int pcps_tong_acquisition_cc::general_work(int noutput_items,
//restart acquisition variables
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_dwell_count = 0;
d_tong_count = d_tong_init_val;
d_mag = 0.0;
@ -345,6 +347,7 @@ int pcps_tong_acquisition_cc::general_work(int noutput_items,
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
d_gnss_synchro->Acq_doppler_step = d_doppler_step;
}
// Record results to file if required

View File

@ -33,6 +33,7 @@
#include "galileo_e1_signal_processing.h"
#include "Galileo_E1.h"
#include "gnss_signal_processing.h"
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <string>
@ -42,7 +43,7 @@ void galileo_e1_code_gen_int(int* _dest, char _Signal[3], int32_t _prn)
int32_t prn = _prn - 1;
int32_t index = 0;
/* A simple error check */
// A simple error check
if ((_prn < 1) || (_prn > 50))
{
return;
@ -107,7 +108,7 @@ void galileo_e1_sinboc_61_gen_int(int* _dest, int* _prn, uint32_t _length_out)
void galileo_e1_code_gen_sinboc11_float(float* _dest, char _Signal[3], uint32_t _prn)
{
std::string _galileo_signal = _Signal;
uint32_t _codeLength = static_cast<uint32_t>(Galileo_E1_B_CODE_LENGTH_CHIPS);
const uint32_t _codeLength = static_cast<const uint32_t>(Galileo_E1_B_CODE_LENGTH_CHIPS);
int32_t primary_code_E1_chips[4092]; // _codeLength not accepted by Clang
galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn); //generate Galileo E1 code, 1 sample per chip
for (uint32_t i = 0; i < _codeLength; i++)
@ -157,15 +158,16 @@ void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
// This function is based on the GNU software GPS for MATLAB in Kay Borre's book
std::string _galileo_signal = _Signal;
uint32_t _samplesPerCode;
const int32_t _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; //Hz
uint32_t _codeLength = Galileo_E1_B_CODE_LENGTH_CHIPS;
int32_t primary_code_E1_chips[static_cast<int32_t>(Galileo_E1_B_CODE_LENGTH_CHIPS)];
const int32_t _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; // Hz
uint32_t _codeLength = static_cast<uint32_t>(Galileo_E1_B_CODE_LENGTH_CHIPS);
int32_t* primary_code_E1_chips = static_cast<int32_t*>(volk_gnsssdr_malloc(static_cast<uint32_t>(Galileo_E1_B_CODE_LENGTH_CHIPS) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
_samplesPerCode = static_cast<uint32_t>(static_cast<double>(_fs) / (static_cast<double>(_codeFreqBasis) / static_cast<double>(_codeLength)));
const int32_t _samplesPerChip = (_cboc == true) ? 12 : 2;
const uint32_t delay = ((static_cast<int32_t>(Galileo_E1_B_CODE_LENGTH_CHIPS) - _chip_shift) % static_cast<int32_t>(Galileo_E1_B_CODE_LENGTH_CHIPS)) * _samplesPerCode / Galileo_E1_B_CODE_LENGTH_CHIPS;
galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn); //generate Galileo E1 code, 1 sample per chip
galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn); // generate Galileo E1 code, 1 sample per chip
float* _signal_E1;
@ -174,24 +176,26 @@ void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
if (_cboc == true)
{
galileo_e1_gen_float(_signal_E1, primary_code_E1_chips, _Signal); //generate cboc 12 samples per chip
galileo_e1_gen_float(_signal_E1, primary_code_E1_chips, _Signal); // generate cboc 12 samples per chip
}
else
{
int32_t _signal_E1_int[_codeLength];
galileo_e1_sinboc_11_gen_int(_signal_E1_int, primary_code_E1_chips, _codeLength); //generate sinboc(1,1) 2 samples per chip
int32_t* _signal_E1_int = static_cast<int32_t*>(volk_gnsssdr_malloc(_codeLength * sizeof(int32_t), volk_gnsssdr_get_alignment()));
galileo_e1_sinboc_11_gen_int(_signal_E1_int, primary_code_E1_chips, _codeLength); // generate sinboc(1,1) 2 samples per chip
for (uint32_t ii = 0; ii < _codeLength; ++ii)
{
_signal_E1[ii] = static_cast<float>(_signal_E1_int[ii]);
}
volk_gnsssdr_free(_signal_E1_int);
}
if (_fs != _samplesPerChip * _codeFreqBasis)
{
float* _resampled_signal = new float[_samplesPerCode];
resampler(_signal_E1, _resampled_signal, _samplesPerChip * _codeFreqBasis, _fs,
_codeLength, _samplesPerCode); //resamples code to fs
_codeLength, _samplesPerCode); // resamples code to fs
delete[] _signal_E1;
_signal_E1 = _resampled_signal;
@ -221,6 +225,7 @@ void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
}
delete[] _signal_E1;
volk_gnsssdr_free(primary_code_E1_chips);
}
@ -229,7 +234,7 @@ void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signa
bool _secondary_flag)
{
std::string _galileo_signal = _Signal;
const int32_t _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; //Hz
const int32_t _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; // Hz
uint32_t _samplesPerCode = static_cast<uint32_t>(static_cast<double>(_fs) /
(static_cast<double>(_codeFreqBasis) / static_cast<double>(Galileo_E1_B_CODE_LENGTH_CHIPS)));
@ -238,7 +243,7 @@ void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signa
_samplesPerCode *= static_cast<int32_t>(Galileo_E1_C_SECONDARY_CODE_LENGTH);
}
float real_code[_samplesPerCode];
float* real_code = static_cast<float*>(volk_gnsssdr_malloc(_samplesPerCode * sizeof(float), volk_gnsssdr_get_alignment()));
galileo_e1_code_gen_float_sampled(real_code, _Signal, _cboc, _prn, _fs, _chip_shift, _secondary_flag);
@ -246,6 +251,7 @@ void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signa
{
_dest[ii] = std::complex<float>(real_code[ii], 0.0f);
}
volk_gnsssdr_free(real_code);
}

View File

@ -158,7 +158,7 @@ void hex_to_binary_converter(int32_t* _dest, char _from)
}
void resampler(float* _from, float* _dest, float _fs_in,
void resampler(const float* _from, float* _dest, float _fs_in,
float _fs_out, uint32_t _length_in, uint32_t _length_out)
{
uint32_t _codeValueIndex;
@ -182,7 +182,7 @@ void resampler(float* _from, float* _dest, float _fs_in,
}
void resampler(std::complex<float>* _from, std::complex<float>* _dest, float _fs_in,
void resampler(const std::complex<float>* _from, std::complex<float>* _dest, float _fs_in,
float _fs_out, uint32_t _length_in, uint32_t _length_out)
{
uint32_t _codeValueIndex;

View File

@ -65,14 +65,14 @@ void hex_to_binary_converter(int32_t* _dest, char _from);
* \brief This function resamples a sequence of float values.
*
*/
void resampler(float* _from, float* _dest,
void resampler(const float* _from, float* _dest,
float _fs_in, float _fs_out, uint32_t _length_in,
uint32_t _length_out);
/*!
* \brief This function resamples a sequence of complex values.
*
*/
void resampler(std::complex<float>* _from, std::complex<float>* _dest,
void resampler(const std::complex<float>* _from, std::complex<float>* _dest,
float _fs_in, float _fs_out, uint32_t _length_in,
uint32_t _length_out);

View File

@ -116,7 +116,7 @@ void gps_l1_ca_code_gen_int(int32_t* _dest, int32_t _prn, uint32_t _chip_shift)
void gps_l1_ca_code_gen_float(float* _dest, int32_t _prn, uint32_t _chip_shift)
{
uint32_t _code_length = 1023;
const uint32_t _code_length = 1023;
int32_t ca_code_int[_code_length];
gps_l1_ca_code_gen_int(ca_code_int, _prn, _chip_shift);
@ -130,7 +130,7 @@ void gps_l1_ca_code_gen_float(float* _dest, int32_t _prn, uint32_t _chip_shift)
void gps_l1_ca_code_gen_complex(std::complex<float>* _dest, int32_t _prn, uint32_t _chip_shift)
{
uint32_t _code_length = 1023;
const uint32_t _code_length = 1023;
int32_t ca_code_int[_code_length];
gps_l1_ca_code_gen_int(ca_code_int, _prn, _chip_shift);

View File

@ -163,8 +163,8 @@ galileo_e1b_telemetry_decoder_cc::~galileo_e1b_telemetry_decoder_cc()
void galileo_e1b_telemetry_decoder_cc::decode_word(double *page_part_symbols, int32_t frame_length)
{
double page_part_symbols_deint[frame_length];
// 1. De-interleave
double *page_part_symbols_deint = static_cast<double *>(volk_gnsssdr_malloc(frame_length * sizeof(double), volk_gnsssdr_get_alignment()));
deinterleaver(GALILEO_INAV_INTERLEAVER_ROWS, GALILEO_INAV_INTERLEAVER_COLS, page_part_symbols, page_part_symbols_deint);
// 2. Viterbi decoder
@ -178,8 +178,9 @@ void galileo_e1b_telemetry_decoder_cc::decode_word(double *page_part_symbols, in
}
}
int32_t page_part_bits[frame_length / 2];
int32_t *page_part_bits = static_cast<int32_t *>(volk_gnsssdr_malloc((frame_length / 2) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
viterbi_decoder(page_part_symbols_deint, page_part_bits);
volk_gnsssdr_free(page_part_symbols_deint);
// 3. Call the Galileo page decoder
std::string page_String;
@ -217,6 +218,7 @@ void galileo_e1b_telemetry_decoder_cc::decode_word(double *page_part_symbols, in
d_nav.split_page(page_String.c_str(), flag_even_word_arrived);
flag_even_word_arrived = 1;
}
volk_gnsssdr_free(page_part_bits);
// 4. Push the new navigation data to the queues
if (d_nav.have_new_ephemeris() == true)
@ -312,7 +314,7 @@ int galileo_e1b_telemetry_decoder_cc::general_work(int noutput_items __attribute
consume_each(1);
d_flag_preamble = false;
uint32_t required_symbols = GALILEO_INAV_PAGE_SYMBOLS + d_symbols_per_preamble;
uint32_t required_symbols = static_cast<uint32_t>(GALILEO_INAV_PAGE_SYMBOLS) + static_cast<uint32_t>(d_symbols_per_preamble);
if (d_symbol_history.size() > required_symbols)
{
@ -370,7 +372,7 @@ int galileo_e1b_telemetry_decoder_cc::general_work(int noutput_items __attribute
// NEW Galileo page part is received
// 0. fetch the symbols into an array
int32_t frame_length = GALILEO_INAV_PAGE_PART_SYMBOLS - d_symbols_per_preamble;
double page_part_symbols[frame_length];
double *page_part_symbols = static_cast<double *>(volk_gnsssdr_malloc(frame_length * sizeof(double), volk_gnsssdr_get_alignment()));
for (int32_t i = 0; i < frame_length; i++)
{
@ -412,6 +414,7 @@ int galileo_e1b_telemetry_decoder_cc::general_work(int noutput_items __attribute
d_nav.flag_TOW_set = false;
}
}
volk_gnsssdr_free(page_part_symbols);
}
}
@ -424,7 +427,7 @@ int galileo_e1b_telemetry_decoder_cc::general_work(int noutput_items __attribute
{
// TOW_5 refers to the even preamble, but when we decode it we are in the odd part, so 1 second later plus the decoding delay
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_nav.TOW_5 * 1000.0);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + GALILEO_INAV_PAGE_PART_MS + (required_symbols + 1) * GALILEO_E1_CODE_PERIOD_MS;
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>(GALILEO_INAV_PAGE_PART_MS + (required_symbols + 1) * GALILEO_E1_CODE_PERIOD_MS);
d_nav.flag_TOW_5 = false;
}
@ -432,20 +435,20 @@ int galileo_e1b_telemetry_decoder_cc::general_work(int noutput_items __attribute
{
// TOW_6 refers to the even preamble, but when we decode it we are in the odd part, so 1 second later plus the decoding delay
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_nav.TOW_6 * 1000.0);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + GALILEO_INAV_PAGE_PART_MS + (required_symbols + 1) * GALILEO_E1_CODE_PERIOD_MS;
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>(GALILEO_INAV_PAGE_PART_MS + (required_symbols + 1) * GALILEO_E1_CODE_PERIOD_MS);
d_nav.flag_TOW_6 = false;
}
else
{
// this page has no timing information
d_TOW_at_current_symbol_ms += GALILEO_E1_CODE_PERIOD_MS; // + GALILEO_INAV_PAGE_PART_SYMBOLS*GALILEO_E1_CODE_PERIOD;
d_TOW_at_current_symbol_ms += static_cast<uint32_t>(GALILEO_E1_CODE_PERIOD_MS); // + GALILEO_INAV_PAGE_PART_SYMBOLS*GALILEO_E1_CODE_PERIOD;
}
}
else // if there is not a new preamble, we define the TOW of the current symbol
{
if (d_nav.flag_TOW_set == true)
{
d_TOW_at_current_symbol_ms += GALILEO_E1_CODE_PERIOD_MS;
d_TOW_at_current_symbol_ms += static_cast<uint32_t>(GALILEO_E1_CODE_PERIOD_MS);
}
}

View File

@ -79,8 +79,8 @@ void galileo_e5a_telemetry_decoder_cc::deinterleaver(int32_t rows, int32_t cols,
void galileo_e5a_telemetry_decoder_cc::decode_word(double *page_symbols, int32_t frame_length)
{
double page_symbols_deint[frame_length];
// 1. De-interleave
double *page_symbols_deint = static_cast<double *>(volk_gnsssdr_malloc(frame_length * sizeof(double), volk_gnsssdr_get_alignment()));
deinterleaver(GALILEO_FNAV_INTERLEAVER_ROWS, GALILEO_FNAV_INTERLEAVER_COLS, page_symbols, page_symbols_deint);
// 2. Viterbi decoder
@ -93,8 +93,9 @@ void galileo_e5a_telemetry_decoder_cc::decode_word(double *page_symbols, int32_t
page_symbols_deint[i] = -page_symbols_deint[i];
}
}
int32_t page_bits[frame_length / 2];
int32_t *page_bits = static_cast<int32_t *>(volk_gnsssdr_malloc((frame_length / 2) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
viterbi_decoder(page_symbols_deint, page_bits);
volk_gnsssdr_free(page_symbols_deint);
// 3. Call the Galileo page decoder
std::string page_String;
@ -109,6 +110,7 @@ void galileo_e5a_telemetry_decoder_cc::decode_word(double *page_symbols, int32_t
page_String.push_back('0');
}
}
volk_gnsssdr_free(page_bits);
// DECODE COMPLETE WORD (even + odd) and TEST CRC
d_nav.split_page(page_String);
@ -436,37 +438,37 @@ int galileo_e5a_telemetry_decoder_cc::general_work(int noutput_items __attribute
if (d_nav.flag_TOW_1 == true)
{
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_nav.FNAV_TOW_1 * 1000.0);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + (GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD_MS;
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>((GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD_MS);
d_nav.flag_TOW_1 = false;
}
else if (d_nav.flag_TOW_2 == true)
{
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_nav.FNAV_TOW_2 * 1000.0);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + (GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD_MS;
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>((GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD_MS);
d_nav.flag_TOW_2 = false;
}
else if (d_nav.flag_TOW_3 == true)
{
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_nav.FNAV_TOW_3 * 1000.0);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + (GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD_MS;
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>((GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD_MS);
d_nav.flag_TOW_3 = false;
}
else if (d_nav.flag_TOW_4 == true)
{
d_TOW_at_Preamble_ms = static_cast<uint32_t>(d_nav.FNAV_TOW_4 * 1000.0);
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + (GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD_MS;
d_TOW_at_current_symbol_ms = d_TOW_at_Preamble_ms + static_cast<uint32_t>((GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD_MS);
d_nav.flag_TOW_4 = false;
}
else
{
d_TOW_at_current_symbol_ms += GALILEO_E5a_CODE_PERIOD_MS;
d_TOW_at_current_symbol_ms += static_cast<uint32_t>(GALILEO_E5a_CODE_PERIOD_MS);
}
}
else // if there is not a new preamble, we define the TOW of the current symbol
{
if (d_nav.flag_TOW_set == true)
{
d_TOW_at_current_symbol_ms += GALILEO_E5a_CODE_PERIOD_MS;
d_TOW_at_current_symbol_ms += static_cast<uint32_t>(GALILEO_E5a_CODE_PERIOD_MS);
}
}

View File

@ -82,7 +82,7 @@ gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc(
n++;
}
}
d_stat = 0;
d_stat = 0U;
d_flag_frame_sync = false;
d_prev_GPS_frame_4bytes = 0;
d_TOW_at_Preamble_ms = 0;
@ -93,8 +93,7 @@ gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc(
flag_PLL_180_deg_phase_locked = false;
d_preamble_time_samples = 0ULL;
d_TOW_at_current_symbol_ms = 0;
d_symbol_history.resize(GPS_CA_PREAMBLE_LENGTH_SYMBOLS); // Change fixed buffer size
d_symbol_history.clear(); // Clear all the elements in the buffer
d_symbol_history.set_capacity(GPS_CA_PREAMBLE_LENGTH_SYMBOLS);
d_crc_error_synchronization_counter = 0;
d_current_subframe_symbol = 0;
}
@ -103,6 +102,7 @@ gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc(
gps_l1_ca_telemetry_decoder_cc::~gps_l1_ca_telemetry_decoder_cc()
{
volk_gnsssdr_free(d_preambles_symbols);
d_symbol_history.clear();
if (d_dump_file.is_open() == true)
{
try
@ -321,7 +321,7 @@ int gps_l1_ca_telemetry_decoder_cc::general_work(int noutput_items __attribute__
// record the oldest subframe symbol before inserting a new symbol into the circular buffer
if (d_current_subframe_symbol < GPS_SUBFRAME_MS and d_symbol_history.size() > 0)
{
d_subframe_symbols[d_current_subframe_symbol] = d_symbol_history.at(0).Prompt_I;
d_subframe_symbols[d_current_subframe_symbol] = d_symbol_history[0].Prompt_I;
d_current_subframe_symbol++;
}
@ -337,9 +337,9 @@ int gps_l1_ca_telemetry_decoder_cc::general_work(int noutput_items __attribute__
// std::cout << "-------\n";
for (uint32_t i = 0; i < GPS_CA_PREAMBLE_LENGTH_SYMBOLS; i++)
{
if (d_symbol_history.at(i).Flag_valid_symbol_output == true)
if (d_symbol_history[i].Flag_valid_symbol_output == true)
{
if (d_symbol_history.at(i).Prompt_I < 0) // symbols clipping
if (d_symbol_history[i].Prompt_I < 0) // symbols clipping
{
corr_value -= d_preambles_symbols[i];
}
@ -358,18 +358,18 @@ int gps_l1_ca_telemetry_decoder_cc::general_work(int noutput_items __attribute__
if (d_stat == 0)
{
// record the preamble sample stamp
d_preamble_time_samples = d_symbol_history.at(0).Tracking_sample_counter; // record the preamble sample stamp
DLOG(INFO) << "Preamble detection for SAT " << this->d_satellite << "d_symbol_history.at(0).Tracking_sample_counter=" << d_symbol_history.at(0).Tracking_sample_counter;
d_preamble_time_samples = d_symbol_history[0].Tracking_sample_counter; // record the preamble sample stamp
DLOG(INFO) << "Preamble detection for SAT " << this->d_satellite << "d_symbol_history[0].Tracking_sample_counter=" << d_symbol_history[0].Tracking_sample_counter;
d_stat = 1; // enter into frame pre-detection status
}
else if (d_stat == 1) // check 6 seconds of preamble separation
{
preamble_diff_ms = std::round(((static_cast<double>(d_symbol_history.at(0).Tracking_sample_counter) - static_cast<double>(d_preamble_time_samples)) / static_cast<double>(d_symbol_history.at(0).fs)) * 1000.0);
preamble_diff_ms = std::round(((static_cast<double>(d_symbol_history[0].Tracking_sample_counter) - static_cast<double>(d_preamble_time_samples)) / static_cast<double>(d_symbol_history[0].fs)) * 1000.0);
if (std::abs(preamble_diff_ms - GPS_SUBFRAME_MS) % GPS_SUBFRAME_MS == 0)
{
DLOG(INFO) << "Preamble confirmation for SAT " << this->d_satellite;
d_flag_preamble = true;
d_preamble_time_samples = d_symbol_history.at(0).Tracking_sample_counter; // record the PRN start sample index associated to the preamble
d_preamble_time_samples = d_symbol_history[0].Tracking_sample_counter; // record the PRN start sample index associated to the preamble
if (!d_flag_frame_sync)
{
d_flag_frame_sync = true;
@ -383,7 +383,7 @@ int gps_l1_ca_telemetry_decoder_cc::general_work(int noutput_items __attribute__
flag_PLL_180_deg_phase_locked = false;
}
DLOG(INFO) << " Frame sync SAT " << this->d_satellite << " with preamble start at "
<< static_cast<double>(d_preamble_time_samples) / static_cast<double>(d_symbol_history.at(0).fs) << " [s]";
<< static_cast<double>(d_preamble_time_samples) / static_cast<double>(d_symbol_history[0].fs) << " [s]";
}
// try to decode the subframe:
@ -407,7 +407,7 @@ int gps_l1_ca_telemetry_decoder_cc::general_work(int noutput_items __attribute__
{
if (d_stat == 1)
{
preamble_diff_ms = round(((static_cast<double>(d_symbol_history.at(0).Tracking_sample_counter) - static_cast<double>(d_preamble_time_samples)) / static_cast<double>(d_symbol_history.at(0).fs)) * 1000.0);
preamble_diff_ms = round(((static_cast<double>(d_symbol_history[0].Tracking_sample_counter) - static_cast<double>(d_preamble_time_samples)) / static_cast<double>(d_symbol_history[0].fs)) * 1000.0);
if (preamble_diff_ms > GPS_SUBFRAME_MS)
{
DLOG(INFO) << "Lost of frame sync SAT " << this->d_satellite << " preamble_diff= " << preamble_diff_ms;

View File

@ -64,8 +64,8 @@ gps_l5_telemetry_decoder_cc::gps_l5_telemetry_decoder_cc(
DLOG(INFO) << "GPS L5 TELEMETRY PROCESSING: satellite " << d_satellite;
d_channel = 0;
d_flag_valid_word = false;
d_TOW_at_current_symbol_ms = 0;
d_TOW_at_Preamble_ms = 0;
d_TOW_at_current_symbol_ms = 0U;
d_TOW_at_Preamble_ms = 0U;
// initialize the CNAV frame decoder (libswiftcnav)
cnav_msg_decoder_init(&d_cnav_decoder);
for (int32_t aux = 0; aux < GPS_L5i_NH_CODE_LENGTH; aux++)

View File

@ -189,7 +189,7 @@ sbas_l1_telemetry_decoder_cc::symbol_aligner_and_decoder::symbol_aligner_and_dec
{
// convolutional code properties
d_KK = 7;
int32_t nn = 2;
const int32_t nn = 2;
int32_t g_encoder[nn];
g_encoder[0] = 121;
g_encoder[1] = 91;

View File

@ -30,7 +30,6 @@
*/
#include "edc.h"
#include "bits.h"
#include "cnav_msg.h"
@ -48,26 +47,26 @@
* Block Viterbi decoding parameters.
*/
/** Viterbi decoder reversed polynomial A */
#define GPS_L2C_V27_POLY_A (0x4F) /* 0b01001111 - reversed 0171*/
#define GPS_L2C_V27_POLY_A (0x4F) /* 0b01001111 - reversed 0171*/
/** Viterbi decoder reversed polynomial B */
#define GPS_L2C_V27_POLY_B (0x6D) /* 0b01101101 - reversed 0133 */
#define GPS_L2C_V27_POLY_B (0x6D) /* 0b01101101 - reversed 0133 */
/*
* GPS L2C message constants.
*/
/** GPS L2C preamble */
#define GPS_CNAV_PREAMBLE1 (0b10001011u)
const u32 GPS_CNAV_PREAMBLE1 = 0x8Bu; /* (0b10001011u) */
/** Inverted GPS L2C preamble */
#define GPS_CNAV_PREAMBLE2 (0b01110100u)
const u32 GPS_CNAV_PREAMBLE2 = 0x74u; /* (0b01110100u) */
/** GPS L2C preamble length in bits */
#define GPS_CNAV_PREAMBLE_LENGTH (8)
#define GPS_CNAV_PREAMBLE_LENGTH (8)
/** GPS L2C CNAV message length in bits */
#define GPS_CNAV_MSG_LENGTH (300)
#define GPS_CNAV_MSG_LENGTH (300)
/** GPS LC2 CNAV CRC length in bits */
#define GPS_CNAV_MSG_CRC_LENGTH (24)
#define GPS_CNAV_MSG_CRC_LENGTH (24)
/** GPS L2C CNAV message payload length in bits */
#define GPS_CNAV_MSG_DATA_LENGTH (GPS_CNAV_MSG_LENGTH - GPS_CNAV_MSG_CRC_LENGTH)
#define GPS_CNAV_MSG_DATA_LENGTH (GPS_CNAV_MSG_LENGTH - GPS_CNAV_MSG_CRC_LENGTH)
/** GPS L2C CNAV message lock detector threshold */
#define GPS_CNAV_LOCK_MAX_CRC_FAILS (10)
@ -85,7 +84,7 @@
static u32 _cnav_compute_crc(cnav_v27_part_t *part)
{
u32 crc = crc24q_bits(0, part->decoded, GPS_CNAV_MSG_DATA_LENGTH,
part->invert);
part->invert);
return crc;
}
@ -104,7 +103,7 @@ static u32 _cnav_compute_crc(cnav_v27_part_t *part)
static u32 _cnav_extract_crc(const cnav_v27_part_t *part)
{
u32 crc = getbitu(part->decoded, GPS_CNAV_MSG_DATA_LENGTH,
GPS_CNAV_MSG_CRC_LENGTH);
GPS_CNAV_MSG_CRC_LENGTH);
if (part->invert)
{
crc ^= 0xFFFFFF;
@ -152,7 +151,7 @@ static void _cnav_rescan_preamble(cnav_v27_part_t *part)
if (!part->preamble_seen && part->n_decoded >= GPS_CNAV_PREAMBLE_LENGTH)
{
bitshl(part->decoded, sizeof(part->decoded),
part->n_decoded - GPS_CNAV_PREAMBLE_LENGTH + 1);
part->n_decoded - GPS_CNAV_PREAMBLE_LENGTH + 1);
part->n_decoded = GPS_CNAV_PREAMBLE_LENGTH - 1;
}
}
@ -200,11 +199,12 @@ static void _cnav_add_symbol(cnav_v27_part_t *part, u8 ch)
* - N - Number of bits to put into decoded buffer
* - M - Number of bits in the tail to ignore.
*/
unsigned char tmp_bits[ (GPS_L2C_V27_DECODE_BITS + GPS_L2C_V27_DELAY_BITS +
CHAR_BIT - 1) / CHAR_BIT];
unsigned char tmp_bits[(GPS_L2C_V27_DECODE_BITS + GPS_L2C_V27_DELAY_BITS +
CHAR_BIT - 1) /
CHAR_BIT];
v27_chainback_likely(&part->dec, tmp_bits,
GPS_L2C_V27_DECODE_BITS + GPS_L2C_V27_DELAY_BITS);
GPS_L2C_V27_DECODE_BITS + GPS_L2C_V27_DELAY_BITS);
/* Read decoded bits and add them to the decoded buffer */
bitcopy(part->decoded, part->n_decoded, tmp_bits, 0, GPS_L2C_V27_DECODE_BITS);
@ -238,10 +238,9 @@ static void _cnav_add_symbol(cnav_v27_part_t *part, u8 ch)
}
if (part->preamble_seen && GPS_CNAV_MSG_LENGTH <= part->n_decoded)
{
/* We have collected 300 bits starting from message preamble. Now try
* to compute CRC-24Q */
u32 crc = _cnav_compute_crc(part);
u32 crc = _cnav_compute_crc(part);
u32 crc2 = _cnav_extract_crc(part);
if (part->message_lock)
@ -260,8 +259,8 @@ static void _cnav_add_symbol(cnav_v27_part_t *part, u8 ch)
if (part->n_crc_fail > GPS_CNAV_LOCK_MAX_CRC_FAILS)
{
/* CRC has failed too many times - drop the lock. */
part->n_crc_fail = 0;
part->message_lock = false;
part->n_crc_fail = 0;
part->message_lock = false;
part->preamble_seen = false;
/* Try to find a new preamble, reuse data from buffer. */
retry = true;
@ -272,8 +271,8 @@ static void _cnav_add_symbol(cnav_v27_part_t *part, u8 ch)
{
/* CRC match - message can be decoded */
part->message_lock = true;
part->crc_ok = true;
part->n_crc_fail = 0;
part->crc_ok = true;
part->n_crc_fail = 0;
}
else
{
@ -346,13 +345,13 @@ static bool _cnav_msg_decode(cnav_v27_part_t *part, cnav_msg_t *msg, u32 *delay)
_cnav_msg_invert(part);
}
msg->prn = getbitu(part->decoded, 8, 6);
msg->prn = getbitu(part->decoded, 8, 6);
msg->msg_id = getbitu(part->decoded, 14, 6);
msg->tow = getbitu(part->decoded, 20, 17);
msg->alert = getbitu(part->decoded, 37, 1) ? true : false;
msg->tow = getbitu(part->decoded, 20, 17);
msg->alert = getbitu(part->decoded, 37, 1) ? true : false;
/* copy RAW message for GNSS-SDR */
memcpy(msg->raw_msg,part->decoded,GPS_L2C_V27_DECODE_BITS + GPS_L2C_V27_DELAY_BITS);
memcpy(msg->raw_msg, part->decoded, GPS_L2C_V27_DECODE_BITS + GPS_L2C_V27_DELAY_BITS);
*delay = (part->n_decoded - GPS_CNAV_MSG_LENGTH + GPS_L2C_V27_DELAY_BITS) * 2 + part->n_symbols;
@ -388,15 +387,15 @@ void cnav_msg_decoder_init(cnav_msg_decoder_t *dec)
{
memset(dec, 0, sizeof(*dec));
v27_init(&dec->part1.dec,
dec->part1.decisions,
GPS_L2_V27_HISTORY_LENGTH_BITS,
cnav_msg_decoder_get_poly(),
0);
dec->part1.decisions,
GPS_L2_V27_HISTORY_LENGTH_BITS,
cnav_msg_decoder_get_poly(),
0);
v27_init(&dec->part2.dec,
dec->part2.decisions,
GPS_L2_V27_HISTORY_LENGTH_BITS,
cnav_msg_decoder_get_poly(),
0);
dec->part2.decisions,
GPS_L2_V27_HISTORY_LENGTH_BITS,
cnav_msg_decoder_get_poly(),
0);
dec->part1.init = true;
dec->part2.init = true;
_cnav_add_symbol(&dec->part2, 0x80);
@ -426,9 +425,9 @@ void cnav_msg_decoder_init(cnav_msg_decoder_t *dec)
* \retval false More data is required.
*/
bool cnav_msg_decoder_add_symbol(cnav_msg_decoder_t *dec,
u8 symbol,
cnav_msg_t *msg,
u32 *pdelay)
u8 symbol,
cnav_msg_t *msg,
u32 *pdelay)
{
_cnav_add_symbol(&dec->part1, symbol);
_cnav_add_symbol(&dec->part2, symbol);
@ -470,7 +469,7 @@ const v27_poly_t *cnav_msg_decoder_get_poly(void)
if (!initialized)
{
/* Coefficients for polynomial object */
const signed char coeffs[2] = { GPS_L2C_V27_POLY_A, GPS_L2C_V27_POLY_B };
const signed char coeffs[2] = {GPS_L2C_V27_POLY_A, GPS_L2C_V27_POLY_B};
/* Racing condition handling: the data can be potential initialized more
* than once in case multiple threads request concurrent access. However,

View File

@ -35,6 +35,7 @@ set(TRACKING_ADAPTER_SOURCES
gps_l2_m_dll_pll_tracking.cc
glonass_l1_ca_dll_pll_tracking.cc
glonass_l1_ca_dll_pll_c_aid_tracking.cc
gps_l1_ca_kf_tracking.cc
gps_l5_dll_pll_tracking.cc
glonass_l2_ca_dll_pll_tracking.cc
glonass_l2_ca_dll_pll_c_aid_tracking.cc
@ -49,6 +50,7 @@ include_directories(
${CMAKE_SOURCE_DIR}/src/algorithms/tracking/gnuradio_blocks
${CMAKE_SOURCE_DIR}/src/algorithms/tracking/libs
${CMAKE_SOURCE_DIR}/src/algorithms/libs
${ARMADILLO_INCLUDE_DIRS}
${GLOG_INCLUDE_DIRS}
${GFlags_INCLUDE_DIRS}
${GNURADIO_RUNTIME_INCLUDE_DIRS}

View File

@ -0,0 +1,174 @@
/*!
* \file gps_l1_ca_kf_tracking.cc
* \brief Implementation of an adapter of a DLL + Kalman carrier
* tracking loop block for GPS L1 C/A signals
* \author Javier Arribas, 2018. jarribas(at)cttc.es
* \author Jordi Vila-Valls 2018. jvila(at)cttc.es
* \author Carles Fernandez-Prades 2018. cfernandez(at)cttc.es
*
* Reference:
* J. Vila-Valls, P. Closas, M. Navarro and C. Fernández-Prades,
* "Are PLLs Dead? A Tutorial on Kalman Filter-based Techniques for Digital
* Carrier Synchronization", IEEE Aerospace and Electronic Systems Magazine,
* Vol. 32, No. 7, pp. 2845, July 2017. DOI: 10.1109/MAES.2017.150260
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l1_ca_kf_tracking.h"
#include "gnss_sdr_flags.h"
#include "GPS_L1_CA.h"
#include "configuration_interface.h"
#include <glog/logging.h>
using google::LogMessage;
GpsL1CaKfTracking::GpsL1CaKfTracking(
ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
{
DLOG(INFO) << "role " << role;
//################# CONFIGURATION PARAMETERS ########################
int order;
int fs_in;
int vector_length;
int f_if;
bool dump;
std::string dump_filename;
std::string item_type;
std::string default_item_type = "gr_complex";
float dll_bw_hz;
float early_late_space_chips;
bool bce_run;
unsigned int bce_ptrans;
unsigned int bce_strans;
int bce_nu;
int bce_kappa;
item_type = configuration->property(role + ".item_type", default_item_type);
order = configuration->property(role + ".order", 2);
int fs_in_deprecated = configuration->property("GNSS-SDR.internal_fs_hz", 2048000);
fs_in = configuration->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
f_if = configuration->property(role + ".if", 0);
dump = configuration->property(role + ".dump", false);
dll_bw_hz = configuration->property(role + ".dll_bw_hz", 2.0);
if (FLAGS_dll_bw_hz != 0.0) dll_bw_hz = static_cast<float>(FLAGS_dll_bw_hz);
early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.5);
std::string default_dump_filename = "./track_ch";
dump_filename = configuration->property(role + ".dump_filename", default_dump_filename);
vector_length = std::round(fs_in / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
bce_run = configuration->property(role + ".bce_run", false);
bce_ptrans = configuration->property(role + ".p_transient", 0);
bce_strans = configuration->property(role + ".s_transient", 0);
bce_nu = configuration->property(role + ".bce_nu", 0);
bce_kappa = configuration->property(role + ".bce_kappa", 0);
//################# MAKE TRACKING GNURadio object ###################
if (item_type.compare("gr_complex") == 0)
{
item_size_ = sizeof(gr_complex);
tracking_ = gps_l1_ca_kf_make_tracking_cc(
order,
f_if,
fs_in,
vector_length,
dump,
dump_filename,
dll_bw_hz,
early_late_space_chips,
bce_run,
bce_ptrans,
bce_strans,
bce_nu,
bce_kappa);
}
else
{
item_size_ = sizeof(gr_complex);
LOG(WARNING) << item_type << " unknown tracking item type.";
}
channel_ = 0;
DLOG(INFO) << "tracking(" << tracking_->unique_id() << ")";
}
GpsL1CaKfTracking::~GpsL1CaKfTracking()
{
}
void GpsL1CaKfTracking::start_tracking()
{
tracking_->start_tracking();
}
/*
* Set tracking channel unique ID
*/
void GpsL1CaKfTracking::set_channel(unsigned int channel)
{
channel_ = channel;
tracking_->set_channel(channel);
}
void GpsL1CaKfTracking::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
tracking_->set_gnss_synchro(p_gnss_synchro);
}
void GpsL1CaKfTracking::connect(gr::top_block_sptr top_block)
{
if (top_block)
{ /* top_block is not null */
};
//nothing to connect, now the tracking uses gr_sync_decimator
}
void GpsL1CaKfTracking::disconnect(gr::top_block_sptr top_block)
{
if (top_block)
{ /* top_block is not null */
};
//nothing to disconnect, now the tracking uses gr_sync_decimator
}
gr::basic_block_sptr GpsL1CaKfTracking::get_left_block()
{
return tracking_;
}
gr::basic_block_sptr GpsL1CaKfTracking::get_right_block()
{
return tracking_;
}

View File

@ -0,0 +1,105 @@
/*!
* \file GPS_L1_CA_KF_Tracking.h
* \brief Interface of an adapter of a DLL + Kalman carrier
* tracking loop block for GPS L1 C/A signals
* \author Javier Arribas, 2018. jarribas(at)cttc.es
* \author Jordi Vila-Valls 2018. jvila(at)cttc.es
* \author Carles Fernandez-Prades 2018. cfernandez(at)cttc.es
*
* Reference:
* J. Vila-Valls, P. Closas, M. Navarro and C. Fernandez-Prades,
* "Are PLLs Dead? A Tutorial on Kalman Filter-based Techniques for Digital
* Carrier Synchronization", IEEE Aerospace and Electronic Systems Magazine,
* Vol. 32, No. 7, pp. 2845, July 2017. DOI: 10.1109/MAES.2017.150260
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GPS_L1_CA_KF_TRACKING_H_
#define GNSS_SDR_GPS_L1_CA_KF_TRACKING_H_
#include "gps_l1_ca_kf_tracking_cc.h"
#include "tracking_interface.h"
#include <string>
class ConfigurationInterface;
/*!
* \brief This class implements a code DLL + carrier PLL tracking loop
*/
class GpsL1CaKfTracking : public TrackingInterface
{
public:
GpsL1CaKfTracking(ConfigurationInterface* configuration,
std::string role,
unsigned int in_streams,
unsigned int out_streams);
virtual ~GpsL1CaKfTracking();
inline std::string role() override
{
return role_;
}
//! Returns "GPS_L1_CA_KF_Tracking"
inline std::string implementation() override
{
return "GPS_L1_CA_KF_Tracking";
}
inline size_t item_size() override
{
return item_size_;
}
void connect(gr::top_block_sptr top_block) override;
void disconnect(gr::top_block_sptr top_block) override;
gr::basic_block_sptr get_left_block() override;
gr::basic_block_sptr get_right_block() override;
/*!
* \brief Set tracking channel unique ID
*/
void set_channel(unsigned int channel) override;
/*!
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
* to efficiently exchange synchronization data between acquisition and tracking blocks
*/
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) override;
void start_tracking() override;
private:
gps_l1_ca_kf_tracking_cc_sptr tracking_;
size_t item_size_;
unsigned int channel_;
std::string role_;
unsigned int in_streams_;
unsigned int out_streams_;
};
#endif // GNSS_SDR_GPS_L1_CA_KF_TRACKING_H_

View File

@ -34,6 +34,7 @@ set(TRACKING_GR_BLOCKS_SOURCES
glonass_l1_ca_dll_pll_tracking_cc.cc
glonass_l1_ca_dll_pll_c_aid_tracking_cc.cc
glonass_l1_ca_dll_pll_c_aid_tracking_sc.cc
gps_l1_ca_kf_tracking_cc.cc
glonass_l2_ca_dll_pll_tracking_cc.cc
glonass_l2_ca_dll_pll_c_aid_tracking_cc.cc
glonass_l2_ca_dll_pll_c_aid_tracking_sc.cc
@ -48,6 +49,7 @@ include_directories(
${CMAKE_SOURCE_DIR}/src/core/receiver
${CMAKE_SOURCE_DIR}/src/algorithms/tracking/libs
${CMAKE_SOURCE_DIR}/src/algorithms/libs
${ARMADILLO_INCLUDE_DIRS}
${GLOG_INCLUDE_DIRS}
${GFlags_INCLUDE_DIRS}
${Boost_INCLUDE_DIRS}

View File

@ -0,0 +1,956 @@
/*!
* \file gps_l1_ca_kf_tracking_cc.cc
* \brief Implementation of a processing block of a DLL + Kalman carrier
* tracking loop for GPS L1 C/A signals
* \author Javier Arribas, 2018. jarribas(at)cttc.es
* \author Jordi Vila-Valls 2018. jvila(at)cttc.es
* \author Carles Fernandez-Prades 2018. cfernandez(at)cttc.es
*
* Reference:
* J. Vila-Valls, P. Closas, M. Navarro and C. Fernandez-Prades,
* "Are PLLs Dead? A Tutorial on Kalman Filter-based Techniques for Digital
* Carrier Synchronization", IEEE Aerospace and Electronic Systems Magazine,
* Vol. 32, No. 7, pp. 2845, July 2017. DOI: 10.1109/MAES.2017.150260
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l1_ca_kf_tracking_cc.h"
#include "gps_sdr_signal_processing.h"
#include "tracking_discriminators.h"
#include "lock_detectors.h"
#include "gnss_sdr_flags.h"
#include "GPS_L1_CA.h"
#include "control_message_factory.h"
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <matio.h>
#include <cmath>
#include <iostream>
#include <memory>
#include <sstream>
using google::LogMessage;
gps_l1_ca_kf_tracking_cc_sptr
gps_l1_ca_kf_make_tracking_cc(
uint32_t order,
int64_t if_freq,
int64_t fs_in,
uint32_t vector_length,
bool dump,
std::string dump_filename,
float dll_bw_hz,
float early_late_space_chips,
bool bce_run,
uint32_t bce_ptrans,
uint32_t bce_strans,
int32_t bce_nu,
int32_t bce_kappa)
{
return gps_l1_ca_kf_tracking_cc_sptr(new Gps_L1_Ca_Kf_Tracking_cc(order, if_freq,
fs_in, vector_length, dump, dump_filename, dll_bw_hz, early_late_space_chips,
bce_run, bce_ptrans, bce_strans, bce_nu, bce_kappa));
}
void Gps_L1_Ca_Kf_Tracking_cc::forecast(int noutput_items,
gr_vector_int &ninput_items_required)
{
if (noutput_items != 0)
{
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; // set the required available samples in each call
}
}
Gps_L1_Ca_Kf_Tracking_cc::Gps_L1_Ca_Kf_Tracking_cc(
uint32_t order,
int64_t if_freq,
int64_t fs_in,
uint32_t vector_length,
bool dump,
std::string dump_filename,
float dll_bw_hz,
float early_late_space_chips,
bool bce_run,
uint32_t bce_ptrans,
uint32_t bce_strans,
int32_t bce_nu,
int32_t bce_kappa) : gr::block("Gps_L1_Ca_Kf_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
this->message_port_register_out(pmt::mp("events"));
// initialize internal vars
d_order = order;
d_dump = dump;
d_if_freq = if_freq;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
d_current_prn_length_samples = static_cast<int>(d_vector_length);
// Initialize tracking ==========================================
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
// --- DLL variables --------------------------------------------------------
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the C/A code replica sampled 1x/chip
d_ca_code = static_cast<float *>(volk_gnsssdr_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(float), volk_gnsssdr_get_alignment()));
// correlator outputs (scalar)
d_n_correlator_taps = 3; // Early, Prompt, and Late
d_correlator_outs = static_cast<gr_complex *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
for (int32_t n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
// Set TAPs delay values [chips]
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
d_local_code_shift_chips[1] = 0.0;
d_local_code_shift_chips[2] = d_early_late_spc_chips;
multicorrelator_cpu.init(2 * d_current_prn_length_samples, d_n_correlator_taps);
// --- Perform initializations ------------------------------
// define initial code frequency basis of NCO
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ;
// define residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// define residual carrier phase
d_rem_carr_phase_rad = 0.0;
// define residual carrier phase covariance
d_carr_phase_sigma2 = 0.0;
// sample synchronization
d_sample_counter = 0;
d_acq_sample_stamp = 0;
d_enable_tracking = false;
d_pull_in = false;
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[FLAGS_cn0_samples];
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = FLAGS_carrier_lock_th;
systemName["G"] = std::string("GPS");
systemName["S"] = std::string("SBAS");
d_acquisition_gnss_synchro = 0;
d_channel = 0;
d_acq_code_phase_samples = 0.0;
d_acq_carrier_doppler_hz = 0.0;
d_carrier_doppler_hz = 0.0;
d_carrier_dopplerrate_hz2 = 0.0;
d_acc_carrier_phase_rad = 0.0;
d_code_phase_samples = 0.0;
d_rem_code_phase_chips = 0.0;
d_code_phase_step_chips = 0.0;
d_carrier_phase_step_rad = 0.0;
code_error_chips = 0.0;
code_error_filt_chips = 0.0;
set_relative_rate(1.0 / static_cast<double>(d_vector_length));
// Kalman filter initialization (receiver initialization)
double CN_dB_Hz = 30;
double CN_lin = pow(10, CN_dB_Hz / 10.0);
double sigma2_phase_detector_cycles2;
sigma2_phase_detector_cycles2 = (1.0 / (2.0 * CN_lin * GPS_L1_CA_CODE_PERIOD)) * (1.0 + 1.0 / (2.0 * CN_lin * GPS_L1_CA_CODE_PERIOD));
// covariances (static)
double sigma2_carrier_phase = GPS_TWO_PI / 4;
double sigma2_doppler = 450;
double sigma2_doppler_rate = pow(4.0 * GPS_TWO_PI, 2) / 12.0;
kf_P_x_ini = arma::zeros(2, 2);
kf_P_x_ini(0, 0) = sigma2_carrier_phase;
kf_P_x_ini(1, 1) = sigma2_doppler;
kf_R = arma::zeros(1, 1);
kf_R(0, 0) = sigma2_phase_detector_cycles2;
kf_Q = arma::zeros(2, 2);
kf_Q(0, 0) = pow(GPS_L1_CA_CODE_PERIOD, 4);
kf_Q(1, 1) = GPS_L1_CA_CODE_PERIOD;
kf_F = arma::zeros(2, 2);
kf_F(0, 0) = 1.0;
kf_F(0, 1) = GPS_TWO_PI * GPS_L1_CA_CODE_PERIOD;
kf_F(1, 0) = 0.0;
kf_F(1, 1) = 1.0;
kf_H = arma::zeros(1, 2);
kf_H(0, 0) = 1.0;
kf_x = arma::zeros(2, 1);
kf_y = arma::zeros(1, 1);
kf_P_y = arma::zeros(1, 1);
// order three
if (d_order == 3)
{
kf_P_x_ini = arma::resize(kf_P_x_ini, 3, 3);
kf_P_x_ini(2, 2) = sigma2_doppler_rate;
kf_Q = arma::zeros(3, 3);
kf_Q(0, 0) = pow(GPS_L1_CA_CODE_PERIOD, 4);
kf_Q(1, 1) = GPS_L1_CA_CODE_PERIOD;
kf_Q(2, 2) = GPS_L1_CA_CODE_PERIOD;
kf_F = arma::resize(kf_F, 3, 3);
kf_F(0, 2) = 0.5 * GPS_TWO_PI * pow(GPS_L1_CA_CODE_PERIOD, 2);
kf_F(1, 2) = GPS_L1_CA_CODE_PERIOD;
kf_F(2, 0) = 0.0;
kf_F(2, 1) = 0.0;
kf_F(2, 2) = 1.0;
kf_H = arma::resize(kf_H, 1, 3);
kf_H(0, 2) = 0.0;
kf_x = arma::resize(kf_x, 3, 1);
kf_x(2, 0) = 0.0;
}
// Bayesian covariance estimator initialization
kf_iter = 0;
bayes_run = bce_run;
bayes_ptrans = bce_ptrans;
bayes_strans = bce_strans;
bayes_kappa = bce_kappa;
bayes_nu = bce_nu;
kf_R_est = kf_R;
bayes_estimator.init(arma::zeros(1, 1), bayes_kappa, bayes_nu, (kf_H * kf_P_x_ini * kf_H.t() + kf_R) * (bayes_nu + 2));
}
void Gps_L1_Ca_Kf_Tracking_cc::start_tracking()
{
/*
* correct the code phase according to the delay between acq and trk
*/
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
d_acq_carrier_doppler_step_hz = static_cast<double>(d_acquisition_gnss_synchro->Acq_doppler_step);
// Correct Kalman filter covariance according to acq doppler step size (3 sigma)
if (d_acquisition_gnss_synchro->Acq_doppler_step > 0)
{
kf_P_x_ini(1, 1) = pow(d_acq_carrier_doppler_step_hz / 3.0, 2);
bayes_estimator.init(arma::zeros(1, 1), bayes_kappa, bayes_nu, (kf_H * kf_P_x_ini * kf_H.t() + kf_R) * (bayes_nu + 2));
}
int64_t acq_trk_diff_samples;
double acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<int64_t>(d_sample_counter) - static_cast<int64_t>(d_acq_sample_stamp); //-d_vector_length;
DLOG(INFO) << "Number of samples between Acquisition and Tracking = " << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
// Doppler effect Fd = (C / (C + Vr)) * F
double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
T_chip_mod_seconds = 1 / d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(T_prn_mod_samples);
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
}
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_carrier_dopplerrate_hz2 = 0;
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
// DLL filter initialization
d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
gps_l1_ca_code_gen_float(d_ca_code, d_acquisition_gnss_synchro->PRN, 0);
multicorrelator_cpu.set_local_code_and_taps(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips);
for (int32_t n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0;
d_rem_carr_phase_rad = 0.0;
d_rem_code_phase_chips = 0.0;
d_acc_carrier_phase_rad = 0.0;
d_carr_phase_sigma2 = 0.0;
d_code_phase_samples = d_acq_code_phase_samples;
std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0, 1);
// DEBUG OUTPUT
std::cout << "Tracking of GPS L1 C/A signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// enable tracking
d_pull_in = true;
d_enable_tracking = true;
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
<< " Code Phase correction [samples]=" << delay_correction_samples
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
}
Gps_L1_Ca_Kf_Tracking_cc::~Gps_L1_Ca_Kf_Tracking_cc()
{
if (d_dump_file.is_open())
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
if (d_dump)
{
if (d_channel == 0)
{
std::cout << "Writing .mat files ...";
}
Gps_L1_Ca_Kf_Tracking_cc::save_matfile();
if (d_channel == 0)
{
std::cout << " done." << std::endl;
}
}
try
{
volk_gnsssdr_free(d_local_code_shift_chips);
volk_gnsssdr_free(d_correlator_outs);
volk_gnsssdr_free(d_ca_code);
delete[] d_Prompt_buffer;
multicorrelator_cpu.free();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
int32_t Gps_L1_Ca_Kf_Tracking_cc::save_matfile()
{
// READ DUMP FILE
std::ifstream::pos_type size;
int32_t number_of_double_vars = 1;
int32_t number_of_float_vars = 19;
int32_t epoch_size_bytes = sizeof(uint64_t) + sizeof(double) * number_of_double_vars +
sizeof(float) * number_of_float_vars + sizeof(uint32_t);
std::ifstream dump_file;
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
return 1;
}
// count number of epochs and rewind
int64_t num_epoch = 0;
if (dump_file.is_open())
{
size = dump_file.tellg();
num_epoch = static_cast<int64_t>(size) / static_cast<int64_t>(epoch_size_bytes);
dump_file.seekg(0, std::ios::beg);
}
else
{
return 1;
}
float *abs_VE = new float[num_epoch];
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *abs_VL = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
uint64_t *PRN_start_sample_count = new uint64_t[num_epoch];
float *acc_carrier_phase_rad = new float[num_epoch];
float *carrier_doppler_hz = new float[num_epoch];
float *carrier_dopplerrate_hz2 = new float[num_epoch];
float *code_freq_chips = new float[num_epoch];
float *carr_error_hz = new float[num_epoch];
float *carr_noise_sigma2 = new float[num_epoch];
float *carr_error_filt_hz = new float[num_epoch];
float *code_error_chips = new float[num_epoch];
float *code_error_filt_chips = new float[num_epoch];
float *CN0_SNV_dB_Hz = new float[num_epoch];
float *carrier_lock_test = new float[num_epoch];
float *aux1 = new float[num_epoch];
double *aux2 = new double[num_epoch];
uint32_t *PRN = new uint32_t[num_epoch];
try
{
if (dump_file.is_open())
{
for (int64_t i = 0; i < num_epoch; i++)
{
dump_file.read(reinterpret_cast<char *>(&abs_VE[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_E[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_P[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_L[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_VL[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_I[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_Q[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&PRN_start_sample_count[i]), sizeof(uint64_t));
dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_rad[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&carrier_doppler_hz[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&carrier_dopplerrate_hz2[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&code_freq_chips[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&carr_error_hz[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&carr_noise_sigma2[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&carr_error_filt_hz[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&code_error_chips[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&code_error_filt_chips[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&CN0_SNV_dB_Hz[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&carrier_lock_test[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&aux1[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&aux2[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(uint32_t));
}
}
dump_file.close();
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
delete[] abs_VE;
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] abs_VL;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] carrier_dopplerrate_hz2;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_noise_sigma2;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 1;
}
// WRITE MAT FILE
mat_t *matfp;
matvar_t *matvar;
std::string filename = d_dump_filename;
filename.erase(filename.length() - 4, 4);
filename.append(".mat");
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if (reinterpret_cast<long *>(matfp) != NULL)
{
size_t dims[2] = {1, static_cast<size_t>(num_epoch)};
matvar = Mat_VarCreate("abs_VE", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_VE, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_VL", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_VL, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, acc_carrier_phase_rad, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, carrier_doppler_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_dopplerrate_hz2", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, carrier_dopplerrate_hz2, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_freq_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, code_freq_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, carr_error_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_noise_sigma2", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, carr_noise_sigma2, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, carr_error_filt_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, code_error_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, code_error_filt_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, CN0_SNV_dB_Hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_lock_test", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, carrier_lock_test, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux1", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, aux1, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
Mat_Close(matfp);
delete[] abs_VE;
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] abs_VL;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] carrier_dopplerrate_hz2;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_noise_sigma2;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 0;
}
void Gps_L1_Ca_Kf_Tracking_cc::set_channel(uint32_t channel)
{
gr::thread::scoped_lock l(d_setlock);
d_channel = channel;
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump)
{
if (!d_dump_file.is_open())
{
try
{
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
}
}
}
}
void Gps_L1_Ca_Kf_Tracking_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
}
int Gps_L1_Ca_Kf_Tracking_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// process vars
d_carr_phase_error_rad = 0.0;
double code_error_chips = 0.0;
double code_error_filt_chips = 0.0;
// Block input data and block output stream pointers
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
if (d_enable_tracking == true)
{
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
// Receiver signal alignment
if (d_pull_in == true)
{
// Signal alignment (skip samples until the incoming signal is aligned with local replica)
uint64_t acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
double acq_trk_shif_correction_samples = static_cast<double>(d_current_prn_length_samples) - std::fmod(static_cast<double>(acq_to_trk_delay_samples), static_cast<double>(d_current_prn_length_samples));
int32_t samples_offset = std::round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
if (samples_offset < 0)
{
samples_offset = 0;
}
d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * d_acq_code_phase_samples;
d_sample_counter += samples_offset; // count for the processed samples
d_pull_in = false;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.fs = d_fs_in;
current_synchro_data.correlation_length_ms = 1;
*out[0] = current_synchro_data;
// Kalman filter initialization reset
kf_P_x = kf_P_x_ini;
// Update Kalman states based on acquisition information
kf_x(0) = d_carrier_phase_step_rad * samples_offset;
kf_x(1) = d_carrier_doppler_hz;
if (kf_x.n_elem > 2)
{
kf_x(2) = d_carrier_dopplerrate_hz2;
}
// Covariance estimation initialization reset
kf_iter = 0;
bayes_estimator.init(arma::zeros(1, 1), bayes_kappa, bayes_nu, (kf_H * kf_P_x_ini * kf_H.t() + kf_R) * (bayes_nu + 2));
consume_each(samples_offset); // shift input to perform alignment with local replica
return 1;
}
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
// Perform carrier wipe-off and compute Early, Prompt and Late correlation
multicorrelator_cpu.set_input_output_vectors(d_correlator_outs, in);
multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carr_phase_rad,
d_carrier_phase_step_rad,
d_rem_code_phase_chips,
d_code_phase_step_chips,
d_current_prn_length_samples);
// ################## Kalman Carrier Tracking ######################################
// Kalman state prediction (time update)
kf_x_pre = kf_F * kf_x; //state prediction
kf_P_x_pre = kf_F * kf_P_x * kf_F.t() + kf_Q; //state error covariance prediction
// Update discriminator [rads/Ti]
d_carr_phase_error_rad = pll_cloop_two_quadrant_atan(d_correlator_outs[1]); // prompt output
// Kalman estimation (measurement update)
double sigma2_phase_detector_cycles2;
double CN_lin = pow(10, d_CN0_SNV_dB_Hz / 10.0);
sigma2_phase_detector_cycles2 = (1.0 / (2.0 * CN_lin * GPS_L1_CA_CODE_PERIOD)) * (1.0 + 1.0 / (2.0 * CN_lin * GPS_L1_CA_CODE_PERIOD));
kf_y(0) = d_carr_phase_error_rad; // measurement vector
kf_R(0, 0) = sigma2_phase_detector_cycles2;
if (bayes_run && (kf_iter >= bayes_ptrans))
{
bayes_estimator.update_sequential(kf_y);
}
if (bayes_run && (kf_iter >= (bayes_ptrans + bayes_strans)))
{
// TODO: Resolve segmentation fault
kf_P_y = bayes_estimator.get_Psi_est();
kf_R_est = kf_P_y - kf_H * kf_P_x_pre * kf_H.t();
}
else
{
kf_P_y = kf_H * kf_P_x_pre * kf_H.t() + kf_R; // innovation covariance matrix
kf_R_est = kf_R;
}
// Kalman filter update step
kf_K = (kf_P_x_pre * kf_H.t()) * arma::inv(kf_P_y); // Kalman gain
kf_x = kf_x_pre + kf_K * kf_y; // updated state estimation
kf_P_x = (arma::eye(size(kf_P_x_pre)) - kf_K * kf_H) * kf_P_x_pre; // update state estimation error covariance matrix
// Store Kalman filter results
d_rem_carr_phase_rad = kf_x(0); // set a new carrier Phase estimation to the NCO
d_carrier_doppler_hz = kf_x(1); // set a new carrier Doppler estimation to the NCO
if (kf_x.n_elem > 2)
{
d_carrier_dopplerrate_hz2 = kf_x(2);
}
else
{
d_carrier_dopplerrate_hz2 = 0;
}
d_carr_phase_sigma2 = kf_R_est(0, 0);
// ################## DLL ##########################################################
// New code Doppler frequency estimation based on carrier frequency estimation
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
// DLL discriminator
code_error_chips = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); // [chips/Ti] early and late
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); // [chips/second]
double T_chip_seconds = 1.0 / static_cast<double>(d_code_freq_chips);
double T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); // [seconds]
// ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
double K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
d_current_prn_length_samples = static_cast<int>(round(K_blk_samples)); // round to a discrete number of samples
//################### NCO COMMANDS #################################################
// carrier phase step (NCO phase increment per sample) [rads/sample]
d_carrier_phase_step_rad = PI_2 * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
// carrier phase accumulator
d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * static_cast<double>(d_current_prn_length_samples);
//################### DLL COMMANDS #################################################
// code phase step (Code resampler phase increment per sample) [chips/sample]
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
// remnant code phase [chips]
d_rem_code_phase_samples = K_blk_samples - static_cast<double>(d_current_prn_length_samples); // rounding error < 1 sample
d_rem_code_phase_chips = d_code_freq_chips * (d_rem_code_phase_samples / static_cast<double>(d_fs_in));
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < FLAGS_cn0_samples)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; //prompt
d_cn0_estimation_counter++;
}
else
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, FLAGS_cn0_samples, GPS_L1_CA_CODE_PERIOD);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, FLAGS_cn0_samples);
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
{
//if (d_channel == 1)
//std::cout << "Carrier Lock Test Fail in channel " << d_channel << ": " << d_carrier_lock_test << " < " << d_carrier_lock_threshold << "," << nfail++ << std::endl;
d_carrier_lock_fail_counter++;
//nfail++;
}
else
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
}
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); // 3 -> loss of lock
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false;
}
}
// ########### Output the tracking data to navigation and PVT ##########
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs[1]).real());
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs[1]).imag());
current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast<uint64_t>(d_current_prn_length_samples);
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_symbol_output = true;
current_synchro_data.correlation_length_ms = 1;
kf_iter++;
}
else
{
for (int32_t n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast<uint64_t>(d_current_prn_length_samples);
current_synchro_data.System = {'G'};
current_synchro_data.correlation_length_ms = 1;
}
// assign the GNU Radio block output data
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
if (d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
float prompt_I;
float prompt_Q;
float tmp_E, tmp_P, tmp_L;
float tmp_VE = 0.0;
float tmp_VL = 0.0;
float tmp_float;
double tmp_double;
prompt_I = d_correlator_outs[1].real();
prompt_Q = d_correlator_outs[1].imag();
tmp_E = std::abs<float>(d_correlator_outs[0]);
tmp_P = std::abs<float>(d_correlator_outs[1]);
tmp_L = std::abs<float>(d_correlator_outs[2]);
try
{
// EPR
d_dump_file.write(reinterpret_cast<char *>(&tmp_VE), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_VL), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float));
// PRN start sample stamp
d_dump_file.write(reinterpret_cast<char *>(&d_sample_counter), sizeof(uint64_t));
// accumulated carrier phase
tmp_float = d_acc_carrier_phase_rad;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// carrier and code frequency
tmp_float = d_carrier_doppler_hz;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = d_carrier_dopplerrate_hz2;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = d_code_freq_chips;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// Kalman commands
tmp_float = static_cast<float>(d_carr_phase_error_rad * GPS_TWO_PI);
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = static_cast<float>(d_carr_phase_sigma2);
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = static_cast<float>(d_rem_carr_phase_rad * GPS_TWO_PI);
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// DLL commands
tmp_float = code_error_chips;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = code_error_filt_chips;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// CN0 and carrier lock test
tmp_float = d_CN0_SNV_dB_Hz;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = d_carrier_lock_test;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_double = static_cast<double>(d_sample_counter + static_cast<uint64_t>(d_current_prn_length_samples));
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
uint32_t prn_ = d_acquisition_gnss_synchro->PRN;
d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(uint32_t));
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception writing trk dump file " << e.what();
}
}
consume_each(d_current_prn_length_samples); // this is necessary in gr::block derivates
d_sample_counter += d_current_prn_length_samples; // count for the processed samples
return 1; // output tracking result ALWAYS even in the case of d_enable_tracking==false
}

View File

@ -0,0 +1,221 @@
/*!
* \file gps_l1_ca_kf_tracking_cc.cc
* \brief Interface of a processing block of a DLL + Kalman carrier
* tracking loop for GPS L1 C/A signals
* \author Javier Arribas, 2018. jarribas(at)cttc.es
* \author Jordi Vila-Valls 2018. jvila(at)cttc.es
* \author Carles Fernandez-Prades 2018. cfernandez(at)cttc.es
*
* Reference:
* J. Vila-Valls, P. Closas, M. Navarro and C. Fernandez-Prades,
* "Are PLLs Dead? A Tutorial on Kalman Filter-based Techniques for Digital
* Carrier Synchronization", IEEE Aerospace and Electronic Systems Magazine,
* Vol. 32, No. 7, pp. 2845, July 2017. DOI: 10.1109/MAES.2017.150260
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GPS_L1_CA_KF_TRACKING_CC_H
#define GNSS_SDR_GPS_L1_CA_KF_TRACKING_CC_H
#include "gnss_synchro.h"
#include "tracking_2nd_DLL_filter.h"
#include "tracking_2nd_PLL_filter.h"
#include "cpu_multicorrelator_real_codes.h"
#include "bayesian_estimation.h"
#include <armadillo>
#include <gnuradio/block.h>
#include <fstream>
#include <map>
#include <string>
class Gps_L1_Ca_Kf_Tracking_cc;
typedef boost::shared_ptr<Gps_L1_Ca_Kf_Tracking_cc>
gps_l1_ca_kf_tracking_cc_sptr;
gps_l1_ca_kf_tracking_cc_sptr
gps_l1_ca_kf_make_tracking_cc(uint32_t order,
int64_t if_freq,
int64_t fs_in, uint32_t vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float early_late_space_chips,
bool bce_run,
uint32_t bce_ptrans,
uint32_t bce_strans,
int32_t bce_nu,
int32_t bce_kappa);
/*!
* \brief This class implements a DLL + PLL tracking loop block
*/
class Gps_L1_Ca_Kf_Tracking_cc : public gr::block
{
public:
~Gps_L1_Ca_Kf_Tracking_cc();
void set_channel(uint32_t channel);
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
void start_tracking();
int general_work(int noutput_items, gr_vector_int& ninput_items,
gr_vector_const_void_star& input_items, gr_vector_void_star& output_items);
void forecast(int noutput_items, gr_vector_int& ninput_items_required);
private:
friend gps_l1_ca_kf_tracking_cc_sptr
gps_l1_ca_kf_make_tracking_cc(uint32_t order,
int64_t if_freq,
int64_t fs_in, uint32_t vector_length,
bool dump,
std::string dump_filename,
float dll_bw_hz,
float early_late_space_chips,
bool bce_run,
uint32_t bce_ptrans,
uint32_t bce_strans,
int32_t bce_nu,
int32_t bce_kappa);
Gps_L1_Ca_Kf_Tracking_cc(uint32_t order,
int64_t if_freq,
int64_t fs_in, uint32_t vector_length,
bool dump,
std::string dump_filename,
float dll_bw_hz,
float early_late_space_chips,
bool bce_run,
uint32_t bce_ptrans,
uint32_t bce_strans,
int32_t bce_nu,
int32_t bce_kappa);
// tracking configuration vars
uint32_t d_order;
uint32_t d_vector_length;
bool d_dump;
Gnss_Synchro* d_acquisition_gnss_synchro;
uint32_t d_channel;
int64_t d_if_freq;
int64_t d_fs_in;
double d_early_late_spc_chips;
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
double d_rem_code_phase_chips;
double d_rem_carr_phase_rad;
// Kalman filter variables
arma::mat kf_P_x_ini; // initial state error covariance matrix
arma::mat kf_P_x; // state error covariance matrix
arma::mat kf_P_x_pre; // Predicted state error covariance matrix
arma::mat kf_P_y; // innovation covariance matrix
arma::mat kf_F; // state transition matrix
arma::mat kf_H; // system matrix
arma::mat kf_R; // measurement error covariance matrix
arma::mat kf_Q; // system error covariance matrix
arma::colvec kf_x; // state vector
arma::colvec kf_x_pre; // predicted state vector
arma::colvec kf_y; // measurement vector
arma::mat kf_K; // Kalman gain matrix
// Bayesian estimator
Bayesian_estimator bayes_estimator;
arma::mat kf_R_est; // measurement error covariance
uint32_t bayes_ptrans;
uint32_t bayes_strans;
int32_t bayes_nu;
int32_t bayes_kappa;
bool bayes_run;
uint32_t kf_iter;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
// Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
double d_acq_carrier_doppler_step_hz;
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// correlator
int32_t d_n_correlator_taps;
float* d_ca_code;
float* d_local_code_shift_chips;
gr_complex* d_correlator_outs;
cpu_multicorrelator_real_codes multicorrelator_cpu;
// tracking vars
double d_code_freq_chips;
double d_code_phase_step_chips;
double d_carrier_doppler_hz;
double d_carrier_dopplerrate_hz2;
double d_carrier_phase_step_rad;
double d_acc_carrier_phase_rad;
double d_carr_phase_error_rad;
double d_carr_phase_sigma2;
double d_code_phase_samples;
double code_error_chips;
double code_error_filt_chips;
// PRN period in samples
int32_t d_current_prn_length_samples;
// processing samples counters
uint64_t d_sample_counter;
uint64_t d_acq_sample_stamp;
// CN0 estimation and lock detector
int32_t d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int32_t d_carrier_lock_fail_counter;
// control vars
bool d_enable_tracking;
bool d_pull_in;
// file dump
std::string d_dump_filename;
std::ofstream d_dump_file;
std::map<std::string, std::string> systemName;
std::string sys;
int32_t save_matfile();
};
#endif // GNSS_SDR_GPS_L1_CA_KF_TRACKING_CC_H

View File

@ -44,6 +44,7 @@ set(TRACKING_LIB_SOURCES
tracking_FLL_PLL_filter.cc
tracking_loop_filter.cc
dll_pll_conf.cc
bayesian_estimation.cc
)
if(ENABLE_FPGA)
@ -56,6 +57,7 @@ include_directories(
${CMAKE_SOURCE_DIR}/src/core/interfaces
${CMAKE_SOURCE_DIR}/src/core/receiver
${CMAKE_SOURCE_DIR}/src/algorithms/libs
${ARMADILLO_INCLUDE_DIRS}
${VOLK_INCLUDE_DIRS}
${GLOG_INCLUDE_DIRS}
${GFlags_INCLUDE_DIRS}

View File

@ -0,0 +1,187 @@
/*!
* \file bayesian_estimation.cc
* \brief Interface of a library with Bayesian noise statistic estimation
*
* Bayesian_estimator is a Bayesian estimator which attempts to estimate
* the properties of a stochastic process based on a sequence of
* discrete samples of the sequence.
*
* [1] TODO: Refs
*
* \authors <ul>
* <li> Gerald LaMountain, 2018. gerald(at)ece.neu.edu
* <li> Jordi Vila-Valls 2018. jvila(at)cttc.es
* </ul>
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "bayesian_estimation.h"
Bayesian_estimator::Bayesian_estimator()
{
int ny = 1;
mu_prior = arma::zeros(ny, 1);
kappa_prior = 0;
nu_prior = 0;
Psi_prior = arma::eye(ny, ny) * (nu_prior + ny + 1);
mu_est = mu_prior;
Psi_est = Psi_prior;
}
Bayesian_estimator::Bayesian_estimator(int ny)
{
mu_prior = arma::zeros(ny, 1);
kappa_prior = 0;
nu_prior = 0;
Psi_prior = arma::eye(ny, ny) * (nu_prior + ny + 1);
mu_est = mu_prior;
Psi_est = Psi_prior;
}
Bayesian_estimator::Bayesian_estimator(const arma::vec& mu_prior_0, int kappa_prior_0, int nu_prior_0, const arma::mat& Psi_prior_0)
{
mu_prior = mu_prior_0;
kappa_prior = kappa_prior_0;
nu_prior = nu_prior_0;
Psi_prior = Psi_prior_0;
mu_est = mu_prior;
Psi_est = Psi_prior;
}
Bayesian_estimator::~Bayesian_estimator()
{
}
void Bayesian_estimator::init(const arma::mat& mu_prior_0, int kappa_prior_0, int nu_prior_0, const arma::mat& Psi_prior_0)
{
mu_prior = mu_prior_0;
kappa_prior = kappa_prior_0;
nu_prior = nu_prior_0;
Psi_prior = Psi_prior_0;
mu_est = mu_prior;
Psi_est = Psi_prior;
}
/*
* Perform Bayesian noise estimation using the normal-inverse-Wishart priors stored in
* the class structure, and update the priors according to the computed posteriors
*/
void Bayesian_estimator::update_sequential(const arma::vec& data)
{
int K = data.n_cols;
int ny = data.n_rows;
if (mu_prior.is_empty())
{
mu_prior = arma::zeros(ny, 1);
}
if (Psi_prior.is_empty())
{
Psi_prior = arma::zeros(ny, ny);
}
arma::vec y_mean = arma::mean(data, 1);
arma::mat Psi_N = arma::zeros(ny, ny);
for (int kk = 0; kk < K; kk++)
{
Psi_N = Psi_N + (data.col(kk) - y_mean) * ((data.col(kk) - y_mean).t());
}
arma::vec mu_posterior = (kappa_prior * mu_prior + K * y_mean) / (kappa_prior + K);
int kappa_posterior = kappa_prior + K;
int nu_posterior = nu_prior + K;
arma::mat Psi_posterior = Psi_prior + Psi_N + (kappa_prior * K) / (kappa_prior + K) * (y_mean - mu_prior) * ((y_mean - mu_prior).t());
mu_est = mu_posterior;
if ((nu_posterior - ny - 1) > 0)
{
Psi_est = Psi_posterior / (nu_posterior - ny - 1);
}
else
{
Psi_est = Psi_posterior / (nu_posterior + ny + 1);
}
mu_prior = mu_posterior;
kappa_prior = kappa_posterior;
nu_prior = nu_posterior;
Psi_prior = Psi_posterior;
}
/*
* Perform Bayesian noise estimation using a new set of normal-inverse-Wishart priors
* and update the priors according to the computed posteriors
*/
void Bayesian_estimator::update_sequential(const arma::vec& data, const arma::vec& mu_prior_0, int kappa_prior_0, int nu_prior_0, const arma::mat& Psi_prior_0)
{
int K = data.n_cols;
int ny = data.n_rows;
arma::vec y_mean = arma::mean(data, 1);
arma::mat Psi_N = arma::zeros(ny, ny);
for (int kk = 0; kk < K; kk++)
{
Psi_N = Psi_N + (data.col(kk) - y_mean) * ((data.col(kk) - y_mean).t());
}
arma::vec mu_posterior = (kappa_prior_0 * mu_prior_0 + K * y_mean) / (kappa_prior_0 + K);
int kappa_posterior = kappa_prior_0 + K;
int nu_posterior = nu_prior_0 + K;
arma::mat Psi_posterior = Psi_prior_0 + Psi_N + (kappa_prior_0 * K) / (kappa_prior_0 + K) * (y_mean - mu_prior_0) * ((y_mean - mu_prior_0).t());
mu_est = mu_posterior;
if ((nu_posterior - ny - 1) > 0)
{
Psi_est = Psi_posterior / (nu_posterior - ny - 1);
}
else
{
Psi_est = Psi_posterior / (nu_posterior + ny + 1);
}
mu_prior = mu_posterior;
kappa_prior = kappa_posterior;
nu_prior = nu_posterior;
Psi_prior = Psi_posterior;
}
arma::mat Bayesian_estimator::get_mu_est() const
{
return mu_est;
}
arma::mat Bayesian_estimator::get_Psi_est() const
{
return Psi_est;
}

View File

@ -0,0 +1,85 @@
/*!
* \file bayesian_estimation.h
* \brief Interface of a library with Bayesian noise statistic estimation
*
* Bayesian_estimator is a Bayesian estimator which attempts to estimate
* the properties of a stochastic process based on a sequence of
* discrete samples of the sequence.
*
* [1] TODO: Refs
*
* \authors <ul>
* <li> Gerald LaMountain, 2018. gerald(at)ece.neu.edu
* <li> Jordi Vila-Valls 2018. jvila(at)cttc.es
* </ul>
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_BAYESIAN_ESTIMATION_H_
#define GNSS_SDR_BAYESIAN_ESTIMATION_H_
#include <gnuradio/gr_complex.h>
#include <armadillo>
/*! \brief Bayesian_estimator is an estimator of noise characteristics (i.e. mean, covariance)
*
* Bayesian_estimator is an estimator which performs estimation of noise characteristics from
* a sequence of identically and independently distributed (IID) samples of a stationary
* stochastic process by way of Bayesian inference using conjugate priors. The posterior
* distribution is assumed to be Gaussian with mean \mathbf{\mu} and covariance \hat{\mathbf{C}},
* which has a conjugate prior given by a normal-inverse-Wishart distribution with paramemters
* \mathbf{\mu}_{0}, \kappa_{0}, \nu_{0}, and \mathbf{\Psi}.
*
* [1] TODO: Ref1
*
*/
class Bayesian_estimator
{
public:
Bayesian_estimator();
Bayesian_estimator(int ny);
Bayesian_estimator(const arma::vec& mu_prior_0, int kappa_prior_0, int nu_prior_0, const arma::mat& Psi_prior_0);
~Bayesian_estimator();
void init(const arma::mat& mu_prior_0, int kappa_prior_0, int nu_prior_0, const arma::mat& Psi_prior_0);
void update_sequential(const arma::vec& data);
void update_sequential(const arma::vec& data, const arma::vec& mu_prior_0, int kappa_prior_0, int nu_prior_0, const arma::mat& Psi_prior_0);
arma::mat get_mu_est() const;
arma::mat get_Psi_est() const;
private:
arma::vec mu_est;
arma::mat Psi_est;
arma::vec mu_prior;
int kappa_prior;
int nu_prior;
arma::mat Psi_prior;
};
#endif

View File

@ -47,8 +47,10 @@ gnss_sdr_supl_client::gnss_sdr_supl_client()
request = 0;
}
gnss_sdr_supl_client::~gnss_sdr_supl_client() {}
void gnss_sdr_supl_client::print_assistance()
{
if (assist.set & SUPL_RRLP_ASSIST_REFTIME)
@ -189,6 +191,7 @@ int gnss_sdr_supl_client::get_assistance(int i_mcc, int i_mns, int i_lac, int i_
return err;
}
void gnss_sdr_supl_client::read_supl_data()
{
// READ REFERENCE LOCATION
@ -270,7 +273,6 @@ void gnss_sdr_supl_client::read_supl_data()
}
}
// READ SV EPHEMERIS
if (assist.cnt_eph)
{
@ -385,9 +387,10 @@ bool gnss_sdr_supl_client::load_ephemeris_xml(const std::string file_name)
return true;
}
bool gnss_sdr_supl_client::save_ephemeris_map_xml(const std::string file_name, std::map<int, Gps_Ephemeris> eph_map)
{
if (eph_map.size() > 0)
if (eph_map.empty() == false)
{
try
{
@ -411,6 +414,7 @@ bool gnss_sdr_supl_client::save_ephemeris_map_xml(const std::string file_name, s
}
}
bool gnss_sdr_supl_client::load_utc_xml(const std::string file_name)
{
try
@ -429,9 +433,10 @@ bool gnss_sdr_supl_client::load_utc_xml(const std::string file_name)
return true;
}
bool gnss_sdr_supl_client::save_utc_map_xml(const std::string file_name, std::map<int, Gps_Utc_Model> utc_map)
{
if (utc_map.size() > 0)
if (utc_map.empty() == false)
{
try
{
@ -455,6 +460,7 @@ bool gnss_sdr_supl_client::save_utc_map_xml(const std::string file_name, std::ma
}
}
bool gnss_sdr_supl_client::load_iono_xml(const std::string file_name)
{
try
@ -473,9 +479,10 @@ bool gnss_sdr_supl_client::load_iono_xml(const std::string file_name)
return true;
}
bool gnss_sdr_supl_client::save_iono_map_xml(const std::string file_name, std::map<int, Gps_Iono> iono_map)
{
if (iono_map.size() > 0)
if (iono_map.empty() == false)
{
try
{
@ -499,6 +506,7 @@ bool gnss_sdr_supl_client::save_iono_map_xml(const std::string file_name, std::m
}
}
bool gnss_sdr_supl_client::load_ref_time_xml(const std::string file_name)
{
try
@ -517,9 +525,10 @@ bool gnss_sdr_supl_client::load_ref_time_xml(const std::string file_name)
return true;
}
bool gnss_sdr_supl_client::save_ref_time_map_xml(const std::string file_name, std::map<int, Gps_Ref_Time> ref_time_map)
{
if (ref_time_map.size() > 0)
if (ref_time_map.empty() == false)
{
try
{
@ -543,6 +552,7 @@ bool gnss_sdr_supl_client::save_ref_time_map_xml(const std::string file_name, st
}
}
bool gnss_sdr_supl_client::load_ref_location_xml(const std::string file_name)
{
try
@ -561,9 +571,10 @@ bool gnss_sdr_supl_client::load_ref_location_xml(const std::string file_name)
return true;
}
bool gnss_sdr_supl_client::save_ref_location_map_xml(const std::string file_name, std::map<int, Gps_Ref_Location> ref_location_map)
{
if (ref_location_map.size() > 0)
if (ref_location_map.empty() == false)
{
try
{

View File

@ -7,11 +7,12 @@
#include <constr_TYPE.h>
#include <per_opentype.h>
typedef struct uper_ugot_key {
asn_per_data_t oldpd; /* Old per data source */
size_t unclaimed;
size_t ot_moved; /* Number of bits moved by OT processing */
int repeat;
typedef struct uper_ugot_key
{
asn_per_data_t oldpd; /* Old per data source */
size_t unclaimed;
size_t ot_moved; /* Number of bits moved by OT processing */
int repeat;
} uper_ugot_key;
static int uper_ugot_refill(asn_per_data_t *pd);
@ -24,243 +25,272 @@ int asn_debug_indent;
* Encode an "open type field".
* #10.1, #10.2
*/
int
uper_open_type_put(asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po) {
void *buf;
void *bptr;
ssize_t size;
size_t toGo;
int uper_open_type_put(asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po)
{
void *buf;
void *bptr;
ssize_t size;
size_t toGo;
ASN_DEBUG("Open type put %s ...", td->name);
ASN_DEBUG("Open type put %s ...", td->name);
size = uper_encode_to_new_buffer(td, constraints, sptr, &buf);
if(size <= 0) return -1;
size = uper_encode_to_new_buffer(td, constraints, sptr, &buf);
if (size <= 0) return -1;
for(bptr = buf, toGo = size; toGo;) {
ssize_t maySave = uper_put_length(po, toGo);
if(maySave < 0) break;
if(per_put_many_bits(po, bptr, maySave * 8)) break;
bptr = (char *)bptr + maySave;
toGo -= maySave;
}
for (bptr = buf, toGo = size; toGo;)
{
ssize_t maySave = uper_put_length(po, toGo);
if (maySave < 0) break;
if (per_put_many_bits(po, bptr, maySave * 8)) break;
bptr = (char *)bptr + maySave;
toGo -= maySave;
}
FREEMEM(buf);
if(toGo) return -1;
FREEMEM(buf);
if (toGo) return -1;
ASN_DEBUG("Open type put %s of length %d + overhead (1byte?)",
td->name, size);
ASN_DEBUG("Open type put %s of length %d + overhead (1byte?)",
td->name, size);
return 0;
return 0;
}
static asn_dec_rval_t
uper_open_type_get_simple(asn_codec_ctx_t *ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_dec_rval_t rv;
ssize_t chunk_bytes;
int repeat;
uint8_t *buf = 0;
size_t bufLen = 0;
size_t bufSize = 0;
asn_per_data_t spd;
size_t padding;
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd)
{
asn_dec_rval_t rv;
ssize_t chunk_bytes;
int repeat;
uint8_t *buf = 0;
size_t bufLen = 0;
size_t bufSize = 0;
asn_per_data_t spd;
size_t padding;
_ASN_STACK_OVERFLOW_CHECK(ctx);
_ASN_STACK_OVERFLOW_CHECK(ctx);
ASN_DEBUG("Getting open type %s...", td->name);
ASN_DEBUG("Getting open type %s...", td->name);
do {
chunk_bytes = uper_get_length(pd, -1, &repeat);
if(chunk_bytes < 0) {
FREEMEM(buf);
_ASN_DECODE_STARVED;
}
if(bufLen + chunk_bytes > bufSize) {
void *ptr;
bufSize = chunk_bytes + (bufSize << 2);
ptr = REALLOC(buf, bufSize);
if(!ptr) {
FREEMEM(buf);
_ASN_DECODE_FAILED;
}
buf = ptr;
}
if(per_get_many_bits(pd, buf + bufLen, 0, chunk_bytes << 3)) {
FREEMEM(buf);
_ASN_DECODE_STARVED;
}
bufLen += chunk_bytes;
} while(repeat);
do
{
chunk_bytes = uper_get_length(pd, -1, &repeat);
if (chunk_bytes < 0)
{
FREEMEM(buf);
_ASN_DECODE_STARVED;
}
if (bufLen + chunk_bytes > bufSize)
{
void *ptr;
bufSize = chunk_bytes + (bufSize << 2);
ptr = REALLOC(buf, bufSize);
if (!ptr)
{
FREEMEM(buf);
_ASN_DECODE_FAILED;
}
buf = ptr;
}
if (per_get_many_bits(pd, buf + bufLen, 0, chunk_bytes << 3))
{
FREEMEM(buf);
_ASN_DECODE_STARVED;
}
bufLen += chunk_bytes;
}
while (repeat);
ASN_DEBUG("Getting open type %s encoded in %d bytes", td->name,
bufLen);
ASN_DEBUG("Getting open type %s encoded in %d bytes", td->name,
bufLen);
memset(&spd, 0, sizeof(spd));
spd.buffer = buf;
spd.nbits = bufLen << 3;
memset(&spd, 0, sizeof(spd));
spd.buffer = buf;
spd.nbits = bufLen << 3;
asn_debug_indent += 4;
rv = td->uper_decoder(ctx, td, constraints, sptr, &spd);
asn_debug_indent -= 4;
asn_debug_indent += 4;
rv = td->uper_decoder(ctx, td, constraints, sptr, &spd);
asn_debug_indent -= 4;
if(rv.code == RC_OK) {
/* Check padding validity */
padding = spd.nbits - spd.nboff;
if(padding < 8 && per_get_few_bits(&spd, padding) == 0) {
/* Everything is cool */
FREEMEM(buf);
return rv;
}
FREEMEM(buf);
if(padding >= 8) {
ASN_DEBUG("Too large padding %d in open type", padding);
_ASN_DECODE_FAILED;
} else {
ASN_DEBUG("Non-zero padding");
_ASN_DECODE_FAILED;
}
} else {
FREEMEM(buf);
/* rv.code could be RC_WMORE, nonsense in this context */
rv.code = RC_FAIL; /* Noone would give us more */
}
if (rv.code == RC_OK)
{
/* Check padding validity */
padding = spd.nbits - spd.nboff;
if (padding < 8 && per_get_few_bits(&spd, padding) == 0)
{
/* Everything is cool */
FREEMEM(buf);
return rv;
}
FREEMEM(buf);
if (padding >= 8)
{
ASN_DEBUG("Too large padding %d in open type", padding);
_ASN_DECODE_FAILED;
}
else
{
ASN_DEBUG("Non-zero padding");
_ASN_DECODE_FAILED;
}
}
else
{
FREEMEM(buf);
/* rv.code could be RC_WMORE, nonsense in this context */
rv.code = RC_FAIL; /* Noone would give us more */
}
return rv;
return rv;
}
static asn_dec_rval_t GCC_NOTUSED
uper_open_type_get_complex(asn_codec_ctx_t *ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
uper_ugot_key arg;
asn_dec_rval_t rv;
ssize_t padding;
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd)
{
uper_ugot_key arg;
asn_dec_rval_t rv;
ssize_t padding;
_ASN_STACK_OVERFLOW_CHECK(ctx);
_ASN_STACK_OVERFLOW_CHECK(ctx);
ASN_DEBUG("Getting open type %s from %s", td->name,
per_data_string(pd));
arg.oldpd = *pd;
arg.unclaimed = 0;
arg.ot_moved = 0;
arg.repeat = 1;
pd->refill = uper_ugot_refill;
pd->refill_key = &arg;
pd->nbits = pd->nboff; /* 0 good bits at this point, will refill */
pd->moved = 0; /* This now counts the open type size in bits */
ASN_DEBUG("Getting open type %s from %s", td->name,
per_data_string(pd));
arg.oldpd = *pd;
arg.unclaimed = 0;
arg.ot_moved = 0;
arg.repeat = 1;
pd->refill = uper_ugot_refill;
pd->refill_key = &arg;
pd->nbits = pd->nboff; /* 0 good bits at this point, will refill */
pd->moved = 0; /* This now counts the open type size in bits */
asn_debug_indent += 4;
rv = td->uper_decoder(ctx, td, constraints, sptr, pd);
asn_debug_indent -= 4;
asn_debug_indent += 4;
rv = td->uper_decoder(ctx, td, constraints, sptr, pd);
asn_debug_indent -= 4;
#define UPDRESTOREPD do { \
/* buffer and nboff are valid, preserve them. */ \
pd->nbits = arg.oldpd.nbits - (pd->moved - arg.ot_moved); \
pd->moved = arg.oldpd.moved + (pd->moved - arg.ot_moved); \
pd->refill = arg.oldpd.refill; \
pd->refill_key = arg.oldpd.refill_key; \
} while(0)
#define UPDRESTOREPD \
do \
{ \
/* buffer and nboff are valid, preserve them. */ \
pd->nbits = arg.oldpd.nbits - (pd->moved - arg.ot_moved); \
pd->moved = arg.oldpd.moved + (pd->moved - arg.ot_moved); \
pd->refill = arg.oldpd.refill; \
pd->refill_key = arg.oldpd.refill_key; \
} \
while (0)
if(rv.code != RC_OK) {
UPDRESTOREPD;
return rv;
}
if (rv.code != RC_OK)
{
UPDRESTOREPD;
return rv;
}
ASN_DEBUG("OpenType %s pd%s old%s unclaimed=%d, repeat=%d"
, td->name,
per_data_string(pd),
per_data_string(&arg.oldpd),
arg.unclaimed, arg.repeat);
ASN_DEBUG("OpenType %s pd%s old%s unclaimed=%d, repeat=%d", td->name,
per_data_string(pd),
per_data_string(&arg.oldpd),
arg.unclaimed, arg.repeat);
padding = pd->moved % 8;
if(padding) {
int32_t pvalue;
if(padding > 7) {
ASN_DEBUG("Too large padding %d in open type",
padding);
rv.code = RC_FAIL;
UPDRESTOREPD;
return rv;
}
padding = 8 - padding;
ASN_DEBUG("Getting padding of %d bits", padding);
pvalue = per_get_few_bits(pd, padding);
switch(pvalue) {
case -1:
ASN_DEBUG("Padding skip failed");
UPDRESTOREPD;
_ASN_DECODE_STARVED;
case 0: break;
default:
ASN_DEBUG("Non-blank padding (%d bits 0x%02x)",
padding, (int)pvalue);
UPDRESTOREPD;
_ASN_DECODE_FAILED;
}
}
if(pd->nboff != pd->nbits) {
ASN_DEBUG("Open type %s overhead pd%s old%s", td->name,
per_data_string(pd), per_data_string(&arg.oldpd));
if(1) {
UPDRESTOREPD;
_ASN_DECODE_FAILED;
} else {
arg.unclaimed += pd->nbits - pd->nboff;
}
}
padding = pd->moved % 8;
if (padding)
{
int32_t pvalue;
if (padding > 7)
{
ASN_DEBUG("Too large padding %d in open type",
padding);
rv.code = RC_FAIL;
UPDRESTOREPD;
return rv;
}
padding = 8 - padding;
ASN_DEBUG("Getting padding of %d bits", padding);
pvalue = per_get_few_bits(pd, padding);
switch (pvalue)
{
case -1:
ASN_DEBUG("Padding skip failed");
UPDRESTOREPD;
_ASN_DECODE_STARVED;
case 0:
break;
default:
ASN_DEBUG("Non-blank padding (%d bits 0x%02x)",
padding, (int)pvalue);
UPDRESTOREPD;
_ASN_DECODE_FAILED;
}
}
if (pd->nboff != pd->nbits)
{
ASN_DEBUG("Open type %s overhead pd%s old%s", td->name,
per_data_string(pd), per_data_string(&arg.oldpd));
if (1)
{
UPDRESTOREPD;
_ASN_DECODE_FAILED;
}
else
{
arg.unclaimed += pd->nbits - pd->nboff;
}
}
/* Adjust pd back so it points to original data */
UPDRESTOREPD;
/* Adjust pd back so it points to original data */
UPDRESTOREPD;
/* Skip data not consumed by the decoder */
if(arg.unclaimed) ASN_DEBUG("Getting unclaimed %d", arg.unclaimed);
if(arg.unclaimed) {
switch(per_skip_bits(pd, arg.unclaimed)) {
case -1:
ASN_DEBUG("Claim of %d failed", arg.unclaimed);
_ASN_DECODE_STARVED;
case 0:
ASN_DEBUG("Got claim of %d", arg.unclaimed);
break;
default:
/* Padding must be blank */
ASN_DEBUG("Non-blank unconsumed padding");
_ASN_DECODE_FAILED;
}
arg.unclaimed = 0;
}
/* Skip data not consumed by the decoder */
if (arg.unclaimed) ASN_DEBUG("Getting unclaimed %d", arg.unclaimed);
if (arg.unclaimed)
{
switch (per_skip_bits(pd, arg.unclaimed))
{
case -1:
ASN_DEBUG("Claim of %d failed", arg.unclaimed);
_ASN_DECODE_STARVED;
case 0:
ASN_DEBUG("Got claim of %d", arg.unclaimed);
break;
default:
/* Padding must be blank */
ASN_DEBUG("Non-blank unconsumed padding");
_ASN_DECODE_FAILED;
}
arg.unclaimed = 0;
}
if(arg.repeat) {
ASN_DEBUG("Not consumed the whole thing");
rv.code = RC_FAIL;
return rv;
}
if (arg.repeat)
{
ASN_DEBUG("Not consumed the whole thing");
rv.code = RC_FAIL;
return rv;
}
return rv;
return rv;
}
asn_dec_rval_t
uper_open_type_get(asn_codec_ctx_t *ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
return uper_open_type_get_simple(ctx, td, constraints,
sptr, pd);
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd)
{
return uper_open_type_get_simple(ctx, td, constraints,
sptr, pd);
}
int
uper_open_type_skip(asn_codec_ctx_t *ctx, asn_per_data_t *pd) {
asn_TYPE_descriptor_t s_td;
asn_dec_rval_t rv;
int uper_open_type_skip(asn_codec_ctx_t *ctx, asn_per_data_t *pd)
{
asn_TYPE_descriptor_t s_td;
asn_dec_rval_t rv;
s_td.name = "<unknown extension>";
s_td.uper_decoder = uper_sot_suck;
s_td.name = "<unknown extension>";
s_td.uper_decoder = uper_sot_suck;
rv = uper_open_type_get(ctx, &s_td, 0, 0, pd);
if(rv.code != RC_OK)
return -1;
else
return 0;
rv = uper_open_type_get(ctx, &s_td, 0, 0, pd);
if (rv.code != RC_OK)
return -1;
else
return 0;
}
/*
@ -269,105 +299,122 @@ uper_open_type_skip(asn_codec_ctx_t *ctx, asn_per_data_t *pd) {
static asn_dec_rval_t
uper_sot_suck(asn_codec_ctx_t *ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_dec_rval_t rv;
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd)
{
asn_dec_rval_t rv;
(void)ctx;
(void)td;
(void)constraints;
(void)sptr;
(void)ctx;
(void)td;
(void)constraints;
(void)sptr;
while(per_get_few_bits(pd, 24) >= 0);
while (per_get_few_bits(pd, 24) >= 0)
;
rv.code = RC_OK;
rv.consumed = pd->moved;
rv.code = RC_OK;
rv.consumed = pd->moved;
return rv;
return rv;
}
static int
uper_ugot_refill(asn_per_data_t *pd) {
uper_ugot_key *arg = pd->refill_key;
ssize_t next_chunk_bytes, next_chunk_bits;
ssize_t avail;
uper_ugot_refill(asn_per_data_t *pd)
{
uper_ugot_key *arg = pd->refill_key;
ssize_t next_chunk_bytes, next_chunk_bits;
ssize_t avail;
asn_per_data_t *oldpd = &arg->oldpd;
asn_per_data_t *oldpd = &arg->oldpd;
ASN_DEBUG("REFILLING pd->moved=%d, oldpd->moved=%d",
pd->moved, oldpd->moved);
ASN_DEBUG("REFILLING pd->moved=%d, oldpd->moved=%d",
pd->moved, oldpd->moved);
/* Advance our position to where pd is */
oldpd->buffer = pd->buffer;
oldpd->nboff = pd->nboff;
oldpd->nbits -= pd->moved - arg->ot_moved;
oldpd->moved += pd->moved - arg->ot_moved;
arg->ot_moved = pd->moved;
/* Advance our position to where pd is */
oldpd->buffer = pd->buffer;
oldpd->nboff = pd->nboff;
oldpd->nbits -= pd->moved - arg->ot_moved;
oldpd->moved += pd->moved - arg->ot_moved;
arg->ot_moved = pd->moved;
if(arg->unclaimed) {
/* Refill the container */
if(per_get_few_bits(oldpd, 1))
return -1;
if(oldpd->nboff == 0) {
assert(0);
return -1;
}
pd->buffer = oldpd->buffer;
pd->nboff = oldpd->nboff - 1;
pd->nbits = oldpd->nbits;
ASN_DEBUG("UNCLAIMED <- return from (pd->moved=%d)", pd->moved);
return 0;
}
if (arg->unclaimed)
{
/* Refill the container */
if (per_get_few_bits(oldpd, 1))
return -1;
if (oldpd->nboff == 0)
{
assert(0);
return -1;
}
pd->buffer = oldpd->buffer;
pd->nboff = oldpd->nboff - 1;
pd->nbits = oldpd->nbits;
ASN_DEBUG("UNCLAIMED <- return from (pd->moved=%d)", pd->moved);
return 0;
}
if(!arg->repeat) {
ASN_DEBUG("Want more but refill doesn't have it");
return -1;
}
if (!arg->repeat)
{
ASN_DEBUG("Want more but refill doesn't have it");
return -1;
}
next_chunk_bytes = uper_get_length(oldpd, -1, &arg->repeat);
ASN_DEBUG("Open type LENGTH %d bytes at off %d, repeat %d",
next_chunk_bytes, oldpd->moved, arg->repeat);
if(next_chunk_bytes < 0) return -1;
if(next_chunk_bytes == 0) {
pd->refill = 0; /* No more refills, naturally */
assert(!arg->repeat); /* Implementation guarantee */
}
next_chunk_bits = next_chunk_bytes << 3;
avail = oldpd->nbits - oldpd->nboff;
if(avail >= next_chunk_bits) {
pd->nbits = oldpd->nboff + next_chunk_bits;
arg->unclaimed = 0;
ASN_DEBUG("!+Parent frame %d bits, alloting %d [%d..%d] (%d)",
next_chunk_bits, oldpd->moved,
oldpd->nboff, oldpd->nbits,
oldpd->nbits - oldpd->nboff);
} else {
pd->nbits = oldpd->nbits;
arg->unclaimed = next_chunk_bits - avail;
ASN_DEBUG("!-Parent frame %d, require %d, will claim %d", avail, next_chunk_bits, arg->unclaimed);
}
pd->buffer = oldpd->buffer;
pd->nboff = oldpd->nboff;
ASN_DEBUG("Refilled pd%s old%s",
per_data_string(pd), per_data_string(oldpd));
return 0;
next_chunk_bytes = uper_get_length(oldpd, -1, &arg->repeat);
ASN_DEBUG("Open type LENGTH %d bytes at off %d, repeat %d",
next_chunk_bytes, oldpd->moved, arg->repeat);
if (next_chunk_bytes < 0) return -1;
if (next_chunk_bytes == 0)
{
pd->refill = 0; /* No more refills, naturally */
assert(!arg->repeat); /* Implementation guarantee */
}
next_chunk_bits = next_chunk_bytes << 3;
avail = oldpd->nbits - oldpd->nboff;
if (avail >= next_chunk_bits)
{
pd->nbits = oldpd->nboff + next_chunk_bits;
arg->unclaimed = 0;
ASN_DEBUG("!+Parent frame %d bits, alloting %d [%d..%d] (%d)",
next_chunk_bits, oldpd->moved,
oldpd->nboff, oldpd->nbits,
oldpd->nbits - oldpd->nboff);
}
else
{
pd->nbits = oldpd->nbits;
arg->unclaimed = next_chunk_bits - avail;
ASN_DEBUG("!-Parent frame %d, require %d, will claim %d", avail, next_chunk_bits, arg->unclaimed);
}
pd->buffer = oldpd->buffer;
pd->nboff = oldpd->nboff;
ASN_DEBUG("Refilled pd%s old%s",
per_data_string(pd), per_data_string(oldpd));
return 0;
}
static int
per_skip_bits(asn_per_data_t *pd, int skip_nbits) {
int hasNonZeroBits = 0;
while(skip_nbits > 0) {
int skip;
if(skip_nbits < skip)
skip = skip_nbits;
else
skip = 24;
skip_nbits -= skip;
per_skip_bits(asn_per_data_t *pd, int skip_nbits)
{
int hasNonZeroBits = 0;
while (skip_nbits > 0)
{
int skip = 0;
if (skip_nbits < skip)
skip = skip_nbits;
else
skip = 24;
skip_nbits -= skip;
switch(per_get_few_bits(pd, skip)) {
case -1: return -1; /* Starving */
case 0: continue; /* Skipped empty space */
default: hasNonZeroBits = 1; continue;
}
}
return hasNonZeroBits;
switch (per_get_few_bits(pd, skip))
{
case -1:
return -1; /* Starving */
case 0:
continue; /* Skipped empty space */
default:
hasNonZeroBits = 1;
continue;
}
}
return hasNonZeroBits;
}

View File

@ -8,318 +8,356 @@
static int
memb_verdirect_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 1)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 1)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_bearing_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 9)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 9)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_horspeed_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 16)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 16)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_verspeed_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 8)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 8)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_horuncertspeed_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 8)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 8)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_veruncertspeed_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 8)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 8)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static asn_per_constraints_t asn_PER_memb_verdirect_constr_2 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 1, 1 } /* (SIZE(1..1)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 1, 1} /* (SIZE(1..1)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_bearing_constr_3 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 9, 9 } /* (SIZE(9..9)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 9, 9} /* (SIZE(9..9)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_horspeed_constr_4 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 16, 16 } /* (SIZE(16..16)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 16, 16} /* (SIZE(16..16)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_verspeed_constr_5 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 8, 8 } /* (SIZE(8..8)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 8, 8} /* (SIZE(8..8)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_horuncertspeed_constr_6 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 8, 8 } /* (SIZE(8..8)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 8, 8} /* (SIZE(8..8)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_veruncertspeed_constr_7 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 8, 8 } /* (SIZE(8..8)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 8, 8} /* (SIZE(8..8)) */,
0, 0 /* No PER value map */
};
static asn_TYPE_member_t asn_MBR_Horandveruncert_1[] = {
{ ATF_NOFLAGS, 0, offsetof(struct Horandveruncert, verdirect),
(ASN_TAG_CLASS_CONTEXT | (0 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_verdirect_constraint_1,
&asn_PER_memb_verdirect_constr_2,
0,
"verdirect"
},
{ ATF_NOFLAGS, 0, offsetof(struct Horandveruncert, bearing),
(ASN_TAG_CLASS_CONTEXT | (1 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_bearing_constraint_1,
&asn_PER_memb_bearing_constr_3,
0,
"bearing"
},
{ ATF_NOFLAGS, 0, offsetof(struct Horandveruncert, horspeed),
(ASN_TAG_CLASS_CONTEXT | (2 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_horspeed_constraint_1,
&asn_PER_memb_horspeed_constr_4,
0,
"horspeed"
},
{ ATF_NOFLAGS, 0, offsetof(struct Horandveruncert, verspeed),
(ASN_TAG_CLASS_CONTEXT | (3 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_verspeed_constraint_1,
&asn_PER_memb_verspeed_constr_5,
0,
"verspeed"
},
{ ATF_NOFLAGS, 0, offsetof(struct Horandveruncert, horuncertspeed),
(ASN_TAG_CLASS_CONTEXT | (4 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_horuncertspeed_constraint_1,
&asn_PER_memb_horuncertspeed_constr_6,
0,
"horuncertspeed"
},
{ ATF_NOFLAGS, 0, offsetof(struct Horandveruncert, veruncertspeed),
(ASN_TAG_CLASS_CONTEXT | (5 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_veruncertspeed_constraint_1,
&asn_PER_memb_veruncertspeed_constr_7,
0,
"veruncertspeed"
},
{ATF_NOFLAGS, 0, offsetof(struct Horandveruncert, verdirect),
(ASN_TAG_CLASS_CONTEXT | (0 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_verdirect_constraint_1,
&asn_PER_memb_verdirect_constr_2,
0,
"verdirect"},
{ATF_NOFLAGS, 0, offsetof(struct Horandveruncert, bearing),
(ASN_TAG_CLASS_CONTEXT | (1 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_bearing_constraint_1,
&asn_PER_memb_bearing_constr_3,
0,
"bearing"},
{ATF_NOFLAGS, 0, offsetof(struct Horandveruncert, horspeed),
(ASN_TAG_CLASS_CONTEXT | (2 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_horspeed_constraint_1,
&asn_PER_memb_horspeed_constr_4,
0,
"horspeed"},
{ATF_NOFLAGS, 0, offsetof(struct Horandveruncert, verspeed),
(ASN_TAG_CLASS_CONTEXT | (3 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_verspeed_constraint_1,
&asn_PER_memb_verspeed_constr_5,
0,
"verspeed"},
{ATF_NOFLAGS, 0, offsetof(struct Horandveruncert, horuncertspeed),
(ASN_TAG_CLASS_CONTEXT | (4 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_horuncertspeed_constraint_1,
&asn_PER_memb_horuncertspeed_constr_6,
0,
"horuncertspeed"},
{ATF_NOFLAGS, 0, offsetof(struct Horandveruncert, veruncertspeed),
(ASN_TAG_CLASS_CONTEXT | (5 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_veruncertspeed_constraint_1,
&asn_PER_memb_veruncertspeed_constr_7,
0,
"veruncertspeed"},
};
static ber_tlv_tag_t asn_DEF_Horandveruncert_tags_1[] = {
(ASN_TAG_CLASS_UNIVERSAL | (16 << 2))
};
(ASN_TAG_CLASS_UNIVERSAL | (16 << 2))};
static asn_TYPE_tag2member_t asn_MAP_Horandveruncert_tag2el_1[] = {
{ (ASN_TAG_CLASS_CONTEXT | (0 << 2)), 0, 0, 0 }, /* verdirect at 251 */
{ (ASN_TAG_CLASS_CONTEXT | (1 << 2)), 1, 0, 0 }, /* bearing at 252 */
{ (ASN_TAG_CLASS_CONTEXT | (2 << 2)), 2, 0, 0 }, /* horspeed at 253 */
{ (ASN_TAG_CLASS_CONTEXT | (3 << 2)), 3, 0, 0 }, /* verspeed at 254 */
{ (ASN_TAG_CLASS_CONTEXT | (4 << 2)), 4, 0, 0 }, /* horuncertspeed at 255 */
{ (ASN_TAG_CLASS_CONTEXT | (5 << 2)), 5, 0, 0 } /* veruncertspeed at 256 */
{(ASN_TAG_CLASS_CONTEXT | (0 << 2)), 0, 0, 0}, /* verdirect at 251 */
{(ASN_TAG_CLASS_CONTEXT | (1 << 2)), 1, 0, 0}, /* bearing at 252 */
{(ASN_TAG_CLASS_CONTEXT | (2 << 2)), 2, 0, 0}, /* horspeed at 253 */
{(ASN_TAG_CLASS_CONTEXT | (3 << 2)), 3, 0, 0}, /* verspeed at 254 */
{(ASN_TAG_CLASS_CONTEXT | (4 << 2)), 4, 0, 0}, /* horuncertspeed at 255 */
{(ASN_TAG_CLASS_CONTEXT | (5 << 2)), 5, 0, 0} /* veruncertspeed at 256 */
};
static asn_SEQUENCE_specifics_t asn_SPC_Horandveruncert_specs_1 = {
sizeof(struct Horandveruncert),
offsetof(struct Horandveruncert, _asn_ctx),
asn_MAP_Horandveruncert_tag2el_1,
6, /* Count of tags in the map */
0, 0, 0, /* Optional elements (not needed) */
5, /* Start extensions */
7 /* Stop extensions */
sizeof(struct Horandveruncert),
offsetof(struct Horandveruncert, _asn_ctx),
asn_MAP_Horandveruncert_tag2el_1,
6, /* Count of tags in the map */
0, 0, 0, /* Optional elements (not needed) */
5, /* Start extensions */
7 /* Stop extensions */
};
asn_TYPE_descriptor_t asn_DEF_Horandveruncert = {
"Horandveruncert",
"Horandveruncert",
SEQUENCE_free,
SEQUENCE_print,
SEQUENCE_constraint,
SEQUENCE_decode_ber,
SEQUENCE_encode_der,
SEQUENCE_decode_xer,
SEQUENCE_encode_xer,
SEQUENCE_decode_uper,
SEQUENCE_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_Horandveruncert_tags_1,
sizeof(asn_DEF_Horandveruncert_tags_1)
/sizeof(asn_DEF_Horandveruncert_tags_1[0]), /* 1 */
asn_DEF_Horandveruncert_tags_1, /* Same as above */
sizeof(asn_DEF_Horandveruncert_tags_1)
/sizeof(asn_DEF_Horandveruncert_tags_1[0]), /* 1 */
0, /* No PER visible constraints */
asn_MBR_Horandveruncert_1,
6, /* Elements count */
&asn_SPC_Horandveruncert_specs_1 /* Additional specs */
"Horandveruncert",
"Horandveruncert",
SEQUENCE_free,
SEQUENCE_print,
SEQUENCE_constraint,
SEQUENCE_decode_ber,
SEQUENCE_encode_der,
SEQUENCE_decode_xer,
SEQUENCE_encode_xer,
SEQUENCE_decode_uper,
SEQUENCE_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_Horandveruncert_tags_1,
sizeof(asn_DEF_Horandveruncert_tags_1) / sizeof(asn_DEF_Horandveruncert_tags_1[0]), /* 1 */
asn_DEF_Horandveruncert_tags_1, /* Same as above */
sizeof(asn_DEF_Horandveruncert_tags_1) / sizeof(asn_DEF_Horandveruncert_tags_1[0]), /* 1 */
0, /* No PER visible constraints */
asn_MBR_Horandveruncert_1,
6, /* Elements count */
&asn_SPC_Horandveruncert_specs_1 /* Additional specs */
};

View File

@ -8,226 +8,250 @@
static int
memb_verdirect_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 1)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 1)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_bearing_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 9)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 9)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_horspeed_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 16)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 16)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_verspeed_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 8)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 8)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static asn_per_constraints_t asn_PER_memb_verdirect_constr_2 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 1, 1 } /* (SIZE(1..1)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 1, 1} /* (SIZE(1..1)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_bearing_constr_3 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 9, 9 } /* (SIZE(9..9)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 9, 9} /* (SIZE(9..9)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_horspeed_constr_4 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 16, 16 } /* (SIZE(16..16)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 16, 16} /* (SIZE(16..16)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_verspeed_constr_5 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 8, 8 } /* (SIZE(8..8)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 8, 8} /* (SIZE(8..8)) */,
0, 0 /* No PER value map */
};
static asn_TYPE_member_t asn_MBR_Horandvervel_1[] = {
{ ATF_NOFLAGS, 0, offsetof(struct Horandvervel, verdirect),
(ASN_TAG_CLASS_CONTEXT | (0 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_verdirect_constraint_1,
&asn_PER_memb_verdirect_constr_2,
0,
"verdirect"
},
{ ATF_NOFLAGS, 0, offsetof(struct Horandvervel, bearing),
(ASN_TAG_CLASS_CONTEXT | (1 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_bearing_constraint_1,
&asn_PER_memb_bearing_constr_3,
0,
"bearing"
},
{ ATF_NOFLAGS, 0, offsetof(struct Horandvervel, horspeed),
(ASN_TAG_CLASS_CONTEXT | (2 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_horspeed_constraint_1,
&asn_PER_memb_horspeed_constr_4,
0,
"horspeed"
},
{ ATF_NOFLAGS, 0, offsetof(struct Horandvervel, verspeed),
(ASN_TAG_CLASS_CONTEXT | (3 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_verspeed_constraint_1,
&asn_PER_memb_verspeed_constr_5,
0,
"verspeed"
},
{ATF_NOFLAGS, 0, offsetof(struct Horandvervel, verdirect),
(ASN_TAG_CLASS_CONTEXT | (0 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_verdirect_constraint_1,
&asn_PER_memb_verdirect_constr_2,
0,
"verdirect"},
{ATF_NOFLAGS, 0, offsetof(struct Horandvervel, bearing),
(ASN_TAG_CLASS_CONTEXT | (1 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_bearing_constraint_1,
&asn_PER_memb_bearing_constr_3,
0,
"bearing"},
{ATF_NOFLAGS, 0, offsetof(struct Horandvervel, horspeed),
(ASN_TAG_CLASS_CONTEXT | (2 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_horspeed_constraint_1,
&asn_PER_memb_horspeed_constr_4,
0,
"horspeed"},
{ATF_NOFLAGS, 0, offsetof(struct Horandvervel, verspeed),
(ASN_TAG_CLASS_CONTEXT | (3 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_verspeed_constraint_1,
&asn_PER_memb_verspeed_constr_5,
0,
"verspeed"},
};
static ber_tlv_tag_t asn_DEF_Horandvervel_tags_1[] = {
(ASN_TAG_CLASS_UNIVERSAL | (16 << 2))
};
(ASN_TAG_CLASS_UNIVERSAL | (16 << 2))};
static asn_TYPE_tag2member_t asn_MAP_Horandvervel_tag2el_1[] = {
{ (ASN_TAG_CLASS_CONTEXT | (0 << 2)), 0, 0, 0 }, /* verdirect at 238 */
{ (ASN_TAG_CLASS_CONTEXT | (1 << 2)), 1, 0, 0 }, /* bearing at 239 */
{ (ASN_TAG_CLASS_CONTEXT | (2 << 2)), 2, 0, 0 }, /* horspeed at 240 */
{ (ASN_TAG_CLASS_CONTEXT | (3 << 2)), 3, 0, 0 } /* verspeed at 241 */
{(ASN_TAG_CLASS_CONTEXT | (0 << 2)), 0, 0, 0}, /* verdirect at 238 */
{(ASN_TAG_CLASS_CONTEXT | (1 << 2)), 1, 0, 0}, /* bearing at 239 */
{(ASN_TAG_CLASS_CONTEXT | (2 << 2)), 2, 0, 0}, /* horspeed at 240 */
{(ASN_TAG_CLASS_CONTEXT | (3 << 2)), 3, 0, 0} /* verspeed at 241 */
};
static asn_SEQUENCE_specifics_t asn_SPC_Horandvervel_specs_1 = {
sizeof(struct Horandvervel),
offsetof(struct Horandvervel, _asn_ctx),
asn_MAP_Horandvervel_tag2el_1,
4, /* Count of tags in the map */
0, 0, 0, /* Optional elements (not needed) */
3, /* Start extensions */
5 /* Stop extensions */
sizeof(struct Horandvervel),
offsetof(struct Horandvervel, _asn_ctx),
asn_MAP_Horandvervel_tag2el_1,
4, /* Count of tags in the map */
0, 0, 0, /* Optional elements (not needed) */
3, /* Start extensions */
5 /* Stop extensions */
};
asn_TYPE_descriptor_t asn_DEF_Horandvervel = {
"Horandvervel",
"Horandvervel",
SEQUENCE_free,
SEQUENCE_print,
SEQUENCE_constraint,
SEQUENCE_decode_ber,
SEQUENCE_encode_der,
SEQUENCE_decode_xer,
SEQUENCE_encode_xer,
SEQUENCE_decode_uper,
SEQUENCE_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_Horandvervel_tags_1,
sizeof(asn_DEF_Horandvervel_tags_1)
/sizeof(asn_DEF_Horandvervel_tags_1[0]), /* 1 */
asn_DEF_Horandvervel_tags_1, /* Same as above */
sizeof(asn_DEF_Horandvervel_tags_1)
/sizeof(asn_DEF_Horandvervel_tags_1[0]), /* 1 */
0, /* No PER visible constraints */
asn_MBR_Horandvervel_1,
4, /* Elements count */
&asn_SPC_Horandvervel_specs_1 /* Additional specs */
"Horandvervel",
"Horandvervel",
SEQUENCE_free,
SEQUENCE_print,
SEQUENCE_constraint,
SEQUENCE_decode_ber,
SEQUENCE_encode_der,
SEQUENCE_decode_xer,
SEQUENCE_encode_xer,
SEQUENCE_decode_uper,
SEQUENCE_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_Horandvervel_tags_1,
sizeof(asn_DEF_Horandvervel_tags_1) / sizeof(asn_DEF_Horandvervel_tags_1[0]), /* 1 */
asn_DEF_Horandvervel_tags_1, /* Same as above */
sizeof(asn_DEF_Horandvervel_tags_1) / sizeof(asn_DEF_Horandvervel_tags_1[0]), /* 1 */
0, /* No PER visible constraints */
asn_MBR_Horandvervel_1,
4, /* Elements count */
&asn_SPC_Horandvervel_specs_1 /* Additional specs */
};

View File

@ -8,134 +8,144 @@
static int
memb_bearing_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 9)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 9)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_horspeed_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 16)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 16)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static asn_per_constraints_t asn_PER_memb_bearing_constr_2 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 9, 9 } /* (SIZE(9..9)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 9, 9} /* (SIZE(9..9)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_horspeed_constr_3 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 16, 16 } /* (SIZE(16..16)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 16, 16} /* (SIZE(16..16)) */,
0, 0 /* No PER value map */
};
static asn_TYPE_member_t asn_MBR_Horvel_1[] = {
{ ATF_NOFLAGS, 0, offsetof(struct Horvel, bearing),
(ASN_TAG_CLASS_CONTEXT | (0 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_bearing_constraint_1,
&asn_PER_memb_bearing_constr_2,
0,
"bearing"
},
{ ATF_NOFLAGS, 0, offsetof(struct Horvel, horspeed),
(ASN_TAG_CLASS_CONTEXT | (1 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_horspeed_constraint_1,
&asn_PER_memb_horspeed_constr_3,
0,
"horspeed"
},
{ATF_NOFLAGS, 0, offsetof(struct Horvel, bearing),
(ASN_TAG_CLASS_CONTEXT | (0 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_bearing_constraint_1,
&asn_PER_memb_bearing_constr_2,
0,
"bearing"},
{ATF_NOFLAGS, 0, offsetof(struct Horvel, horspeed),
(ASN_TAG_CLASS_CONTEXT | (1 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_horspeed_constraint_1,
&asn_PER_memb_horspeed_constr_3,
0,
"horspeed"},
};
static ber_tlv_tag_t asn_DEF_Horvel_tags_1[] = {
(ASN_TAG_CLASS_UNIVERSAL | (16 << 2))
};
(ASN_TAG_CLASS_UNIVERSAL | (16 << 2))};
static asn_TYPE_tag2member_t asn_MAP_Horvel_tag2el_1[] = {
{ (ASN_TAG_CLASS_CONTEXT | (0 << 2)), 0, 0, 0 }, /* bearing at 233 */
{ (ASN_TAG_CLASS_CONTEXT | (1 << 2)), 1, 0, 0 } /* horspeed at 234 */
{(ASN_TAG_CLASS_CONTEXT | (0 << 2)), 0, 0, 0}, /* bearing at 233 */
{(ASN_TAG_CLASS_CONTEXT | (1 << 2)), 1, 0, 0} /* horspeed at 234 */
};
static asn_SEQUENCE_specifics_t asn_SPC_Horvel_specs_1 = {
sizeof(struct Horvel),
offsetof(struct Horvel, _asn_ctx),
asn_MAP_Horvel_tag2el_1,
2, /* Count of tags in the map */
0, 0, 0, /* Optional elements (not needed) */
1, /* Start extensions */
3 /* Stop extensions */
sizeof(struct Horvel),
offsetof(struct Horvel, _asn_ctx),
asn_MAP_Horvel_tag2el_1,
2, /* Count of tags in the map */
0, 0, 0, /* Optional elements (not needed) */
1, /* Start extensions */
3 /* Stop extensions */
};
asn_TYPE_descriptor_t asn_DEF_Horvel = {
"Horvel",
"Horvel",
SEQUENCE_free,
SEQUENCE_print,
SEQUENCE_constraint,
SEQUENCE_decode_ber,
SEQUENCE_encode_der,
SEQUENCE_decode_xer,
SEQUENCE_encode_xer,
SEQUENCE_decode_uper,
SEQUENCE_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_Horvel_tags_1,
sizeof(asn_DEF_Horvel_tags_1)
/sizeof(asn_DEF_Horvel_tags_1[0]), /* 1 */
asn_DEF_Horvel_tags_1, /* Same as above */
sizeof(asn_DEF_Horvel_tags_1)
/sizeof(asn_DEF_Horvel_tags_1[0]), /* 1 */
0, /* No PER visible constraints */
asn_MBR_Horvel_1,
2, /* Elements count */
&asn_SPC_Horvel_specs_1 /* Additional specs */
"Horvel",
"Horvel",
SEQUENCE_free,
SEQUENCE_print,
SEQUENCE_constraint,
SEQUENCE_decode_ber,
SEQUENCE_encode_der,
SEQUENCE_decode_xer,
SEQUENCE_encode_xer,
SEQUENCE_decode_uper,
SEQUENCE_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_Horvel_tags_1,
sizeof(asn_DEF_Horvel_tags_1) / sizeof(asn_DEF_Horvel_tags_1[0]), /* 1 */
asn_DEF_Horvel_tags_1, /* Same as above */
sizeof(asn_DEF_Horvel_tags_1) / sizeof(asn_DEF_Horvel_tags_1[0]), /* 1 */
0, /* No PER visible constraints */
asn_MBR_Horvel_1,
2, /* Elements count */
&asn_SPC_Horvel_specs_1 /* Additional specs */
};

View File

@ -8,180 +8,197 @@
static int
memb_bearing_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 9)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 9)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_horspeed_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 16)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 16)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_uncertspeed_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 8)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 8)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static asn_per_constraints_t asn_PER_memb_bearing_constr_2 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 9, 9 } /* (SIZE(9..9)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 9, 9} /* (SIZE(9..9)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_horspeed_constr_3 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 16, 16 } /* (SIZE(16..16)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 16, 16} /* (SIZE(16..16)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_uncertspeed_constr_4 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 8, 8 } /* (SIZE(8..8)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 8, 8} /* (SIZE(8..8)) */,
0, 0 /* No PER value map */
};
static asn_TYPE_member_t asn_MBR_Horveluncert_1[] = {
{ ATF_NOFLAGS, 0, offsetof(struct Horveluncert, bearing),
(ASN_TAG_CLASS_CONTEXT | (0 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_bearing_constraint_1,
&asn_PER_memb_bearing_constr_2,
0,
"bearing"
},
{ ATF_NOFLAGS, 0, offsetof(struct Horveluncert, horspeed),
(ASN_TAG_CLASS_CONTEXT | (1 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_horspeed_constraint_1,
&asn_PER_memb_horspeed_constr_3,
0,
"horspeed"
},
{ ATF_NOFLAGS, 0, offsetof(struct Horveluncert, uncertspeed),
(ASN_TAG_CLASS_CONTEXT | (2 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_uncertspeed_constraint_1,
&asn_PER_memb_uncertspeed_constr_4,
0,
"uncertspeed"
},
{ATF_NOFLAGS, 0, offsetof(struct Horveluncert, bearing),
(ASN_TAG_CLASS_CONTEXT | (0 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_bearing_constraint_1,
&asn_PER_memb_bearing_constr_2,
0,
"bearing"},
{ATF_NOFLAGS, 0, offsetof(struct Horveluncert, horspeed),
(ASN_TAG_CLASS_CONTEXT | (1 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_horspeed_constraint_1,
&asn_PER_memb_horspeed_constr_3,
0,
"horspeed"},
{ATF_NOFLAGS, 0, offsetof(struct Horveluncert, uncertspeed),
(ASN_TAG_CLASS_CONTEXT | (2 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_uncertspeed_constraint_1,
&asn_PER_memb_uncertspeed_constr_4,
0,
"uncertspeed"},
};
static ber_tlv_tag_t asn_DEF_Horveluncert_tags_1[] = {
(ASN_TAG_CLASS_UNIVERSAL | (16 << 2))
};
(ASN_TAG_CLASS_UNIVERSAL | (16 << 2))};
static asn_TYPE_tag2member_t asn_MAP_Horveluncert_tag2el_1[] = {
{ (ASN_TAG_CLASS_CONTEXT | (0 << 2)), 0, 0, 0 }, /* bearing at 245 */
{ (ASN_TAG_CLASS_CONTEXT | (1 << 2)), 1, 0, 0 }, /* horspeed at 246 */
{ (ASN_TAG_CLASS_CONTEXT | (2 << 2)), 2, 0, 0 } /* uncertspeed at 247 */
{(ASN_TAG_CLASS_CONTEXT | (0 << 2)), 0, 0, 0}, /* bearing at 245 */
{(ASN_TAG_CLASS_CONTEXT | (1 << 2)), 1, 0, 0}, /* horspeed at 246 */
{(ASN_TAG_CLASS_CONTEXT | (2 << 2)), 2, 0, 0} /* uncertspeed at 247 */
};
static asn_SEQUENCE_specifics_t asn_SPC_Horveluncert_specs_1 = {
sizeof(struct Horveluncert),
offsetof(struct Horveluncert, _asn_ctx),
asn_MAP_Horveluncert_tag2el_1,
3, /* Count of tags in the map */
0, 0, 0, /* Optional elements (not needed) */
2, /* Start extensions */
4 /* Stop extensions */
sizeof(struct Horveluncert),
offsetof(struct Horveluncert, _asn_ctx),
asn_MAP_Horveluncert_tag2el_1,
3, /* Count of tags in the map */
0, 0, 0, /* Optional elements (not needed) */
2, /* Start extensions */
4 /* Stop extensions */
};
asn_TYPE_descriptor_t asn_DEF_Horveluncert = {
"Horveluncert",
"Horveluncert",
SEQUENCE_free,
SEQUENCE_print,
SEQUENCE_constraint,
SEQUENCE_decode_ber,
SEQUENCE_encode_der,
SEQUENCE_decode_xer,
SEQUENCE_encode_xer,
SEQUENCE_decode_uper,
SEQUENCE_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_Horveluncert_tags_1,
sizeof(asn_DEF_Horveluncert_tags_1)
/sizeof(asn_DEF_Horveluncert_tags_1[0]), /* 1 */
asn_DEF_Horveluncert_tags_1, /* Same as above */
sizeof(asn_DEF_Horveluncert_tags_1)
/sizeof(asn_DEF_Horveluncert_tags_1[0]), /* 1 */
0, /* No PER visible constraints */
asn_MBR_Horveluncert_1,
3, /* Elements count */
&asn_SPC_Horveluncert_specs_1 /* Additional specs */
"Horveluncert",
"Horveluncert",
SEQUENCE_free,
SEQUENCE_print,
SEQUENCE_constraint,
SEQUENCE_decode_ber,
SEQUENCE_encode_der,
SEQUENCE_decode_xer,
SEQUENCE_encode_xer,
SEQUENCE_decode_uper,
SEQUENCE_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_Horveluncert_tags_1,
sizeof(asn_DEF_Horveluncert_tags_1) / sizeof(asn_DEF_Horveluncert_tags_1[0]), /* 1 */
asn_DEF_Horveluncert_tags_1, /* Same as above */
sizeof(asn_DEF_Horveluncert_tags_1) / sizeof(asn_DEF_Horveluncert_tags_1[0]), /* 1 */
0, /* No PER visible constraints */
asn_MBR_Horveluncert_1,
3, /* Elements count */
&asn_SPC_Horveluncert_specs_1 /* Additional specs */
};

View File

@ -8,125 +8,132 @@
static int
memb_ipv4Address_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const OCTET_STRING_t *st = (const OCTET_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
size = st->size;
if((size == 4)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const OCTET_STRING_t *st = (const OCTET_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
size = st->size;
if (size == 4)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_ipv6Address_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const OCTET_STRING_t *st = (const OCTET_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
size = st->size;
if((size == 16)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const OCTET_STRING_t *st = (const OCTET_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
size = st->size;
if (size == 16)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static asn_per_constraints_t asn_PER_memb_ipv4Address_constr_2 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 4, 4 } /* (SIZE(4..4)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 4, 4} /* (SIZE(4..4)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_ipv6Address_constr_3 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 16, 16 } /* (SIZE(16..16)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 16, 16} /* (SIZE(16..16)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_type_IPAddress_constr_1 = {
{ APC_CONSTRAINED, 1, 1, 0, 1 } /* (0..1) */,
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
0, 0 /* No PER value map */
{APC_CONSTRAINED, 1, 1, 0, 1} /* (0..1) */,
{APC_UNCONSTRAINED, -1, -1, 0, 0},
0, 0 /* No PER value map */
};
static asn_TYPE_member_t asn_MBR_IPAddress_1[] = {
{ ATF_NOFLAGS, 0, offsetof(struct IPAddress, choice.ipv4Address),
(ASN_TAG_CLASS_CONTEXT | (0 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_OCTET_STRING,
memb_ipv4Address_constraint_1,
&asn_PER_memb_ipv4Address_constr_2,
0,
"ipv4Address"
},
{ ATF_NOFLAGS, 0, offsetof(struct IPAddress, choice.ipv6Address),
(ASN_TAG_CLASS_CONTEXT | (1 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_OCTET_STRING,
memb_ipv6Address_constraint_1,
&asn_PER_memb_ipv6Address_constr_3,
0,
"ipv6Address"
},
{ATF_NOFLAGS, 0, offsetof(struct IPAddress, choice.ipv4Address),
(ASN_TAG_CLASS_CONTEXT | (0 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_OCTET_STRING,
memb_ipv4Address_constraint_1,
&asn_PER_memb_ipv4Address_constr_2,
0,
"ipv4Address"},
{ATF_NOFLAGS, 0, offsetof(struct IPAddress, choice.ipv6Address),
(ASN_TAG_CLASS_CONTEXT | (1 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_OCTET_STRING,
memb_ipv6Address_constraint_1,
&asn_PER_memb_ipv6Address_constr_3,
0,
"ipv6Address"},
};
static asn_TYPE_tag2member_t asn_MAP_IPAddress_tag2el_1[] = {
{ (ASN_TAG_CLASS_CONTEXT | (0 << 2)), 0, 0, 0 }, /* ipv4Address at 41 */
{ (ASN_TAG_CLASS_CONTEXT | (1 << 2)), 1, 0, 0 } /* ipv6Address at 42 */
{(ASN_TAG_CLASS_CONTEXT | (0 << 2)), 0, 0, 0}, /* ipv4Address at 41 */
{(ASN_TAG_CLASS_CONTEXT | (1 << 2)), 1, 0, 0} /* ipv6Address at 42 */
};
static asn_CHOICE_specifics_t asn_SPC_IPAddress_specs_1 = {
sizeof(struct IPAddress),
offsetof(struct IPAddress, _asn_ctx),
offsetof(struct IPAddress, present),
sizeof(((struct IPAddress *)0)->present),
asn_MAP_IPAddress_tag2el_1,
2, /* Count of tags in the map */
0,
-1 /* Extensions start */
sizeof(struct IPAddress),
offsetof(struct IPAddress, _asn_ctx),
offsetof(struct IPAddress, present),
sizeof(((struct IPAddress *)0)->present),
asn_MAP_IPAddress_tag2el_1,
2, /* Count of tags in the map */
0,
-1 /* Extensions start */
};
asn_TYPE_descriptor_t asn_DEF_IPAddress = {
"IPAddress",
"IPAddress",
CHOICE_free,
CHOICE_print,
CHOICE_constraint,
CHOICE_decode_ber,
CHOICE_encode_der,
CHOICE_decode_xer,
CHOICE_encode_xer,
CHOICE_decode_uper,
CHOICE_encode_uper,
CHOICE_outmost_tag,
0, /* No effective tags (pointer) */
0, /* No effective tags (count) */
0, /* No tags (pointer) */
0, /* No tags (count) */
&asn_PER_type_IPAddress_constr_1,
asn_MBR_IPAddress_1,
2, /* Elements count */
&asn_SPC_IPAddress_specs_1 /* Additional specs */
"IPAddress",
"IPAddress",
CHOICE_free,
CHOICE_print,
CHOICE_constraint,
CHOICE_decode_ber,
CHOICE_encode_der,
CHOICE_decode_xer,
CHOICE_encode_xer,
CHOICE_decode_uper,
CHOICE_encode_uper,
CHOICE_outmost_tag,
0, /* No effective tags (pointer) */
0, /* No effective tags (count) */
0, /* No tags (pointer) */
0, /* No tags (count) */
&asn_PER_type_IPAddress_constr_1,
asn_MBR_IPAddress_1,
2, /* Elements count */
&asn_SPC_IPAddress_specs_1 /* Additional specs */
};

View File

@ -6,35 +6,42 @@
#include "KeyIdentity.h"
int
KeyIdentity_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 128)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
int KeyIdentity_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 128)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
/*
@ -42,110 +49,113 @@ KeyIdentity_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
* so here we adjust the DEF accordingly.
*/
static void
KeyIdentity_1_inherit_TYPE_descriptor(asn_TYPE_descriptor_t *td) {
td->free_struct = asn_DEF_BIT_STRING.free_struct;
td->print_struct = asn_DEF_BIT_STRING.print_struct;
td->ber_decoder = asn_DEF_BIT_STRING.ber_decoder;
td->der_encoder = asn_DEF_BIT_STRING.der_encoder;
td->xer_decoder = asn_DEF_BIT_STRING.xer_decoder;
td->xer_encoder = asn_DEF_BIT_STRING.xer_encoder;
td->uper_decoder = asn_DEF_BIT_STRING.uper_decoder;
td->uper_encoder = asn_DEF_BIT_STRING.uper_encoder;
if(!td->per_constraints)
td->per_constraints = asn_DEF_BIT_STRING.per_constraints;
td->elements = asn_DEF_BIT_STRING.elements;
td->elements_count = asn_DEF_BIT_STRING.elements_count;
td->specifics = asn_DEF_BIT_STRING.specifics;
KeyIdentity_1_inherit_TYPE_descriptor(asn_TYPE_descriptor_t *td)
{
td->free_struct = asn_DEF_BIT_STRING.free_struct;
td->print_struct = asn_DEF_BIT_STRING.print_struct;
td->ber_decoder = asn_DEF_BIT_STRING.ber_decoder;
td->der_encoder = asn_DEF_BIT_STRING.der_encoder;
td->xer_decoder = asn_DEF_BIT_STRING.xer_decoder;
td->xer_encoder = asn_DEF_BIT_STRING.xer_encoder;
td->uper_decoder = asn_DEF_BIT_STRING.uper_decoder;
td->uper_encoder = asn_DEF_BIT_STRING.uper_encoder;
if (!td->per_constraints)
td->per_constraints = asn_DEF_BIT_STRING.per_constraints;
td->elements = asn_DEF_BIT_STRING.elements;
td->elements_count = asn_DEF_BIT_STRING.elements_count;
td->specifics = asn_DEF_BIT_STRING.specifics;
}
void
KeyIdentity_free(asn_TYPE_descriptor_t *td,
void *struct_ptr, int contents_only) {
KeyIdentity_1_inherit_TYPE_descriptor(td);
td->free_struct(td, struct_ptr, contents_only);
void KeyIdentity_free(asn_TYPE_descriptor_t *td,
void *struct_ptr, int contents_only)
{
KeyIdentity_1_inherit_TYPE_descriptor(td);
td->free_struct(td, struct_ptr, contents_only);
}
int
KeyIdentity_print(asn_TYPE_descriptor_t *td, const void *struct_ptr,
int ilevel, asn_app_consume_bytes_f *cb, void *app_key) {
KeyIdentity_1_inherit_TYPE_descriptor(td);
return td->print_struct(td, struct_ptr, ilevel, cb, app_key);
int KeyIdentity_print(asn_TYPE_descriptor_t *td, const void *struct_ptr,
int ilevel, asn_app_consume_bytes_f *cb, void *app_key)
{
KeyIdentity_1_inherit_TYPE_descriptor(td);
return td->print_struct(td, struct_ptr, ilevel, cb, app_key);
}
asn_dec_rval_t
KeyIdentity_decode_ber(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
void **structure, const void *bufptr, size_t size, int tag_mode) {
KeyIdentity_1_inherit_TYPE_descriptor(td);
return td->ber_decoder(opt_codec_ctx, td, structure, bufptr, size, tag_mode);
void **structure, const void *bufptr, size_t size, int tag_mode)
{
KeyIdentity_1_inherit_TYPE_descriptor(td);
return td->ber_decoder(opt_codec_ctx, td, structure, bufptr, size, tag_mode);
}
asn_enc_rval_t
KeyIdentity_encode_der(asn_TYPE_descriptor_t *td,
void *structure, int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
KeyIdentity_1_inherit_TYPE_descriptor(td);
return td->der_encoder(td, structure, tag_mode, tag, cb, app_key);
void *structure, int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key)
{
KeyIdentity_1_inherit_TYPE_descriptor(td);
return td->der_encoder(td, structure, tag_mode, tag, cb, app_key);
}
asn_dec_rval_t
KeyIdentity_decode_xer(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
void **structure, const char *opt_mname, const void *bufptr, size_t size) {
KeyIdentity_1_inherit_TYPE_descriptor(td);
return td->xer_decoder(opt_codec_ctx, td, structure, opt_mname, bufptr, size);
void **structure, const char *opt_mname, const void *bufptr, size_t size)
{
KeyIdentity_1_inherit_TYPE_descriptor(td);
return td->xer_decoder(opt_codec_ctx, td, structure, opt_mname, bufptr, size);
}
asn_enc_rval_t
KeyIdentity_encode_xer(asn_TYPE_descriptor_t *td, void *structure,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
KeyIdentity_1_inherit_TYPE_descriptor(td);
return td->xer_encoder(td, structure, ilevel, flags, cb, app_key);
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key)
{
KeyIdentity_1_inherit_TYPE_descriptor(td);
return td->xer_encoder(td, structure, ilevel, flags, cb, app_key);
}
asn_dec_rval_t
KeyIdentity_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **structure, asn_per_data_t *per_data) {
KeyIdentity_1_inherit_TYPE_descriptor(td);
return td->uper_decoder(opt_codec_ctx, td, constraints, structure, per_data);
asn_per_constraints_t *constraints, void **structure, asn_per_data_t *per_data)
{
KeyIdentity_1_inherit_TYPE_descriptor(td);
return td->uper_decoder(opt_codec_ctx, td, constraints, structure, per_data);
}
asn_enc_rval_t
KeyIdentity_encode_uper(asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints,
void *structure, asn_per_outp_t *per_out) {
KeyIdentity_1_inherit_TYPE_descriptor(td);
return td->uper_encoder(td, constraints, structure, per_out);
asn_per_constraints_t *constraints,
void *structure, asn_per_outp_t *per_out)
{
KeyIdentity_1_inherit_TYPE_descriptor(td);
return td->uper_encoder(td, constraints, structure, per_out);
}
static asn_per_constraints_t asn_PER_type_KeyIdentity_constr_1 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 128, 128 } /* (SIZE(128..128)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 128, 128} /* (SIZE(128..128)) */,
0, 0 /* No PER value map */
};
static ber_tlv_tag_t asn_DEF_KeyIdentity_tags_1[] = {
(ASN_TAG_CLASS_UNIVERSAL | (3 << 2))
};
(ASN_TAG_CLASS_UNIVERSAL | (3 << 2))};
asn_TYPE_descriptor_t asn_DEF_KeyIdentity = {
"KeyIdentity",
"KeyIdentity",
KeyIdentity_free,
KeyIdentity_print,
KeyIdentity_constraint,
KeyIdentity_decode_ber,
KeyIdentity_encode_der,
KeyIdentity_decode_xer,
KeyIdentity_encode_xer,
KeyIdentity_decode_uper,
KeyIdentity_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_KeyIdentity_tags_1,
sizeof(asn_DEF_KeyIdentity_tags_1)
/sizeof(asn_DEF_KeyIdentity_tags_1[0]), /* 1 */
asn_DEF_KeyIdentity_tags_1, /* Same as above */
sizeof(asn_DEF_KeyIdentity_tags_1)
/sizeof(asn_DEF_KeyIdentity_tags_1[0]), /* 1 */
&asn_PER_type_KeyIdentity_constr_1,
0, 0, /* No members */
0 /* No specifics */
"KeyIdentity",
"KeyIdentity",
KeyIdentity_free,
KeyIdentity_print,
KeyIdentity_constraint,
KeyIdentity_decode_ber,
KeyIdentity_encode_der,
KeyIdentity_decode_xer,
KeyIdentity_encode_xer,
KeyIdentity_decode_uper,
KeyIdentity_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_KeyIdentity_tags_1,
sizeof(asn_DEF_KeyIdentity_tags_1) / sizeof(asn_DEF_KeyIdentity_tags_1[0]), /* 1 */
asn_DEF_KeyIdentity_tags_1, /* Same as above */
sizeof(asn_DEF_KeyIdentity_tags_1) / sizeof(asn_DEF_KeyIdentity_tags_1[0]), /* 1 */
&asn_PER_type_KeyIdentity_constr_1,
0, 0, /* No members */
0 /* No specifics */
};

View File

@ -6,35 +6,42 @@
#include "KeyIdentity4.h"
int
KeyIdentity4_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 128)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
int KeyIdentity4_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 128)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
/*
@ -42,110 +49,113 @@ KeyIdentity4_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
* so here we adjust the DEF accordingly.
*/
static void
KeyIdentity4_1_inherit_TYPE_descriptor(asn_TYPE_descriptor_t *td) {
td->free_struct = asn_DEF_BIT_STRING.free_struct;
td->print_struct = asn_DEF_BIT_STRING.print_struct;
td->ber_decoder = asn_DEF_BIT_STRING.ber_decoder;
td->der_encoder = asn_DEF_BIT_STRING.der_encoder;
td->xer_decoder = asn_DEF_BIT_STRING.xer_decoder;
td->xer_encoder = asn_DEF_BIT_STRING.xer_encoder;
td->uper_decoder = asn_DEF_BIT_STRING.uper_decoder;
td->uper_encoder = asn_DEF_BIT_STRING.uper_encoder;
if(!td->per_constraints)
td->per_constraints = asn_DEF_BIT_STRING.per_constraints;
td->elements = asn_DEF_BIT_STRING.elements;
td->elements_count = asn_DEF_BIT_STRING.elements_count;
td->specifics = asn_DEF_BIT_STRING.specifics;
KeyIdentity4_1_inherit_TYPE_descriptor(asn_TYPE_descriptor_t *td)
{
td->free_struct = asn_DEF_BIT_STRING.free_struct;
td->print_struct = asn_DEF_BIT_STRING.print_struct;
td->ber_decoder = asn_DEF_BIT_STRING.ber_decoder;
td->der_encoder = asn_DEF_BIT_STRING.der_encoder;
td->xer_decoder = asn_DEF_BIT_STRING.xer_decoder;
td->xer_encoder = asn_DEF_BIT_STRING.xer_encoder;
td->uper_decoder = asn_DEF_BIT_STRING.uper_decoder;
td->uper_encoder = asn_DEF_BIT_STRING.uper_encoder;
if (!td->per_constraints)
td->per_constraints = asn_DEF_BIT_STRING.per_constraints;
td->elements = asn_DEF_BIT_STRING.elements;
td->elements_count = asn_DEF_BIT_STRING.elements_count;
td->specifics = asn_DEF_BIT_STRING.specifics;
}
void
KeyIdentity4_free(asn_TYPE_descriptor_t *td,
void *struct_ptr, int contents_only) {
KeyIdentity4_1_inherit_TYPE_descriptor(td);
td->free_struct(td, struct_ptr, contents_only);
void KeyIdentity4_free(asn_TYPE_descriptor_t *td,
void *struct_ptr, int contents_only)
{
KeyIdentity4_1_inherit_TYPE_descriptor(td);
td->free_struct(td, struct_ptr, contents_only);
}
int
KeyIdentity4_print(asn_TYPE_descriptor_t *td, const void *struct_ptr,
int ilevel, asn_app_consume_bytes_f *cb, void *app_key) {
KeyIdentity4_1_inherit_TYPE_descriptor(td);
return td->print_struct(td, struct_ptr, ilevel, cb, app_key);
int KeyIdentity4_print(asn_TYPE_descriptor_t *td, const void *struct_ptr,
int ilevel, asn_app_consume_bytes_f *cb, void *app_key)
{
KeyIdentity4_1_inherit_TYPE_descriptor(td);
return td->print_struct(td, struct_ptr, ilevel, cb, app_key);
}
asn_dec_rval_t
KeyIdentity4_decode_ber(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
void **structure, const void *bufptr, size_t size, int tag_mode) {
KeyIdentity4_1_inherit_TYPE_descriptor(td);
return td->ber_decoder(opt_codec_ctx, td, structure, bufptr, size, tag_mode);
void **structure, const void *bufptr, size_t size, int tag_mode)
{
KeyIdentity4_1_inherit_TYPE_descriptor(td);
return td->ber_decoder(opt_codec_ctx, td, structure, bufptr, size, tag_mode);
}
asn_enc_rval_t
KeyIdentity4_encode_der(asn_TYPE_descriptor_t *td,
void *structure, int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
KeyIdentity4_1_inherit_TYPE_descriptor(td);
return td->der_encoder(td, structure, tag_mode, tag, cb, app_key);
void *structure, int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key)
{
KeyIdentity4_1_inherit_TYPE_descriptor(td);
return td->der_encoder(td, structure, tag_mode, tag, cb, app_key);
}
asn_dec_rval_t
KeyIdentity4_decode_xer(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
void **structure, const char *opt_mname, const void *bufptr, size_t size) {
KeyIdentity4_1_inherit_TYPE_descriptor(td);
return td->xer_decoder(opt_codec_ctx, td, structure, opt_mname, bufptr, size);
void **structure, const char *opt_mname, const void *bufptr, size_t size)
{
KeyIdentity4_1_inherit_TYPE_descriptor(td);
return td->xer_decoder(opt_codec_ctx, td, structure, opt_mname, bufptr, size);
}
asn_enc_rval_t
KeyIdentity4_encode_xer(asn_TYPE_descriptor_t *td, void *structure,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
KeyIdentity4_1_inherit_TYPE_descriptor(td);
return td->xer_encoder(td, structure, ilevel, flags, cb, app_key);
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key)
{
KeyIdentity4_1_inherit_TYPE_descriptor(td);
return td->xer_encoder(td, structure, ilevel, flags, cb, app_key);
}
asn_dec_rval_t
KeyIdentity4_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **structure, asn_per_data_t *per_data) {
KeyIdentity4_1_inherit_TYPE_descriptor(td);
return td->uper_decoder(opt_codec_ctx, td, constraints, structure, per_data);
asn_per_constraints_t *constraints, void **structure, asn_per_data_t *per_data)
{
KeyIdentity4_1_inherit_TYPE_descriptor(td);
return td->uper_decoder(opt_codec_ctx, td, constraints, structure, per_data);
}
asn_enc_rval_t
KeyIdentity4_encode_uper(asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints,
void *structure, asn_per_outp_t *per_out) {
KeyIdentity4_1_inherit_TYPE_descriptor(td);
return td->uper_encoder(td, constraints, structure, per_out);
asn_per_constraints_t *constraints,
void *structure, asn_per_outp_t *per_out)
{
KeyIdentity4_1_inherit_TYPE_descriptor(td);
return td->uper_encoder(td, constraints, structure, per_out);
}
static asn_per_constraints_t asn_PER_type_KeyIdentity4_constr_1 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 128, 128 } /* (SIZE(128..128)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 128, 128} /* (SIZE(128..128)) */,
0, 0 /* No PER value map */
};
static ber_tlv_tag_t asn_DEF_KeyIdentity4_tags_1[] = {
(ASN_TAG_CLASS_UNIVERSAL | (3 << 2))
};
(ASN_TAG_CLASS_UNIVERSAL | (3 << 2))};
asn_TYPE_descriptor_t asn_DEF_KeyIdentity4 = {
"KeyIdentity4",
"KeyIdentity4",
KeyIdentity4_free,
KeyIdentity4_print,
KeyIdentity4_constraint,
KeyIdentity4_decode_ber,
KeyIdentity4_encode_der,
KeyIdentity4_decode_xer,
KeyIdentity4_encode_xer,
KeyIdentity4_decode_uper,
KeyIdentity4_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_KeyIdentity4_tags_1,
sizeof(asn_DEF_KeyIdentity4_tags_1)
/sizeof(asn_DEF_KeyIdentity4_tags_1[0]), /* 1 */
asn_DEF_KeyIdentity4_tags_1, /* Same as above */
sizeof(asn_DEF_KeyIdentity4_tags_1)
/sizeof(asn_DEF_KeyIdentity4_tags_1[0]), /* 1 */
&asn_PER_type_KeyIdentity4_constr_1,
0, 0, /* No members */
0 /* No specifics */
"KeyIdentity4",
"KeyIdentity4",
KeyIdentity4_free,
KeyIdentity4_print,
KeyIdentity4_constraint,
KeyIdentity4_decode_ber,
KeyIdentity4_encode_der,
KeyIdentity4_decode_xer,
KeyIdentity4_encode_xer,
KeyIdentity4_decode_uper,
KeyIdentity4_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_KeyIdentity4_tags_1,
sizeof(asn_DEF_KeyIdentity4_tags_1) / sizeof(asn_DEF_KeyIdentity4_tags_1[0]), /* 1 */
asn_DEF_KeyIdentity4_tags_1, /* Same as above */
sizeof(asn_DEF_KeyIdentity4_tags_1) / sizeof(asn_DEF_KeyIdentity4_tags_1[0]), /* 1 */
&asn_PER_type_KeyIdentity4_constr_1,
0, 0, /* No members */
0 /* No specifics */
};

View File

@ -6,35 +6,42 @@
#include "MAC.h"
int
MAC_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 64)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
int MAC_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 64)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
/*
@ -42,110 +49,113 @@ MAC_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
* so here we adjust the DEF accordingly.
*/
static void
MAC_1_inherit_TYPE_descriptor(asn_TYPE_descriptor_t *td) {
td->free_struct = asn_DEF_BIT_STRING.free_struct;
td->print_struct = asn_DEF_BIT_STRING.print_struct;
td->ber_decoder = asn_DEF_BIT_STRING.ber_decoder;
td->der_encoder = asn_DEF_BIT_STRING.der_encoder;
td->xer_decoder = asn_DEF_BIT_STRING.xer_decoder;
td->xer_encoder = asn_DEF_BIT_STRING.xer_encoder;
td->uper_decoder = asn_DEF_BIT_STRING.uper_decoder;
td->uper_encoder = asn_DEF_BIT_STRING.uper_encoder;
if(!td->per_constraints)
td->per_constraints = asn_DEF_BIT_STRING.per_constraints;
td->elements = asn_DEF_BIT_STRING.elements;
td->elements_count = asn_DEF_BIT_STRING.elements_count;
td->specifics = asn_DEF_BIT_STRING.specifics;
MAC_1_inherit_TYPE_descriptor(asn_TYPE_descriptor_t *td)
{
td->free_struct = asn_DEF_BIT_STRING.free_struct;
td->print_struct = asn_DEF_BIT_STRING.print_struct;
td->ber_decoder = asn_DEF_BIT_STRING.ber_decoder;
td->der_encoder = asn_DEF_BIT_STRING.der_encoder;
td->xer_decoder = asn_DEF_BIT_STRING.xer_decoder;
td->xer_encoder = asn_DEF_BIT_STRING.xer_encoder;
td->uper_decoder = asn_DEF_BIT_STRING.uper_decoder;
td->uper_encoder = asn_DEF_BIT_STRING.uper_encoder;
if (!td->per_constraints)
td->per_constraints = asn_DEF_BIT_STRING.per_constraints;
td->elements = asn_DEF_BIT_STRING.elements;
td->elements_count = asn_DEF_BIT_STRING.elements_count;
td->specifics = asn_DEF_BIT_STRING.specifics;
}
void
MAC_free(asn_TYPE_descriptor_t *td,
void *struct_ptr, int contents_only) {
MAC_1_inherit_TYPE_descriptor(td);
td->free_struct(td, struct_ptr, contents_only);
void MAC_free(asn_TYPE_descriptor_t *td,
void *struct_ptr, int contents_only)
{
MAC_1_inherit_TYPE_descriptor(td);
td->free_struct(td, struct_ptr, contents_only);
}
int
MAC_print(asn_TYPE_descriptor_t *td, const void *struct_ptr,
int ilevel, asn_app_consume_bytes_f *cb, void *app_key) {
MAC_1_inherit_TYPE_descriptor(td);
return td->print_struct(td, struct_ptr, ilevel, cb, app_key);
int MAC_print(asn_TYPE_descriptor_t *td, const void *struct_ptr,
int ilevel, asn_app_consume_bytes_f *cb, void *app_key)
{
MAC_1_inherit_TYPE_descriptor(td);
return td->print_struct(td, struct_ptr, ilevel, cb, app_key);
}
asn_dec_rval_t
MAC_decode_ber(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
void **structure, const void *bufptr, size_t size, int tag_mode) {
MAC_1_inherit_TYPE_descriptor(td);
return td->ber_decoder(opt_codec_ctx, td, structure, bufptr, size, tag_mode);
void **structure, const void *bufptr, size_t size, int tag_mode)
{
MAC_1_inherit_TYPE_descriptor(td);
return td->ber_decoder(opt_codec_ctx, td, structure, bufptr, size, tag_mode);
}
asn_enc_rval_t
MAC_encode_der(asn_TYPE_descriptor_t *td,
void *structure, int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
MAC_1_inherit_TYPE_descriptor(td);
return td->der_encoder(td, structure, tag_mode, tag, cb, app_key);
void *structure, int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key)
{
MAC_1_inherit_TYPE_descriptor(td);
return td->der_encoder(td, structure, tag_mode, tag, cb, app_key);
}
asn_dec_rval_t
MAC_decode_xer(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
void **structure, const char *opt_mname, const void *bufptr, size_t size) {
MAC_1_inherit_TYPE_descriptor(td);
return td->xer_decoder(opt_codec_ctx, td, structure, opt_mname, bufptr, size);
void **structure, const char *opt_mname, const void *bufptr, size_t size)
{
MAC_1_inherit_TYPE_descriptor(td);
return td->xer_decoder(opt_codec_ctx, td, structure, opt_mname, bufptr, size);
}
asn_enc_rval_t
MAC_encode_xer(asn_TYPE_descriptor_t *td, void *structure,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
MAC_1_inherit_TYPE_descriptor(td);
return td->xer_encoder(td, structure, ilevel, flags, cb, app_key);
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key)
{
MAC_1_inherit_TYPE_descriptor(td);
return td->xer_encoder(td, structure, ilevel, flags, cb, app_key);
}
asn_dec_rval_t
MAC_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **structure, asn_per_data_t *per_data) {
MAC_1_inherit_TYPE_descriptor(td);
return td->uper_decoder(opt_codec_ctx, td, constraints, structure, per_data);
asn_per_constraints_t *constraints, void **structure, asn_per_data_t *per_data)
{
MAC_1_inherit_TYPE_descriptor(td);
return td->uper_decoder(opt_codec_ctx, td, constraints, structure, per_data);
}
asn_enc_rval_t
MAC_encode_uper(asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints,
void *structure, asn_per_outp_t *per_out) {
MAC_1_inherit_TYPE_descriptor(td);
return td->uper_encoder(td, constraints, structure, per_out);
asn_per_constraints_t *constraints,
void *structure, asn_per_outp_t *per_out)
{
MAC_1_inherit_TYPE_descriptor(td);
return td->uper_encoder(td, constraints, structure, per_out);
}
static asn_per_constraints_t asn_PER_type_MAC_constr_1 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 64, 64 } /* (SIZE(64..64)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 64, 64} /* (SIZE(64..64)) */,
0, 0 /* No PER value map */
};
static ber_tlv_tag_t asn_DEF_MAC_tags_1[] = {
(ASN_TAG_CLASS_UNIVERSAL | (3 << 2))
};
(ASN_TAG_CLASS_UNIVERSAL | (3 << 2))};
asn_TYPE_descriptor_t asn_DEF_MAC = {
"MAC",
"MAC",
MAC_free,
MAC_print,
MAC_constraint,
MAC_decode_ber,
MAC_encode_der,
MAC_decode_xer,
MAC_encode_xer,
MAC_decode_uper,
MAC_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_MAC_tags_1,
sizeof(asn_DEF_MAC_tags_1)
/sizeof(asn_DEF_MAC_tags_1[0]), /* 1 */
asn_DEF_MAC_tags_1, /* Same as above */
sizeof(asn_DEF_MAC_tags_1)
/sizeof(asn_DEF_MAC_tags_1[0]), /* 1 */
&asn_PER_type_MAC_constr_1,
0, 0, /* No members */
0 /* No specifics */
"MAC",
"MAC",
MAC_free,
MAC_print,
MAC_constraint,
MAC_decode_ber,
MAC_encode_der,
MAC_decode_xer,
MAC_encode_xer,
MAC_decode_uper,
MAC_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_MAC_tags_1,
sizeof(asn_DEF_MAC_tags_1) / sizeof(asn_DEF_MAC_tags_1[0]), /* 1 */
asn_DEF_MAC_tags_1, /* Same as above */
sizeof(asn_DEF_MAC_tags_1) / sizeof(asn_DEF_MAC_tags_1[0]), /* 1 */
&asn_PER_type_MAC_constr_1,
0, 0, /* No members */
0 /* No specifics */
};

View File

@ -8,135 +8,148 @@
static int
memb_shortKey_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 128)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 128)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_longKey_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 256)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 256)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static asn_per_constraints_t asn_PER_memb_shortKey_constr_2 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 128, 128 } /* (SIZE(128..128)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 128, 128} /* (SIZE(128..128)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_longKey_constr_3 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 256, 256 } /* (SIZE(256..256)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 256, 256} /* (SIZE(256..256)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_type_SETAuthKey_constr_1 = {
{ APC_CONSTRAINED | APC_EXTENSIBLE, 1, 1, 0, 1 } /* (0..1,...) */,
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
0, 0 /* No PER value map */
{APC_CONSTRAINED | APC_EXTENSIBLE, 1, 1, 0, 1} /* (0..1,...) */,
{APC_UNCONSTRAINED, -1, -1, 0, 0},
0, 0 /* No PER value map */
};
static asn_TYPE_member_t asn_MBR_SETAuthKey_1[] = {
{ ATF_NOFLAGS, 0, offsetof(struct SETAuthKey, choice.shortKey),
(ASN_TAG_CLASS_CONTEXT | (0 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_shortKey_constraint_1,
&asn_PER_memb_shortKey_constr_2,
0,
"shortKey"
},
{ ATF_NOFLAGS, 0, offsetof(struct SETAuthKey, choice.longKey),
(ASN_TAG_CLASS_CONTEXT | (1 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_longKey_constraint_1,
&asn_PER_memb_longKey_constr_3,
0,
"longKey"
},
{ATF_NOFLAGS, 0, offsetof(struct SETAuthKey, choice.shortKey),
(ASN_TAG_CLASS_CONTEXT | (0 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_shortKey_constraint_1,
&asn_PER_memb_shortKey_constr_2,
0,
"shortKey"},
{ATF_NOFLAGS, 0, offsetof(struct SETAuthKey, choice.longKey),
(ASN_TAG_CLASS_CONTEXT | (1 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_longKey_constraint_1,
&asn_PER_memb_longKey_constr_3,
0,
"longKey"},
};
static asn_TYPE_tag2member_t asn_MAP_SETAuthKey_tag2el_1[] = {
{ (ASN_TAG_CLASS_CONTEXT | (0 << 2)), 0, 0, 0 }, /* shortKey at 17 */
{ (ASN_TAG_CLASS_CONTEXT | (1 << 2)), 1, 0, 0 } /* longKey at 18 */
{(ASN_TAG_CLASS_CONTEXT | (0 << 2)), 0, 0, 0}, /* shortKey at 17 */
{(ASN_TAG_CLASS_CONTEXT | (1 << 2)), 1, 0, 0} /* longKey at 18 */
};
static asn_CHOICE_specifics_t asn_SPC_SETAuthKey_specs_1 = {
sizeof(struct SETAuthKey),
offsetof(struct SETAuthKey, _asn_ctx),
offsetof(struct SETAuthKey, present),
sizeof(((struct SETAuthKey *)0)->present),
asn_MAP_SETAuthKey_tag2el_1,
2, /* Count of tags in the map */
0,
2 /* Extensions start */
sizeof(struct SETAuthKey),
offsetof(struct SETAuthKey, _asn_ctx),
offsetof(struct SETAuthKey, present),
sizeof(((struct SETAuthKey *)0)->present),
asn_MAP_SETAuthKey_tag2el_1,
2, /* Count of tags in the map */
0,
2 /* Extensions start */
};
asn_TYPE_descriptor_t asn_DEF_SETAuthKey = {
"SETAuthKey",
"SETAuthKey",
CHOICE_free,
CHOICE_print,
CHOICE_constraint,
CHOICE_decode_ber,
CHOICE_encode_der,
CHOICE_decode_xer,
CHOICE_encode_xer,
CHOICE_decode_uper,
CHOICE_encode_uper,
CHOICE_outmost_tag,
0, /* No effective tags (pointer) */
0, /* No effective tags (count) */
0, /* No tags (pointer) */
0, /* No tags (count) */
&asn_PER_type_SETAuthKey_constr_1,
asn_MBR_SETAuthKey_1,
2, /* Elements count */
&asn_SPC_SETAuthKey_specs_1 /* Additional specs */
"SETAuthKey",
"SETAuthKey",
CHOICE_free,
CHOICE_print,
CHOICE_constraint,
CHOICE_decode_ber,
CHOICE_encode_der,
CHOICE_decode_xer,
CHOICE_encode_xer,
CHOICE_decode_uper,
CHOICE_encode_uper,
CHOICE_outmost_tag,
0, /* No effective tags (pointer) */
0, /* No effective tags (count) */
0, /* No tags (pointer) */
0, /* No tags (count) */
&asn_PER_type_SETAuthKey_constr_1,
asn_MBR_SETAuthKey_1,
2, /* Elements count */
&asn_SPC_SETAuthKey_specs_1 /* Additional specs */
};

View File

@ -6,279 +6,301 @@
#include "SETId.h"
static int check_permitted_alphabet_6(const void *sptr) {
/* The underlying type is IA5String */
const IA5String_t *st = (const IA5String_t *)sptr;
const uint8_t *ch = st->buf;
const uint8_t *end = ch + st->size;
for(; ch < end; ch++) {
uint8_t cv = *ch;
if(!(cv <= 127)) return -1;
}
return 0;
static int check_permitted_alphabet_6(const void *sptr)
{
/* The underlying type is IA5String */
const IA5String_t *st = (const IA5String_t *)sptr;
const uint8_t *ch = st->buf;
const uint8_t *end = ch + st->size;
for (; ch < end; ch++)
{
uint8_t cv = *ch;
if (!(cv <= 127)) return -1;
}
return 0;
}
static int
memb_msisdn_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const OCTET_STRING_t *st = (const OCTET_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
size = st->size;
if((size == 8)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const OCTET_STRING_t *st = (const OCTET_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
size = st->size;
if (size == 8)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_mdn_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const OCTET_STRING_t *st = (const OCTET_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
size = st->size;
if((size == 8)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const OCTET_STRING_t *st = (const OCTET_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
size = st->size;
if (size == 8)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_min_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 34)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 34)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_imsi_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const OCTET_STRING_t *st = (const OCTET_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
size = st->size;
if((size == 8)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const OCTET_STRING_t *st = (const OCTET_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
size = st->size;
if (size == 8)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static int
memb_nai_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const IA5String_t *st = (const IA5String_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
size = st->size;
if((size >= 1 && size <= 1000)
&& !check_permitted_alphabet_6(st)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const IA5String_t *st = (const IA5String_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
size = st->size;
if ((size >= 1 && size <= 1000) && !check_permitted_alphabet_6(st))
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static asn_per_constraints_t asn_PER_memb_msisdn_constr_2 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 8, 8 } /* (SIZE(8..8)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 8, 8} /* (SIZE(8..8)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_mdn_constr_3 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 8, 8 } /* (SIZE(8..8)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 8, 8} /* (SIZE(8..8)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_min_constr_4 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 34, 34 } /* (SIZE(34..34)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 34, 34} /* (SIZE(34..34)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_imsi_constr_5 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 8, 8 } /* (SIZE(8..8)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 8, 8} /* (SIZE(8..8)) */,
0, 0 /* No PER value map */
};
static asn_per_constraints_t asn_PER_memb_nai_constr_6 = {
{ APC_CONSTRAINED, 7, 7, 0, 127 } /* (0..127) */,
{ APC_CONSTRAINED, 10, 10, 1, 1000 } /* (SIZE(1..1000)) */,
0, 0 /* No PER character map necessary */
{APC_CONSTRAINED, 7, 7, 0, 127} /* (0..127) */,
{APC_CONSTRAINED, 10, 10, 1, 1000} /* (SIZE(1..1000)) */,
0, 0 /* No PER character map necessary */
};
static asn_per_constraints_t asn_PER_type_SETId_constr_1 = {
{ APC_CONSTRAINED | APC_EXTENSIBLE, 3, 3, 0, 5 } /* (0..5,...) */,
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
0, 0 /* No PER value map */
{APC_CONSTRAINED | APC_EXTENSIBLE, 3, 3, 0, 5} /* (0..5,...) */,
{APC_UNCONSTRAINED, -1, -1, 0, 0},
0, 0 /* No PER value map */
};
static asn_TYPE_member_t asn_MBR_SETId_1[] = {
{ ATF_NOFLAGS, 0, offsetof(struct SETId, choice.msisdn),
(ASN_TAG_CLASS_CONTEXT | (0 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_OCTET_STRING,
memb_msisdn_constraint_1,
&asn_PER_memb_msisdn_constr_2,
0,
"msisdn"
},
{ ATF_NOFLAGS, 0, offsetof(struct SETId, choice.mdn),
(ASN_TAG_CLASS_CONTEXT | (1 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_OCTET_STRING,
memb_mdn_constraint_1,
&asn_PER_memb_mdn_constr_3,
0,
"mdn"
},
{ ATF_NOFLAGS, 0, offsetof(struct SETId, choice.min),
(ASN_TAG_CLASS_CONTEXT | (2 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_min_constraint_1,
&asn_PER_memb_min_constr_4,
0,
"min"
},
{ ATF_NOFLAGS, 0, offsetof(struct SETId, choice.imsi),
(ASN_TAG_CLASS_CONTEXT | (3 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_OCTET_STRING,
memb_imsi_constraint_1,
&asn_PER_memb_imsi_constr_5,
0,
"imsi"
},
{ ATF_NOFLAGS, 0, offsetof(struct SETId, choice.nai),
(ASN_TAG_CLASS_CONTEXT | (4 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_IA5String,
memb_nai_constraint_1,
&asn_PER_memb_nai_constr_6,
0,
"nai"
},
{ ATF_NOFLAGS, 0, offsetof(struct SETId, choice.iPAddress),
(ASN_TAG_CLASS_CONTEXT | (5 << 2)),
+1, /* EXPLICIT tag at current level */
&asn_DEF_IPAddress,
0, /* Defer constraints checking to the member type */
0, /* No PER visible constraints */
0,
"iPAddress"
},
{ATF_NOFLAGS, 0, offsetof(struct SETId, choice.msisdn),
(ASN_TAG_CLASS_CONTEXT | (0 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_OCTET_STRING,
memb_msisdn_constraint_1,
&asn_PER_memb_msisdn_constr_2,
0,
"msisdn"},
{ATF_NOFLAGS, 0, offsetof(struct SETId, choice.mdn),
(ASN_TAG_CLASS_CONTEXT | (1 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_OCTET_STRING,
memb_mdn_constraint_1,
&asn_PER_memb_mdn_constr_3,
0,
"mdn"},
{ATF_NOFLAGS, 0, offsetof(struct SETId, choice.min),
(ASN_TAG_CLASS_CONTEXT | (2 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_BIT_STRING,
memb_min_constraint_1,
&asn_PER_memb_min_constr_4,
0,
"min"},
{ATF_NOFLAGS, 0, offsetof(struct SETId, choice.imsi),
(ASN_TAG_CLASS_CONTEXT | (3 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_OCTET_STRING,
memb_imsi_constraint_1,
&asn_PER_memb_imsi_constr_5,
0,
"imsi"},
{ATF_NOFLAGS, 0, offsetof(struct SETId, choice.nai),
(ASN_TAG_CLASS_CONTEXT | (4 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_IA5String,
memb_nai_constraint_1,
&asn_PER_memb_nai_constr_6,
0,
"nai"},
{ATF_NOFLAGS, 0, offsetof(struct SETId, choice.iPAddress),
(ASN_TAG_CLASS_CONTEXT | (5 << 2)),
+1, /* EXPLICIT tag at current level */
&asn_DEF_IPAddress,
0, /* Defer constraints checking to the member type */
0, /* No PER visible constraints */
0,
"iPAddress"},
};
static asn_TYPE_tag2member_t asn_MAP_SETId_tag2el_1[] = {
{ (ASN_TAG_CLASS_CONTEXT | (0 << 2)), 0, 0, 0 }, /* msisdn at 22 */
{ (ASN_TAG_CLASS_CONTEXT | (1 << 2)), 1, 0, 0 }, /* mdn at 23 */
{ (ASN_TAG_CLASS_CONTEXT | (2 << 2)), 2, 0, 0 }, /* min at 24 */
{ (ASN_TAG_CLASS_CONTEXT | (3 << 2)), 3, 0, 0 }, /* imsi at 25 */
{ (ASN_TAG_CLASS_CONTEXT | (4 << 2)), 4, 0, 0 }, /* nai at 26 */
{ (ASN_TAG_CLASS_CONTEXT | (5 << 2)), 5, 0, 0 } /* iPAddress at 27 */
{(ASN_TAG_CLASS_CONTEXT | (0 << 2)), 0, 0, 0}, /* msisdn at 22 */
{(ASN_TAG_CLASS_CONTEXT | (1 << 2)), 1, 0, 0}, /* mdn at 23 */
{(ASN_TAG_CLASS_CONTEXT | (2 << 2)), 2, 0, 0}, /* min at 24 */
{(ASN_TAG_CLASS_CONTEXT | (3 << 2)), 3, 0, 0}, /* imsi at 25 */
{(ASN_TAG_CLASS_CONTEXT | (4 << 2)), 4, 0, 0}, /* nai at 26 */
{(ASN_TAG_CLASS_CONTEXT | (5 << 2)), 5, 0, 0} /* iPAddress at 27 */
};
static asn_CHOICE_specifics_t asn_SPC_SETId_specs_1 = {
sizeof(struct SETId),
offsetof(struct SETId, _asn_ctx),
offsetof(struct SETId, present),
sizeof(((struct SETId *)0)->present),
asn_MAP_SETId_tag2el_1,
6, /* Count of tags in the map */
0,
6 /* Extensions start */
sizeof(struct SETId),
offsetof(struct SETId, _asn_ctx),
offsetof(struct SETId, present),
sizeof(((struct SETId *)0)->present),
asn_MAP_SETId_tag2el_1,
6, /* Count of tags in the map */
0,
6 /* Extensions start */
};
asn_TYPE_descriptor_t asn_DEF_SETId = {
"SETId",
"SETId",
CHOICE_free,
CHOICE_print,
CHOICE_constraint,
CHOICE_decode_ber,
CHOICE_encode_der,
CHOICE_decode_xer,
CHOICE_encode_xer,
CHOICE_decode_uper,
CHOICE_encode_uper,
CHOICE_outmost_tag,
0, /* No effective tags (pointer) */
0, /* No effective tags (count) */
0, /* No tags (pointer) */
0, /* No tags (count) */
&asn_PER_type_SETId_constr_1,
asn_MBR_SETId_1,
6, /* Elements count */
&asn_SPC_SETId_specs_1 /* Additional specs */
"SETId",
"SETId",
CHOICE_free,
CHOICE_print,
CHOICE_constraint,
CHOICE_decode_ber,
CHOICE_encode_der,
CHOICE_decode_xer,
CHOICE_encode_xer,
CHOICE_decode_uper,
CHOICE_encode_uper,
CHOICE_outmost_tag,
0, /* No effective tags (pointer) */
0, /* No effective tags (count) */
0, /* No tags (pointer) */
0, /* No tags (count) */
&asn_PER_type_SETId_constr_1,
asn_MBR_SETId_1,
6, /* Elements count */
&asn_SPC_SETId_specs_1 /* Additional specs */
};

View File

@ -8,93 +8,92 @@
static int
memb_sessionID_constraint_1(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const OCTET_STRING_t *st = (const OCTET_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
size = st->size;
if((size == 4)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const OCTET_STRING_t *st = (const OCTET_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
size = st->size;
if (size == 4)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
static asn_per_constraints_t asn_PER_memb_sessionID_constr_2 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 4, 4 } /* (SIZE(4..4)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 4, 4} /* (SIZE(4..4)) */,
0, 0 /* No PER value map */
};
static asn_TYPE_member_t asn_MBR_SlpSessionID_1[] = {
{ ATF_NOFLAGS, 0, offsetof(struct SlpSessionID, sessionID),
(ASN_TAG_CLASS_CONTEXT | (0 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_OCTET_STRING,
memb_sessionID_constraint_1,
&asn_PER_memb_sessionID_constr_2,
0,
"sessionID"
},
{ ATF_NOFLAGS, 0, offsetof(struct SlpSessionID, slpId),
(ASN_TAG_CLASS_CONTEXT | (1 << 2)),
+1, /* EXPLICIT tag at current level */
&asn_DEF_SLPAddress,
0, /* Defer constraints checking to the member type */
0, /* No PER visible constraints */
0,
"slpId"
},
{ATF_NOFLAGS, 0, offsetof(struct SlpSessionID, sessionID),
(ASN_TAG_CLASS_CONTEXT | (0 << 2)),
-1, /* IMPLICIT tag at current level */
&asn_DEF_OCTET_STRING,
memb_sessionID_constraint_1,
&asn_PER_memb_sessionID_constr_2,
0,
"sessionID"},
{ATF_NOFLAGS, 0, offsetof(struct SlpSessionID, slpId),
(ASN_TAG_CLASS_CONTEXT | (1 << 2)),
+1, /* EXPLICIT tag at current level */
&asn_DEF_SLPAddress,
0, /* Defer constraints checking to the member type */
0, /* No PER visible constraints */
0,
"slpId"},
};
static ber_tlv_tag_t asn_DEF_SlpSessionID_tags_1[] = {
(ASN_TAG_CLASS_UNIVERSAL | (16 << 2))
};
(ASN_TAG_CLASS_UNIVERSAL | (16 << 2))};
static asn_TYPE_tag2member_t asn_MAP_SlpSessionID_tag2el_1[] = {
{ (ASN_TAG_CLASS_CONTEXT | (0 << 2)), 0, 0, 0 }, /* sessionID at 37 */
{ (ASN_TAG_CLASS_CONTEXT | (1 << 2)), 1, 0, 0 } /* slpId at 38 */
{(ASN_TAG_CLASS_CONTEXT | (0 << 2)), 0, 0, 0}, /* sessionID at 37 */
{(ASN_TAG_CLASS_CONTEXT | (1 << 2)), 1, 0, 0} /* slpId at 38 */
};
static asn_SEQUENCE_specifics_t asn_SPC_SlpSessionID_specs_1 = {
sizeof(struct SlpSessionID),
offsetof(struct SlpSessionID, _asn_ctx),
asn_MAP_SlpSessionID_tag2el_1,
2, /* Count of tags in the map */
0, 0, 0, /* Optional elements (not needed) */
-1, /* Start extensions */
-1 /* Stop extensions */
sizeof(struct SlpSessionID),
offsetof(struct SlpSessionID, _asn_ctx),
asn_MAP_SlpSessionID_tag2el_1,
2, /* Count of tags in the map */
0, 0, 0, /* Optional elements (not needed) */
-1, /* Start extensions */
-1 /* Stop extensions */
};
asn_TYPE_descriptor_t asn_DEF_SlpSessionID = {
"SlpSessionID",
"SlpSessionID",
SEQUENCE_free,
SEQUENCE_print,
SEQUENCE_constraint,
SEQUENCE_decode_ber,
SEQUENCE_encode_der,
SEQUENCE_decode_xer,
SEQUENCE_encode_xer,
SEQUENCE_decode_uper,
SEQUENCE_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_SlpSessionID_tags_1,
sizeof(asn_DEF_SlpSessionID_tags_1)
/sizeof(asn_DEF_SlpSessionID_tags_1[0]), /* 1 */
asn_DEF_SlpSessionID_tags_1, /* Same as above */
sizeof(asn_DEF_SlpSessionID_tags_1)
/sizeof(asn_DEF_SlpSessionID_tags_1[0]), /* 1 */
0, /* No PER visible constraints */
asn_MBR_SlpSessionID_1,
2, /* Elements count */
&asn_SPC_SlpSessionID_specs_1 /* Additional specs */
"SlpSessionID",
"SlpSessionID",
SEQUENCE_free,
SEQUENCE_print,
SEQUENCE_constraint,
SEQUENCE_decode_ber,
SEQUENCE_encode_der,
SEQUENCE_decode_xer,
SEQUENCE_encode_xer,
SEQUENCE_decode_uper,
SEQUENCE_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_SlpSessionID_tags_1,
sizeof(asn_DEF_SlpSessionID_tags_1) / sizeof(asn_DEF_SlpSessionID_tags_1[0]), /* 1 */
asn_DEF_SlpSessionID_tags_1, /* Same as above */
sizeof(asn_DEF_SlpSessionID_tags_1) / sizeof(asn_DEF_SlpSessionID_tags_1[0]), /* 1 */
0, /* No PER visible constraints */
asn_MBR_SlpSessionID_1,
2, /* Elements count */
&asn_SPC_SlpSessionID_specs_1 /* Additional specs */
};

View File

@ -6,35 +6,42 @@
#include "Ver.h"
int
Ver_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if(st->size > 0) {
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
} else {
size = 0;
}
if((size == 64)) {
/* Constraint check succeeded */
return 0;
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
int Ver_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
size_t size;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
if (st->size > 0)
{
/* Size in bits */
size = 8 * st->size - (st->bits_unused & 0x07);
}
else
{
size = 0;
}
if (size == 64)
{
/* Constraint check succeeded */
return 0;
}
else
{
_ASN_CTFAIL(app_key, td, sptr,
"%s: constraint failed (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
}
/*
@ -42,110 +49,113 @@ Ver_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
* so here we adjust the DEF accordingly.
*/
static void
Ver_1_inherit_TYPE_descriptor(asn_TYPE_descriptor_t *td) {
td->free_struct = asn_DEF_BIT_STRING.free_struct;
td->print_struct = asn_DEF_BIT_STRING.print_struct;
td->ber_decoder = asn_DEF_BIT_STRING.ber_decoder;
td->der_encoder = asn_DEF_BIT_STRING.der_encoder;
td->xer_decoder = asn_DEF_BIT_STRING.xer_decoder;
td->xer_encoder = asn_DEF_BIT_STRING.xer_encoder;
td->uper_decoder = asn_DEF_BIT_STRING.uper_decoder;
td->uper_encoder = asn_DEF_BIT_STRING.uper_encoder;
if(!td->per_constraints)
td->per_constraints = asn_DEF_BIT_STRING.per_constraints;
td->elements = asn_DEF_BIT_STRING.elements;
td->elements_count = asn_DEF_BIT_STRING.elements_count;
td->specifics = asn_DEF_BIT_STRING.specifics;
Ver_1_inherit_TYPE_descriptor(asn_TYPE_descriptor_t *td)
{
td->free_struct = asn_DEF_BIT_STRING.free_struct;
td->print_struct = asn_DEF_BIT_STRING.print_struct;
td->ber_decoder = asn_DEF_BIT_STRING.ber_decoder;
td->der_encoder = asn_DEF_BIT_STRING.der_encoder;
td->xer_decoder = asn_DEF_BIT_STRING.xer_decoder;
td->xer_encoder = asn_DEF_BIT_STRING.xer_encoder;
td->uper_decoder = asn_DEF_BIT_STRING.uper_decoder;
td->uper_encoder = asn_DEF_BIT_STRING.uper_encoder;
if (!td->per_constraints)
td->per_constraints = asn_DEF_BIT_STRING.per_constraints;
td->elements = asn_DEF_BIT_STRING.elements;
td->elements_count = asn_DEF_BIT_STRING.elements_count;
td->specifics = asn_DEF_BIT_STRING.specifics;
}
void
Ver_free(asn_TYPE_descriptor_t *td,
void *struct_ptr, int contents_only) {
Ver_1_inherit_TYPE_descriptor(td);
td->free_struct(td, struct_ptr, contents_only);
void Ver_free(asn_TYPE_descriptor_t *td,
void *struct_ptr, int contents_only)
{
Ver_1_inherit_TYPE_descriptor(td);
td->free_struct(td, struct_ptr, contents_only);
}
int
Ver_print(asn_TYPE_descriptor_t *td, const void *struct_ptr,
int ilevel, asn_app_consume_bytes_f *cb, void *app_key) {
Ver_1_inherit_TYPE_descriptor(td);
return td->print_struct(td, struct_ptr, ilevel, cb, app_key);
int Ver_print(asn_TYPE_descriptor_t *td, const void *struct_ptr,
int ilevel, asn_app_consume_bytes_f *cb, void *app_key)
{
Ver_1_inherit_TYPE_descriptor(td);
return td->print_struct(td, struct_ptr, ilevel, cb, app_key);
}
asn_dec_rval_t
Ver_decode_ber(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
void **structure, const void *bufptr, size_t size, int tag_mode) {
Ver_1_inherit_TYPE_descriptor(td);
return td->ber_decoder(opt_codec_ctx, td, structure, bufptr, size, tag_mode);
void **structure, const void *bufptr, size_t size, int tag_mode)
{
Ver_1_inherit_TYPE_descriptor(td);
return td->ber_decoder(opt_codec_ctx, td, structure, bufptr, size, tag_mode);
}
asn_enc_rval_t
Ver_encode_der(asn_TYPE_descriptor_t *td,
void *structure, int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
Ver_1_inherit_TYPE_descriptor(td);
return td->der_encoder(td, structure, tag_mode, tag, cb, app_key);
void *structure, int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key)
{
Ver_1_inherit_TYPE_descriptor(td);
return td->der_encoder(td, structure, tag_mode, tag, cb, app_key);
}
asn_dec_rval_t
Ver_decode_xer(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
void **structure, const char *opt_mname, const void *bufptr, size_t size) {
Ver_1_inherit_TYPE_descriptor(td);
return td->xer_decoder(opt_codec_ctx, td, structure, opt_mname, bufptr, size);
void **structure, const char *opt_mname, const void *bufptr, size_t size)
{
Ver_1_inherit_TYPE_descriptor(td);
return td->xer_decoder(opt_codec_ctx, td, structure, opt_mname, bufptr, size);
}
asn_enc_rval_t
Ver_encode_xer(asn_TYPE_descriptor_t *td, void *structure,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
Ver_1_inherit_TYPE_descriptor(td);
return td->xer_encoder(td, structure, ilevel, flags, cb, app_key);
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key)
{
Ver_1_inherit_TYPE_descriptor(td);
return td->xer_encoder(td, structure, ilevel, flags, cb, app_key);
}
asn_dec_rval_t
Ver_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **structure, asn_per_data_t *per_data) {
Ver_1_inherit_TYPE_descriptor(td);
return td->uper_decoder(opt_codec_ctx, td, constraints, structure, per_data);
asn_per_constraints_t *constraints, void **structure, asn_per_data_t *per_data)
{
Ver_1_inherit_TYPE_descriptor(td);
return td->uper_decoder(opt_codec_ctx, td, constraints, structure, per_data);
}
asn_enc_rval_t
Ver_encode_uper(asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints,
void *structure, asn_per_outp_t *per_out) {
Ver_1_inherit_TYPE_descriptor(td);
return td->uper_encoder(td, constraints, structure, per_out);
asn_per_constraints_t *constraints,
void *structure, asn_per_outp_t *per_out)
{
Ver_1_inherit_TYPE_descriptor(td);
return td->uper_encoder(td, constraints, structure, per_out);
}
static asn_per_constraints_t asn_PER_type_Ver_constr_1 = {
{ APC_UNCONSTRAINED, -1, -1, 0, 0 },
{ APC_CONSTRAINED, 0, 0, 64, 64 } /* (SIZE(64..64)) */,
0, 0 /* No PER value map */
{APC_UNCONSTRAINED, -1, -1, 0, 0},
{APC_CONSTRAINED, 0, 0, 64, 64} /* (SIZE(64..64)) */,
0, 0 /* No PER value map */
};
static ber_tlv_tag_t asn_DEF_Ver_tags_1[] = {
(ASN_TAG_CLASS_UNIVERSAL | (3 << 2))
};
(ASN_TAG_CLASS_UNIVERSAL | (3 << 2))};
asn_TYPE_descriptor_t asn_DEF_Ver = {
"Ver",
"Ver",
Ver_free,
Ver_print,
Ver_constraint,
Ver_decode_ber,
Ver_encode_der,
Ver_decode_xer,
Ver_encode_xer,
Ver_decode_uper,
Ver_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_Ver_tags_1,
sizeof(asn_DEF_Ver_tags_1)
/sizeof(asn_DEF_Ver_tags_1[0]), /* 1 */
asn_DEF_Ver_tags_1, /* Same as above */
sizeof(asn_DEF_Ver_tags_1)
/sizeof(asn_DEF_Ver_tags_1[0]), /* 1 */
&asn_PER_type_Ver_constr_1,
0, 0, /* No members */
0 /* No specifics */
"Ver",
"Ver",
Ver_free,
Ver_print,
Ver_constraint,
Ver_decode_ber,
Ver_encode_der,
Ver_decode_xer,
Ver_encode_xer,
Ver_decode_uper,
Ver_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_Ver_tags_1,
sizeof(asn_DEF_Ver_tags_1) / sizeof(asn_DEF_Ver_tags_1[0]), /* 1 */
asn_DEF_Ver_tags_1, /* Same as above */
sizeof(asn_DEF_Ver_tags_1) / sizeof(asn_DEF_Ver_tags_1[0]), /* 1 */
&asn_PER_type_Ver_constr_1,
0, 0, /* No members */
0 /* No specifics */
};

View File

@ -7,11 +7,12 @@
#include <constr_TYPE.h>
#include <per_opentype.h>
typedef struct uper_ugot_key {
asn_per_data_t oldpd; /* Old per data source */
size_t unclaimed;
size_t ot_moved; /* Number of bits moved by OT processing */
int repeat;
typedef struct uper_ugot_key
{
asn_per_data_t oldpd; /* Old per data source */
size_t unclaimed;
size_t ot_moved; /* Number of bits moved by OT processing */
int repeat;
} uper_ugot_key;
static int uper_ugot_refill(asn_per_data_t *pd);
@ -24,243 +25,272 @@ int asn_debug_indent;
* Encode an "open type field".
* #10.1, #10.2
*/
int
uper_open_type_put(asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po) {
void *buf;
void *bptr;
ssize_t size;
size_t toGo;
int uper_open_type_put(asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po)
{
void *buf;
void *bptr;
ssize_t size;
size_t toGo;
ASN_DEBUG("Open type put %s ...", td->name);
ASN_DEBUG("Open type put %s ...", td->name);
size = uper_encode_to_new_buffer(td, constraints, sptr, &buf);
if(size <= 0) return -1;
size = uper_encode_to_new_buffer(td, constraints, sptr, &buf);
if (size <= 0) return -1;
for(bptr = buf, toGo = size; toGo;) {
ssize_t maySave = uper_put_length(po, toGo);
if(maySave < 0) break;
if(per_put_many_bits(po, bptr, maySave * 8)) break;
bptr = (char *)bptr + maySave;
toGo -= maySave;
}
for (bptr = buf, toGo = size; toGo;)
{
ssize_t maySave = uper_put_length(po, toGo);
if (maySave < 0) break;
if (per_put_many_bits(po, bptr, maySave * 8)) break;
bptr = (char *)bptr + maySave;
toGo -= maySave;
}
FREEMEM(buf);
if(toGo) return -1;
FREEMEM(buf);
if (toGo) return -1;
ASN_DEBUG("Open type put %s of length %d + overhead (1byte?)",
td->name, size);
ASN_DEBUG("Open type put %s of length %d + overhead (1byte?)",
td->name, size);
return 0;
return 0;
}
static asn_dec_rval_t
uper_open_type_get_simple(asn_codec_ctx_t *ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_dec_rval_t rv;
ssize_t chunk_bytes;
int repeat;
uint8_t *buf = 0;
size_t bufLen = 0;
size_t bufSize = 0;
asn_per_data_t spd;
size_t padding;
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd)
{
asn_dec_rval_t rv;
ssize_t chunk_bytes;
int repeat;
uint8_t *buf = 0;
size_t bufLen = 0;
size_t bufSize = 0;
asn_per_data_t spd;
size_t padding;
_ASN_STACK_OVERFLOW_CHECK(ctx);
_ASN_STACK_OVERFLOW_CHECK(ctx);
ASN_DEBUG("Getting open type %s...", td->name);
ASN_DEBUG("Getting open type %s...", td->name);
do {
chunk_bytes = uper_get_length(pd, -1, &repeat);
if(chunk_bytes < 0) {
FREEMEM(buf);
_ASN_DECODE_STARVED;
}
if(bufLen + chunk_bytes > bufSize) {
void *ptr;
bufSize = chunk_bytes + (bufSize << 2);
ptr = REALLOC(buf, bufSize);
if(!ptr) {
FREEMEM(buf);
_ASN_DECODE_FAILED;
}
buf = ptr;
}
if(per_get_many_bits(pd, buf + bufLen, 0, chunk_bytes << 3)) {
FREEMEM(buf);
_ASN_DECODE_STARVED;
}
bufLen += chunk_bytes;
} while(repeat);
do
{
chunk_bytes = uper_get_length(pd, -1, &repeat);
if (chunk_bytes < 0)
{
FREEMEM(buf);
_ASN_DECODE_STARVED;
}
if (bufLen + chunk_bytes > bufSize)
{
void *ptr;
bufSize = chunk_bytes + (bufSize << 2);
ptr = REALLOC(buf, bufSize);
if (!ptr)
{
FREEMEM(buf);
_ASN_DECODE_FAILED;
}
buf = ptr;
}
if (per_get_many_bits(pd, buf + bufLen, 0, chunk_bytes << 3))
{
FREEMEM(buf);
_ASN_DECODE_STARVED;
}
bufLen += chunk_bytes;
}
while (repeat);
ASN_DEBUG("Getting open type %s encoded in %d bytes", td->name,
bufLen);
ASN_DEBUG("Getting open type %s encoded in %d bytes", td->name,
bufLen);
memset(&spd, 0, sizeof(spd));
spd.buffer = buf;
spd.nbits = bufLen << 3;
memset(&spd, 0, sizeof(spd));
spd.buffer = buf;
spd.nbits = bufLen << 3;
asn_debug_indent += 4;
rv = td->uper_decoder(ctx, td, constraints, sptr, &spd);
asn_debug_indent -= 4;
asn_debug_indent += 4;
rv = td->uper_decoder(ctx, td, constraints, sptr, &spd);
asn_debug_indent -= 4;
if(rv.code == RC_OK) {
/* Check padding validity */
padding = spd.nbits - spd.nboff;
if(padding < 8 && per_get_few_bits(&spd, padding) == 0) {
/* Everything is cool */
FREEMEM(buf);
return rv;
}
FREEMEM(buf);
if(padding >= 8) {
ASN_DEBUG("Too large padding %d in open type", padding);
_ASN_DECODE_FAILED;
} else {
ASN_DEBUG("Non-zero padding");
_ASN_DECODE_FAILED;
}
} else {
FREEMEM(buf);
/* rv.code could be RC_WMORE, nonsense in this context */
rv.code = RC_FAIL; /* Noone would give us more */
}
if (rv.code == RC_OK)
{
/* Check padding validity */
padding = spd.nbits - spd.nboff;
if (padding < 8 && per_get_few_bits(&spd, padding) == 0)
{
/* Everything is cool */
FREEMEM(buf);
return rv;
}
FREEMEM(buf);
if (padding >= 8)
{
ASN_DEBUG("Too large padding %d in open type", padding);
_ASN_DECODE_FAILED;
}
else
{
ASN_DEBUG("Non-zero padding");
_ASN_DECODE_FAILED;
}
}
else
{
FREEMEM(buf);
/* rv.code could be RC_WMORE, nonsense in this context */
rv.code = RC_FAIL; /* Noone would give us more */
}
return rv;
return rv;
}
static asn_dec_rval_t GCC_NOTUSED
uper_open_type_get_complex(asn_codec_ctx_t *ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
uper_ugot_key arg;
asn_dec_rval_t rv;
ssize_t padding;
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd)
{
uper_ugot_key arg;
asn_dec_rval_t rv;
ssize_t padding;
_ASN_STACK_OVERFLOW_CHECK(ctx);
_ASN_STACK_OVERFLOW_CHECK(ctx);
ASN_DEBUG("Getting open type %s from %s", td->name,
per_data_string(pd));
arg.oldpd = *pd;
arg.unclaimed = 0;
arg.ot_moved = 0;
arg.repeat = 1;
pd->refill = uper_ugot_refill;
pd->refill_key = &arg;
pd->nbits = pd->nboff; /* 0 good bits at this point, will refill */
pd->moved = 0; /* This now counts the open type size in bits */
ASN_DEBUG("Getting open type %s from %s", td->name,
per_data_string(pd));
arg.oldpd = *pd;
arg.unclaimed = 0;
arg.ot_moved = 0;
arg.repeat = 1;
pd->refill = uper_ugot_refill;
pd->refill_key = &arg;
pd->nbits = pd->nboff; /* 0 good bits at this point, will refill */
pd->moved = 0; /* This now counts the open type size in bits */
asn_debug_indent += 4;
rv = td->uper_decoder(ctx, td, constraints, sptr, pd);
asn_debug_indent -= 4;
asn_debug_indent += 4;
rv = td->uper_decoder(ctx, td, constraints, sptr, pd);
asn_debug_indent -= 4;
#define UPDRESTOREPD do { \
/* buffer and nboff are valid, preserve them. */ \
pd->nbits = arg.oldpd.nbits - (pd->moved - arg.ot_moved); \
pd->moved = arg.oldpd.moved + (pd->moved - arg.ot_moved); \
pd->refill = arg.oldpd.refill; \
pd->refill_key = arg.oldpd.refill_key; \
} while(0)
#define UPDRESTOREPD \
do \
{ \
/* buffer and nboff are valid, preserve them. */ \
pd->nbits = arg.oldpd.nbits - (pd->moved - arg.ot_moved); \
pd->moved = arg.oldpd.moved + (pd->moved - arg.ot_moved); \
pd->refill = arg.oldpd.refill; \
pd->refill_key = arg.oldpd.refill_key; \
} \
while (0)
if(rv.code != RC_OK) {
UPDRESTOREPD;
return rv;
}
if (rv.code != RC_OK)
{
UPDRESTOREPD;
return rv;
}
ASN_DEBUG("OpenType %s pd%s old%s unclaimed=%d, repeat=%d"
, td->name,
per_data_string(pd),
per_data_string(&arg.oldpd),
arg.unclaimed, arg.repeat);
ASN_DEBUG("OpenType %s pd%s old%s unclaimed=%d, repeat=%d", td->name,
per_data_string(pd),
per_data_string(&arg.oldpd),
arg.unclaimed, arg.repeat);
padding = pd->moved % 8;
if(padding) {
int32_t pvalue;
if(padding > 7) {
ASN_DEBUG("Too large padding %d in open type",
padding);
rv.code = RC_FAIL;
UPDRESTOREPD;
return rv;
}
padding = 8 - padding;
ASN_DEBUG("Getting padding of %d bits", padding);
pvalue = per_get_few_bits(pd, padding);
switch(pvalue) {
case -1:
ASN_DEBUG("Padding skip failed");
UPDRESTOREPD;
_ASN_DECODE_STARVED;
case 0: break;
default:
ASN_DEBUG("Non-blank padding (%d bits 0x%02x)",
padding, (int)pvalue);
UPDRESTOREPD;
_ASN_DECODE_FAILED;
}
}
if(pd->nboff != pd->nbits) {
ASN_DEBUG("Open type %s overhead pd%s old%s", td->name,
per_data_string(pd), per_data_string(&arg.oldpd));
if(1) {
UPDRESTOREPD;
_ASN_DECODE_FAILED;
} else {
arg.unclaimed += pd->nbits - pd->nboff;
}
}
padding = pd->moved % 8;
if (padding)
{
int32_t pvalue;
if (padding > 7)
{
ASN_DEBUG("Too large padding %d in open type",
padding);
rv.code = RC_FAIL;
UPDRESTOREPD;
return rv;
}
padding = 8 - padding;
ASN_DEBUG("Getting padding of %d bits", padding);
pvalue = per_get_few_bits(pd, padding);
switch (pvalue)
{
case -1:
ASN_DEBUG("Padding skip failed");
UPDRESTOREPD;
_ASN_DECODE_STARVED;
case 0:
break;
default:
ASN_DEBUG("Non-blank padding (%d bits 0x%02x)",
padding, (int)pvalue);
UPDRESTOREPD;
_ASN_DECODE_FAILED;
}
}
if (pd->nboff != pd->nbits)
{
ASN_DEBUG("Open type %s overhead pd%s old%s", td->name,
per_data_string(pd), per_data_string(&arg.oldpd));
if (1)
{
UPDRESTOREPD;
_ASN_DECODE_FAILED;
}
else
{
arg.unclaimed += pd->nbits - pd->nboff;
}
}
/* Adjust pd back so it points to original data */
UPDRESTOREPD;
/* Adjust pd back so it points to original data */
UPDRESTOREPD;
/* Skip data not consumed by the decoder */
if(arg.unclaimed) ASN_DEBUG("Getting unclaimed %d", arg.unclaimed);
if(arg.unclaimed) {
switch(per_skip_bits(pd, arg.unclaimed)) {
case -1:
ASN_DEBUG("Claim of %d failed", arg.unclaimed);
_ASN_DECODE_STARVED;
case 0:
ASN_DEBUG("Got claim of %d", arg.unclaimed);
break;
default:
/* Padding must be blank */
ASN_DEBUG("Non-blank unconsumed padding");
_ASN_DECODE_FAILED;
}
arg.unclaimed = 0;
}
/* Skip data not consumed by the decoder */
if (arg.unclaimed) ASN_DEBUG("Getting unclaimed %d", arg.unclaimed);
if (arg.unclaimed)
{
switch (per_skip_bits(pd, arg.unclaimed))
{
case -1:
ASN_DEBUG("Claim of %d failed", arg.unclaimed);
_ASN_DECODE_STARVED;
case 0:
ASN_DEBUG("Got claim of %d", arg.unclaimed);
break;
default:
/* Padding must be blank */
ASN_DEBUG("Non-blank unconsumed padding");
_ASN_DECODE_FAILED;
}
arg.unclaimed = 0;
}
if(arg.repeat) {
ASN_DEBUG("Not consumed the whole thing");
rv.code = RC_FAIL;
return rv;
}
if (arg.repeat)
{
ASN_DEBUG("Not consumed the whole thing");
rv.code = RC_FAIL;
return rv;
}
return rv;
return rv;
}
asn_dec_rval_t
uper_open_type_get(asn_codec_ctx_t *ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
return uper_open_type_get_simple(ctx, td, constraints,
sptr, pd);
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd)
{
return uper_open_type_get_simple(ctx, td, constraints,
sptr, pd);
}
int
uper_open_type_skip(asn_codec_ctx_t *ctx, asn_per_data_t *pd) {
asn_TYPE_descriptor_t s_td;
asn_dec_rval_t rv;
int uper_open_type_skip(asn_codec_ctx_t *ctx, asn_per_data_t *pd)
{
asn_TYPE_descriptor_t s_td;
asn_dec_rval_t rv;
s_td.name = "<unknown extension>";
s_td.uper_decoder = uper_sot_suck;
s_td.name = "<unknown extension>";
s_td.uper_decoder = uper_sot_suck;
rv = uper_open_type_get(ctx, &s_td, 0, 0, pd);
if(rv.code != RC_OK)
return -1;
else
return 0;
rv = uper_open_type_get(ctx, &s_td, 0, 0, pd);
if (rv.code != RC_OK)
return -1;
else
return 0;
}
/*
@ -269,105 +299,122 @@ uper_open_type_skip(asn_codec_ctx_t *ctx, asn_per_data_t *pd) {
static asn_dec_rval_t
uper_sot_suck(asn_codec_ctx_t *ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_dec_rval_t rv;
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd)
{
asn_dec_rval_t rv;
(void)ctx;
(void)td;
(void)constraints;
(void)sptr;
(void)ctx;
(void)td;
(void)constraints;
(void)sptr;
while(per_get_few_bits(pd, 24) >= 0);
while (per_get_few_bits(pd, 24) >= 0)
;
rv.code = RC_OK;
rv.consumed = pd->moved;
rv.code = RC_OK;
rv.consumed = pd->moved;
return rv;
return rv;
}
static int
uper_ugot_refill(asn_per_data_t *pd) {
uper_ugot_key *arg = pd->refill_key;
ssize_t next_chunk_bytes, next_chunk_bits;
ssize_t avail;
uper_ugot_refill(asn_per_data_t *pd)
{
uper_ugot_key *arg = pd->refill_key;
ssize_t next_chunk_bytes, next_chunk_bits;
ssize_t avail;
asn_per_data_t *oldpd = &arg->oldpd;
asn_per_data_t *oldpd = &arg->oldpd;
ASN_DEBUG("REFILLING pd->moved=%d, oldpd->moved=%d",
pd->moved, oldpd->moved);
ASN_DEBUG("REFILLING pd->moved=%d, oldpd->moved=%d",
pd->moved, oldpd->moved);
/* Advance our position to where pd is */
oldpd->buffer = pd->buffer;
oldpd->nboff = pd->nboff;
oldpd->nbits -= pd->moved - arg->ot_moved;
oldpd->moved += pd->moved - arg->ot_moved;
arg->ot_moved = pd->moved;
/* Advance our position to where pd is */
oldpd->buffer = pd->buffer;
oldpd->nboff = pd->nboff;
oldpd->nbits -= pd->moved - arg->ot_moved;
oldpd->moved += pd->moved - arg->ot_moved;
arg->ot_moved = pd->moved;
if(arg->unclaimed) {
/* Refill the container */
if(per_get_few_bits(oldpd, 1))
return -1;
if(oldpd->nboff == 0) {
assert(0);
return -1;
}
pd->buffer = oldpd->buffer;
pd->nboff = oldpd->nboff - 1;
pd->nbits = oldpd->nbits;
ASN_DEBUG("UNCLAIMED <- return from (pd->moved=%d)", pd->moved);
return 0;
}
if (arg->unclaimed)
{
/* Refill the container */
if (per_get_few_bits(oldpd, 1))
return -1;
if (oldpd->nboff == 0)
{
assert(0);
return -1;
}
pd->buffer = oldpd->buffer;
pd->nboff = oldpd->nboff - 1;
pd->nbits = oldpd->nbits;
ASN_DEBUG("UNCLAIMED <- return from (pd->moved=%d)", pd->moved);
return 0;
}
if(!arg->repeat) {
ASN_DEBUG("Want more but refill doesn't have it");
return -1;
}
if (!arg->repeat)
{
ASN_DEBUG("Want more but refill doesn't have it");
return -1;
}
next_chunk_bytes = uper_get_length(oldpd, -1, &arg->repeat);
ASN_DEBUG("Open type LENGTH %d bytes at off %d, repeat %d",
next_chunk_bytes, oldpd->moved, arg->repeat);
if(next_chunk_bytes < 0) return -1;
if(next_chunk_bytes == 0) {
pd->refill = 0; /* No more refills, naturally */
assert(!arg->repeat); /* Implementation guarantee */
}
next_chunk_bits = next_chunk_bytes << 3;
avail = oldpd->nbits - oldpd->nboff;
if(avail >= next_chunk_bits) {
pd->nbits = oldpd->nboff + next_chunk_bits;
arg->unclaimed = 0;
ASN_DEBUG("!+Parent frame %d bits, alloting %d [%d..%d] (%d)",
next_chunk_bits, oldpd->moved,
oldpd->nboff, oldpd->nbits,
oldpd->nbits - oldpd->nboff);
} else {
pd->nbits = oldpd->nbits;
arg->unclaimed = next_chunk_bits - avail;
ASN_DEBUG("!-Parent frame %d, require %d, will claim %d", avail, next_chunk_bits, arg->unclaimed);
}
pd->buffer = oldpd->buffer;
pd->nboff = oldpd->nboff;
ASN_DEBUG("Refilled pd%s old%s",
per_data_string(pd), per_data_string(oldpd));
return 0;
next_chunk_bytes = uper_get_length(oldpd, -1, &arg->repeat);
ASN_DEBUG("Open type LENGTH %d bytes at off %d, repeat %d",
next_chunk_bytes, oldpd->moved, arg->repeat);
if (next_chunk_bytes < 0) return -1;
if (next_chunk_bytes == 0)
{
pd->refill = 0; /* No more refills, naturally */
assert(!arg->repeat); /* Implementation guarantee */
}
next_chunk_bits = next_chunk_bytes << 3;
avail = oldpd->nbits - oldpd->nboff;
if (avail >= next_chunk_bits)
{
pd->nbits = oldpd->nboff + next_chunk_bits;
arg->unclaimed = 0;
ASN_DEBUG("!+Parent frame %d bits, alloting %d [%d..%d] (%d)",
next_chunk_bits, oldpd->moved,
oldpd->nboff, oldpd->nbits,
oldpd->nbits - oldpd->nboff);
}
else
{
pd->nbits = oldpd->nbits;
arg->unclaimed = next_chunk_bits - avail;
ASN_DEBUG("!-Parent frame %d, require %d, will claim %d", avail, next_chunk_bits, arg->unclaimed);
}
pd->buffer = oldpd->buffer;
pd->nboff = oldpd->nboff;
ASN_DEBUG("Refilled pd%s old%s",
per_data_string(pd), per_data_string(oldpd));
return 0;
}
static int
per_skip_bits(asn_per_data_t *pd, int skip_nbits) {
int hasNonZeroBits = 0;
while(skip_nbits > 0) {
int skip;
if(skip_nbits < skip)
skip = skip_nbits;
else
skip = 24;
skip_nbits -= skip;
per_skip_bits(asn_per_data_t *pd, int skip_nbits)
{
int hasNonZeroBits = 0;
while (skip_nbits > 0)
{
int skip = 0;
if (skip_nbits < skip)
skip = skip_nbits;
else
skip = 24;
skip_nbits -= skip;
switch(per_get_few_bits(pd, skip)) {
case -1: return -1; /* Starving */
case 0: continue; /* Skipped empty space */
default: hasNonZeroBits = 1; continue;
}
}
return hasNonZeroBits;
switch (per_get_few_bits(pd, skip))
{
case -1:
return -1; /* Starving */
case 0:
continue; /* Skipped empty space */
default:
hasNonZeroBits = 1;
continue;
}
}
return hasNonZeroBits;
}

View File

@ -104,6 +104,7 @@
#include "sbas_l1_telemetry_decoder.h"
#include "hybrid_observables.h"
#include "rtklib_pvt.h"
#include "gps_l1_ca_kf_tracking.h"
#if RAW_UDP
#include "custom_udp_signal_source.h"
@ -1501,6 +1502,12 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetBlock(
out_streams));
block = std::move(block_);
}
else if (implementation.compare("GPS_L1_CA_KF_Tracking") == 0)
{
std::unique_ptr<GNSSBlockInterface> block_(new GpsL1CaKfTracking(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
else if (implementation.compare("GPS_L1_CA_DLL_PLL_C_Aid_Tracking") == 0)
{
std::unique_ptr<TrackingInterface> block_(new GpsL1CaDllPllCAidTracking(configuration.get(), role, in_streams,
@ -1876,6 +1883,12 @@ std::unique_ptr<TrackingInterface> GNSSBlockFactory::GetTrkBlock(
out_streams));
block = std::move(block_);
}
else if (implementation.compare("GPS_L1_CA_KF_Tracking") == 0)
{
std::unique_ptr<TrackingInterface> block_(new GpsL1CaKfTracking(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
else if (implementation.compare("GPS_L1_CA_DLL_PLL_C_Aid_Tracking") == 0)
{
std::unique_ptr<TrackingInterface> block_(new GpsL1CaDllPllCAidTracking(configuration.get(), role, in_streams,

View File

@ -1183,7 +1183,7 @@ void GNSSFlowgraph::set_signals_list()
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32};
std::set<unsigned int> available_sbas_prn = {120, 124, 126};
std::set<unsigned int> available_sbas_prn = {123, 131, 135, 136, 138};
std::set<unsigned int> available_galileo_prn = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,

View File

@ -54,7 +54,7 @@ const double GPS_L1_FREQ_HZ = FREQ1; //!< L1 [Hz]
const double GPS_L1_CA_CODE_RATE_HZ = 1.023e6; //!< GPS L1 C/A code rate [chips/s]
const double GPS_L1_CA_CODE_LENGTH_CHIPS = 1023.0; //!< GPS L1 C/A code length [chips]
const double GPS_L1_CA_CODE_PERIOD = 0.001; //!< GPS L1 C/A code period [seconds]
const uint32_t GPS_L1_CA_CODE_PERIOD_MS = 1; //!< GPS L1 C/A code period [ms]
const uint32_t GPS_L1_CA_CODE_PERIOD_MS = 1U; //!< GPS L1 C/A code period [ms]
const double GPS_L1_CA_CHIP_PERIOD = 9.7752e-07; //!< GPS L1 C/A chip period [seconds]
/*!

View File

@ -229,11 +229,11 @@ Galileo_Navigation_Message::Galileo_Navigation_Message()
}
bool Galileo_Navigation_Message::CRC_test(std::bitset<GALILEO_DATA_FRAME_BITS> bits, boost::uint32_t checksum)
bool Galileo_Navigation_Message::CRC_test(std::bitset<GALILEO_DATA_FRAME_BITS> bits, uint32_t checksum)
{
CRC_Galileo_INAV_type CRC_Galileo;
boost::uint32_t crc_computed;
uint32_t crc_computed;
// Galileo INAV frame for CRC is not an integer multiple of bytes
// it needs to be filled with zeroes at the start of the frame.
// This operation is done in the transformation from bits to bytes
@ -290,7 +290,7 @@ uint64_t Galileo_Navigation_Message::read_page_type_unsigned(std::bitset<GALILEO
value <<= 1; // shift left
if (bits[GALILEO_PAGE_TYPE_BITS - parameter[i].first - j] == 1)
{
value += 1; // insert the bit
value += 1ULL; // insert the bit
}
}
}
@ -306,11 +306,11 @@ int64_t Galileo_Navigation_Message::read_navigation_signed(std::bitset<GALILEO_D
// read the MSB and perform the sign extension
if (bits[GALILEO_DATA_JK_BITS - parameter[0].first] == 1)
{
value ^= 0xFFFFFFFFFFFFFFFF; // 64 bits variable
value ^= 0xFFFFFFFFFFFFFFFFLL; // 64 bits variable
}
else
{
value &= 0;
value &= 0LL;
}
for (int32_t i = 0; i < num_of_slices; i++)
@ -321,7 +321,7 @@ int64_t Galileo_Navigation_Message::read_navigation_signed(std::bitset<GALILEO_D
value &= 0xFFFFFFFFFFFFFFFE; // reset the corresponding bit (for the 64 bits variable)
if (bits[GALILEO_DATA_JK_BITS - parameter[i].first - j] == 1)
{
value += 1; // insert the bit
value += 1LL; // insert the bit
}
}
}

View File

@ -236,10 +236,10 @@ uint64_t Glonass_Gnav_Navigation_Message::read_navigation_unsigned(std::bitset<G
{
for (int32_t j = 0; j < parameter[i].second; j++)
{
value <<= 1; //shift left
value <<= 1; // shift left
if (bits[GLONASS_GNAV_STRING_BITS - parameter[i].first - j] == 1)
{
value += 1; // insert the bit
value += 1ULL; // insert the bit
}
}
}
@ -255,20 +255,20 @@ int64_t Glonass_Gnav_Navigation_Message::read_navigation_signed(std::bitset<GLON
// read the MSB and perform the sign extension
if (bits[GLONASS_GNAV_STRING_BITS - parameter[0].first] == 1)
{
sign = -1;
sign = -1LL;
}
else
{
sign = 1;
sign = 1LL;
}
for (int32_t i = 0; i < num_of_slices; i++)
{
for (int32_t j = 1; j < parameter[i].second; j++)
{
value <<= 1; //shift left
value <<= 1; // shift left
if (bits[GLONASS_GNAV_STRING_BITS - parameter[i].first - j] == 1)
{
value += 1; // insert the bit
value += 1LL; // insert the bit
}
}
}
@ -278,32 +278,32 @@ int64_t Glonass_Gnav_Navigation_Message::read_navigation_signed(std::bitset<GLON
uint32_t Glonass_Gnav_Navigation_Message::get_frame_number(uint32_t satellite_slot_number)
{
uint32_t frame_ID = 0;
uint32_t frame_ID = 0U;
if (satellite_slot_number >= 1 and satellite_slot_number <= 5)
{
frame_ID = 1;
frame_ID = 1U;
}
else if (satellite_slot_number >= 6 and satellite_slot_number <= 10)
{
frame_ID = 2;
frame_ID = 2U;
}
else if (satellite_slot_number >= 11 and satellite_slot_number <= 15)
{
frame_ID = 3;
frame_ID = 3U;
}
else if (satellite_slot_number >= 16 and satellite_slot_number <= 20)
{
frame_ID = 4;
frame_ID = 4U;
}
else if (satellite_slot_number >= 21 and satellite_slot_number <= 24)
{
frame_ID = 5;
frame_ID = 5U;
}
else
{
LOG(WARNING) << "GLONASS GNAV: Invalid Satellite Slot Number";
frame_ID = 0;
frame_ID = 0U;
}
return frame_ID;
@ -313,8 +313,8 @@ uint32_t Glonass_Gnav_Navigation_Message::get_frame_number(uint32_t satellite_sl
int32_t Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
{
int32_t J = 0;
d_string_ID = 0;
d_frame_ID = 0;
d_string_ID = 0U;
d_frame_ID = 0U;
// Unpack bytes to bits
std::bitset<GLONASS_GNAV_STRING_BITS> string_bits(frame_string);

View File

@ -184,26 +184,30 @@ void Gnss_Satellite::set_PRN(uint32_t PRN_)
}
else if (system.compare("SBAS") == 0)
{
if (PRN_ == 122)
if (PRN_ == 120)
{
PRN = PRN_;
} // WAAS Inmarsat 3F4 (AOR-W)
else if (PRN_ == 134)
} // EGNOS Test Platform.Inmarsat 3-F2 (Atlantic Ocean Region-East)
else if (PRN_ == 123)
{
PRN = PRN_;
} // WAAS Inmarsat 3F3 (POR)
else if (PRN_ == 120)
} // EGNOS Operational Platform. Astra 5B
else if (PRN_ == 131)
{
PRN = PRN_;
} // EGNOS AOR-E Broadcast satellite http://www.egnos-pro.esa.int/index.html
else if (PRN_ == 124)
} // WAAS Eutelsat 117 West B
else if (PRN_ == 135)
{
PRN = PRN_;
} // EGNOS ESA ARTEMIS used for EGNOS Operations
else if (PRN_ == 126)
} // WAAS Galaxy 15
else if (PRN_ == 136)
{
PRN = PRN_;
} // EGNOS IOR-W currently used by Industry to perform various tests on the system.
} // EGNOS Operational Platform. SES-5 (a.k.a. Sirius 5 or Astra 4B)
else if (PRN_ == 138)
{
PRN = PRN_;
} // WAAS Anik F1R
else
{
DLOG(INFO) << "This PRN is not defined";
@ -492,20 +496,23 @@ std::string Gnss_Satellite::what_block(const std::string& system_, uint32_t PRN_
{
switch (PRN_)
{
case 122:
block_ = std::string("WAAS"); // WAAS Inmarsat 3F4 (AOR-W)
break;
case 134:
block_ = std::string("WAAS"); // WAAS Inmarsat 3F3 (POR)
break;
case 120:
block_ = std::string("EGNOS"); // EGNOS AOR-E Broadcast satellite http://www.egnos-pro.esa.int/index.html
block_ = std::string("EGNOS Test Platform"); // Inmarsat 3-F2 (Atlantic Ocean Region-East)
break;
case 124:
block_ = std::string("EGNOS"); // EGNOS ESA ARTEMIS used for EGNOS Operations
case 123:
block_ = std::string("EGNOS"); // EGNOS Operational Platform. Astra 5B
break;
case 126:
block_ = std::string("EGNOS"); // EGNOS IOR-W currently used by Industry to perform various tests on the system.
case 131:
block_ = std::string("WAAS"); // WAAS Eutelsat 117 West B
break;
case 135:
block_ = std::string("WAAS"); // WAAS Galaxy 15
break;
case 136:
block_ = std::string("EGNOS"); // EGNOS Operational Platform. SES-5 (a.k.a. Sirius 5 or Astra 4B)
break;
case 138:
block_ = std::string("WAAS"); // WAAS Anik F1R
break;
default:
block_ = std::string("Unknown");

View File

@ -53,6 +53,7 @@ public:
double Acq_delay_samples; //!< Set by Acquisition processing block
double Acq_doppler_hz; //!< Set by Acquisition processing block
uint64_t Acq_samplestamp_samples; //!< Set by Acquisition processing block
uint32_t Acq_doppler_step; //!< Set by Acquisition processing block
bool Flag_valid_acquisition; //!< Set by Acquisition processing block
// Tracking
@ -96,6 +97,7 @@ public:
ar& Acq_delay_samples;
ar& Acq_doppler_hz;
ar& Acq_samplestamp_samples;
ar& Acq_doppler_step;
ar& Flag_valid_acquisition;
// Tracking
ar& fs;

View File

@ -99,7 +99,7 @@ uint64_t Gps_CNAV_Navigation_Message::read_navigation_unsigned(std::bitset<GPS_C
value <<= 1; // shift left
if (bits[GPS_CNAV_DATA_PAGE_BITS - parameter[i].first - j] == 1)
{
value += 1; // insert the bit
value += 1ULL; // insert the bit
}
}
}
@ -115,22 +115,22 @@ int64_t Gps_CNAV_Navigation_Message::read_navigation_signed(std::bitset<GPS_CNAV
// read the MSB and perform the sign extension
if (bits[GPS_CNAV_DATA_PAGE_BITS - parameter[0].first] == 1)
{
value ^= 0xFFFFFFFFFFFFFFFF; // 64 bits variable
value ^= 0xFFFFFFFFFFFFFFFFLL; // 64 bits variable
}
else
{
value &= 0;
value &= 0LL;
}
for (int32_t i = 0; i < num_of_slices; i++)
{
for (int32_t j = 0; j < parameter[i].second; j++)
{
value <<= 1; // shift left
value &= 0xFFFFFFFFFFFFFFFE; // reset the corresponding bit (for the 64 bits variable)
value <<= 1; // shift left
value &= 0xFFFFFFFFFFFFFFFELL; // reset the corresponding bit (for the 64 bits variable)
if (bits[GPS_CNAV_DATA_PAGE_BITS - parameter[i].first - j] == 1)
{
value += 1; // insert the bit
value += 1LL; // insert the bit
}
}
}

View File

@ -184,10 +184,10 @@ uint64_t Gps_Navigation_Message::read_navigation_unsigned(std::bitset<GPS_SUBFRA
{
for (int32_t j = 0; j < parameter[i].second; j++)
{
value <<= 1; //shift left
value <<= 1; // shift left
if (bits[GPS_SUBFRAME_BITS - parameter[i].first - j] == 1)
{
value += 1; // insert the bit
value += 1ULL; // insert the bit
}
}
}
@ -203,22 +203,22 @@ int64_t Gps_Navigation_Message::read_navigation_signed(std::bitset<GPS_SUBFRAME_
// read the MSB and perform the sign extension
if (bits[GPS_SUBFRAME_BITS - parameter[0].first] == 1)
{
value ^= 0xFFFFFFFFFFFFFFFF; // 64 bits variable
value ^= 0xFFFFFFFFFFFFFFFFLL; // 64 bits variable
}
else
{
value &= 0;
value &= 0LL;
}
for (int32_t i = 0; i < num_of_slices; i++)
{
for (int32_t j = 0; j < parameter[i].second; j++)
{
value <<= 1; // shift left
value &= 0xFFFFFFFFFFFFFFFE; // reset the corresponding bit (for the 64 bits variable)
value <<= 1; // shift left
value &= 0xFFFFFFFFFFFFFFFELL; // reset the corresponding bit (for the 64 bits variable)
if (bits[GPS_SUBFRAME_BITS - parameter[i].first - j] == 1)
{
value += 1; // insert the bit
value += 1LL; // insert the bit
}
}
}

View File

@ -189,7 +189,9 @@ std::string Rtcm::bin_to_binary_data(const std::string& s) const
{
std::string s_aux;
int32_t remainder = static_cast<int32_t>(std::fmod(s.length(), 8));
uint8_t c[s.length()];
std::vector<uint8_t> c;
c.reserve(s.length());
uint32_t k = 0;
if (remainder != 0)
{
@ -213,7 +215,7 @@ std::string Rtcm::bin_to_binary_data(const std::string& s) const
k++;
}
std::string ret(c, c + k / sizeof(c[0]));
std::string ret(c.begin(), c.begin() + k);
return ret;
}

View File

@ -666,7 +666,8 @@ endif(NOT ${GTEST_DIR_LOCAL})
add_executable(trk_test ${CMAKE_CURRENT_SOURCE_DIR}/single_test_main.cc
${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/galileo_e1_dll_pll_veml_tracking_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/tracking_loop_filter_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_real_codes_test.cc )
${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_real_codes_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/bayesian_estimation_test.cc )
target_link_libraries(trk_test ${Boost_LIBRARIES}
${GFlags_LIBS}

View File

@ -391,7 +391,7 @@ int StaticPositionSystemTest::configure_receiver()
config->set_property("PVT.iono_model", "OFF");
config->set_property("PVT.trop_model", "OFF");
config->set_property("PVT.AR_GPS", "PPP-AR");
//config->set_property("PVT.elevation_mask", std::to_string(25));
config->set_property("PVT.elevation_mask", std::to_string(15));
config_f = 0;
}

View File

@ -127,6 +127,7 @@ DECLARE_string(log_dir);
#include "unit-tests/signal-processing-blocks/tracking/tracking_loop_filter_test.cc"
#include "unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_test.cc"
#include "unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_real_codes_test.cc"
#include "unit-tests/signal-processing-blocks/tracking/bayesian_estimation_test.cc"
#if CUDA_BLOCKS_TEST
#include "unit-tests/signal-processing-blocks/tracking/gpu_multicorrelator_test.cc"
@ -148,6 +149,7 @@ DECLARE_string(log_dir);
#include "unit-tests/signal-processing-blocks/acquisition/acq_performance_test.cc"
#include "unit-tests/signal-processing-blocks/tracking/gps_l2_m_dll_pll_tracking_test.cc"
#include "unit-tests/signal-processing-blocks/tracking/gps_l1_ca_dll_pll_tracking_test.cc"
#include "unit-tests/signal-processing-blocks/tracking/gps_l1_ca_kf_tracking_test.cc"
#include "unit-tests/signal-processing-blocks/tracking/tracking_pull-in_test.cc"
#if ENABLE_FPGA
#include "unit-tests/signal-processing-blocks/tracking/tracking_pull-in_test_fpga.cc"

View File

@ -0,0 +1,69 @@
/*!
* \file bayesian_estimation_positivity_test.cc
* \brief This file implements timing tests for the Bayesian covariance estimator
* \author Gerald LaMountain, 20168. gerald(at)ece.neu.edu
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <random>
#include <armadillo>
#include <gtest/gtest.h>
#include "bayesian_estimation.h"
#define BAYESIAN_TEST_N_TRIALS 100
#define BAYESIAN_TEST_ITER 10000
TEST(BayesianEstimationPositivityTest, BayesianPositivityTest)
{
Bayesian_estimator bayes;
arma::vec bayes_mu = arma::zeros(1, 1);
int bayes_nu = 0;
int bayes_kappa = 0;
arma::mat bayes_Psi = arma::ones(1, 1);
arma::vec input = arma::zeros(1, 1);
//--- Perform initializations ------------------------------
std::random_device r;
std::default_random_engine e1(r());
std::normal_distribution<float> normal_dist(0, 5);
for (int k = 0; k < BAYESIAN_TEST_N_TRIALS; k++)
{
bayes.init(bayes_mu, bayes_kappa, bayes_nu, bayes_Psi);
for (int n = 0; n < BAYESIAN_TEST_ITER; n++)
{
input(0) = static_cast<double>(normal_dist(e1));
bayes.update_sequential(input);
arma::mat output = bayes.get_Psi_est();
double output0 = output(0, 0);
ASSERT_EQ(output0 > 0.0, true);
}
}
}

View File

@ -0,0 +1,568 @@
/*!
* \file gps_l1_ca_kf_tracking_test.cc
* \brief This class implements a tracking test for GPS_L1_CA_KF_Tracking
* implementation based on some input parameters.
* \author Carles Fernandez, 2018
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2012-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <chrono>
#include <unistd.h>
#include <vector>
#include <armadillo>
#include <boost/filesystem.hpp>
#include <gnuradio/top_block.h>
#include <gnuradio/blocks/file_source.h>
#include <gnuradio/analog/sig_source_waveform.h>
#include <gnuradio/analog/sig_source_c.h>
#include <gnuradio/blocks/interleaved_char_to_complex.h>
#include <gnuradio/blocks/null_sink.h>
#include <gnuradio/blocks/skiphead.h>
#include <gtest/gtest.h>
#include "GPS_L1_CA.h"
#include "gnss_block_factory.h"
#include "tracking_interface.h"
#include "in_memory_configuration.h"
#include "tracking_true_obs_reader.h"
#include "tracking_dump_reader.h"
#include "signal_generator_flags.h"
#include "gnuplot_i.h"
#include "test_flags.h"
#include "gnss_sdr_flags.h"
DEFINE_bool(plot_gps_l1_kf_tracking_test, false, "Plots results of GpsL1CAKfTrackingTest with gnuplot");
// ######## GNURADIO BLOCK MESSAGE RECEVER #########
class GpsL1CAKfTrackingTest_msg_rx;
typedef boost::shared_ptr<GpsL1CAKfTrackingTest_msg_rx> GpsL1CAKfTrackingTest_msg_rx_sptr;
GpsL1CAKfTrackingTest_msg_rx_sptr GpsL1CAKfTrackingTest_msg_rx_make();
class GpsL1CAKfTrackingTest_msg_rx : public gr::block
{
private:
friend GpsL1CAKfTrackingTest_msg_rx_sptr GpsL1CAKfTrackingTest_msg_rx_make();
void msg_handler_events(pmt::pmt_t msg);
GpsL1CAKfTrackingTest_msg_rx();
public:
int rx_message;
~GpsL1CAKfTrackingTest_msg_rx(); //!< Default destructor
};
GpsL1CAKfTrackingTest_msg_rx_sptr GpsL1CAKfTrackingTest_msg_rx_make()
{
return GpsL1CAKfTrackingTest_msg_rx_sptr(new GpsL1CAKfTrackingTest_msg_rx());
}
void GpsL1CAKfTrackingTest_msg_rx::msg_handler_events(pmt::pmt_t msg)
{
try
{
long int message = pmt::to_long(msg);
rx_message = message;
}
catch (boost::bad_any_cast& e)
{
LOG(WARNING) << "msg_handler_telemetry Bad any cast!";
rx_message = 0;
}
}
GpsL1CAKfTrackingTest_msg_rx::GpsL1CAKfTrackingTest_msg_rx() : gr::block("GpsL1CAKfTrackingTest_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0))
{
this->message_port_register_in(pmt::mp("events"));
this->set_msg_handler(pmt::mp("events"), boost::bind(&GpsL1CAKfTrackingTest_msg_rx::msg_handler_events, this, _1));
rx_message = 0;
}
GpsL1CAKfTrackingTest_msg_rx::~GpsL1CAKfTrackingTest_msg_rx()
{
}
// ###########################################################
class GpsL1CAKfTrackingTest : public ::testing::Test
{
public:
std::string generator_binary;
std::string p1;
std::string p2;
std::string p3;
std::string p4;
std::string p5;
std::string implementation = "GPS_L1_CA_KF_Tracking";
const int baseband_sampling_freq = FLAGS_fs_gen_sps;
std::string filename_rinex_obs = FLAGS_filename_rinex_obs;
std::string filename_raw_data = FLAGS_filename_raw_data;
int configure_generator();
int generate_signal();
void check_results_doppler(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value);
void check_results_acc_carrier_phase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value);
void check_results_codephase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value);
GpsL1CAKfTrackingTest()
{
factory = std::make_shared<GNSSBlockFactory>();
config = std::make_shared<InMemoryConfiguration>();
item_size = sizeof(gr_complex);
gnss_synchro = Gnss_Synchro();
}
~GpsL1CAKfTrackingTest()
{
}
void configure_receiver();
gr::top_block_sptr top_block;
std::shared_ptr<GNSSBlockFactory> factory;
std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro;
size_t item_size;
};
int GpsL1CAKfTrackingTest::configure_generator()
{
// Configure signal generator
generator_binary = FLAGS_generator_binary;
p1 = std::string("-rinex_nav_file=") + FLAGS_rinex_nav_file;
if (FLAGS_dynamic_position.empty())
{
p2 = std::string("-static_position=") + FLAGS_static_position + std::string(",") + std::to_string(FLAGS_duration * 10);
}
else
{
p2 = std::string("-obs_pos_file=") + std::string(FLAGS_dynamic_position);
}
p3 = std::string("-rinex_obs_file=") + FLAGS_filename_rinex_obs; // RINEX 2.10 observation file output
p4 = std::string("-sig_out_file=") + FLAGS_filename_raw_data; // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples
p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); // Baseband sampling frequency [MSps]
return 0;
}
int GpsL1CAKfTrackingTest::generate_signal()
{
int child_status;
char* const parmList[] = {&generator_binary[0], &generator_binary[0], &p1[0], &p2[0], &p3[0], &p4[0], &p5[0], NULL};
int pid;
if ((pid = fork()) == -1)
perror("fork err");
else if (pid == 0)
{
execv(&generator_binary[0], parmList);
std::cout << "Return not expected. Must be an execv err." << std::endl;
std::terminate();
}
waitpid(pid, &child_status, 0);
std::cout << "Signal and Observables RINEX and RAW files created." << std::endl;
return 0;
}
void GpsL1CAKfTrackingTest::configure_receiver()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'G';
std::string signal = "1C";
signal.copy(gnss_synchro.Signal, 2, 0);
gnss_synchro.PRN = FLAGS_test_satellite_PRN;
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(baseband_sampling_freq));
// Set Tracking
config->set_property("Tracking_1C.implementation", implementation);
config->set_property("Tracking_1C.item_type", "gr_complex");
if (FLAGS_dll_bw_hz != 0.0)
{
config->set_property("Tracking_1C.dll_bw_hz", std::to_string(FLAGS_dll_bw_hz));
}
else
{
config->set_property("Tracking_1C.dll_bw_hz", "2.0");
}
config->set_property("Tracking_1C.early_late_space_chips", "0.5");
config->set_property("Tracking_1C.extend_correlation_ms", "1");
config->set_property("Tracking_1C.dump", "true");
config->set_property("Tracking_1C.dump_filename", "./tracking_ch_");
}
void GpsL1CAKfTrackingTest::check_results_doppler(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value)
{
// 1. True value interpolation to match the measurement times
arma::vec true_value_interp;
arma::uvec true_time_s_valid = find(true_time_s > 0);
true_time_s = true_time_s(true_time_s_valid);
true_value = true_value(true_time_s_valid);
arma::uvec meas_time_s_valid = find(meas_time_s > 0);
meas_time_s = meas_time_s(meas_time_s_valid);
meas_value = meas_value(meas_time_s_valid);
arma::interp1(true_time_s, true_value, meas_time_s, true_value_interp);
// 2. RMSE
arma::vec err;
err = meas_value - true_value_interp;
arma::vec err2 = arma::square(err);
double rmse = sqrt(arma::mean(err2));
// 3. Mean err and variance
double error_mean = arma::mean(err);
double error_var = arma::var(err);
// 4. Peaks
double max_error = arma::max(err);
double min_error = arma::min(err);
// 5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << "TRK Doppler RMSE=" << rmse
<< ", mean=" << error_mean
<< ", stdev=" << sqrt(error_var) << " (max,min)=" << max_error << "," << min_error << " [Hz]" << std::endl;
std::cout.precision(ss);
}
void GpsL1CAKfTrackingTest::check_results_acc_carrier_phase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value)
{
// 1. True value interpolation to match the measurement times
arma::vec true_value_interp;
arma::uvec true_time_s_valid = find(true_time_s > 0);
true_time_s = true_time_s(true_time_s_valid);
true_value = true_value(true_time_s_valid);
arma::uvec meas_time_s_valid = find(meas_time_s > 0);
meas_time_s = meas_time_s(meas_time_s_valid);
meas_value = meas_value(meas_time_s_valid);
arma::interp1(true_time_s, true_value, meas_time_s, true_value_interp);
// 2. RMSE
arma::vec err;
err = meas_value - true_value_interp;
arma::vec err2 = arma::square(err);
double rmse = sqrt(arma::mean(err2));
// 3. Mean err and variance
double error_mean = arma::mean(err);
double error_var = arma::var(err);
// 4. Peaks
double max_error = arma::max(err);
double min_error = arma::min(err);
// 5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << "TRK acc carrier phase RMSE=" << rmse
<< ", mean=" << error_mean
<< ", stdev=" << sqrt(error_var) << " (max,min)=" << max_error << "," << min_error << " [Hz]" << std::endl;
std::cout.precision(ss);
}
void GpsL1CAKfTrackingTest::check_results_codephase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value)
{
// 1. True value interpolation to match the measurement times
arma::vec true_value_interp;
arma::uvec true_time_s_valid = find(true_time_s > 0);
true_time_s = true_time_s(true_time_s_valid);
true_value = true_value(true_time_s_valid);
arma::uvec meas_time_s_valid = find(meas_time_s > 0);
meas_time_s = meas_time_s(meas_time_s_valid);
meas_value = meas_value(meas_time_s_valid);
arma::interp1(true_time_s, true_value, meas_time_s, true_value_interp);
// 2. RMSE
arma::vec err;
err = meas_value - true_value_interp;
arma::vec err2 = arma::square(err);
double rmse = sqrt(arma::mean(err2));
// 3. Mean err and variance
double error_mean = arma::mean(err);
double error_var = arma::var(err);
// 4. Peaks
double max_error = arma::max(err);
double min_error = arma::min(err);
// 5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << "TRK code phase RMSE=" << rmse
<< ", mean=" << error_mean
<< ", stdev=" << sqrt(error_var) << " (max,min)=" << max_error << "," << min_error << " [Chips]" << std::endl;
std::cout.precision(ss);
}
TEST_F(GpsL1CAKfTrackingTest, ValidationOfResults)
{
// Configure the signal generator
configure_generator();
// Generate signal raw signal samples and observations RINEX file
if (FLAGS_disable_generator == false)
{
generate_signal();
}
std::chrono::time_point<std::chrono::system_clock> start, end;
configure_receiver();
// open true observables log file written by the simulator
tracking_true_obs_reader true_obs_data;
int test_satellite_PRN = FLAGS_test_satellite_PRN;
std::cout << "Testing satellite PRN=" << test_satellite_PRN << std::endl;
std::string true_obs_file = std::string("./gps_l1_ca_obs_prn");
true_obs_file.append(std::to_string(test_satellite_PRN));
true_obs_file.append(".dat");
ASSERT_EQ(true_obs_data.open_obs_file(true_obs_file), true) << "Failure opening true observables file";
top_block = gr::make_top_block("Tracking test");
std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config, "Tracking_1C", implementation, 1, 1);
std::shared_ptr<TrackingInterface> tracking = std::dynamic_pointer_cast<TrackingInterface>(trk_); //std::make_shared<GpsL1CaDllPllCAidTracking>(config.get(), "Tracking_1C", 1, 1);
boost::shared_ptr<GpsL1CAKfTrackingTest_msg_rx> msg_rx = GpsL1CAKfTrackingTest_msg_rx_make();
// load acquisition data based on the first epoch of the true observations
ASSERT_EQ(true_obs_data.read_binary_obs(), true)
<< "Failure reading true tracking dump file." << std::endl
<< "Maybe sat PRN #" + std::to_string(FLAGS_test_satellite_PRN) +
" is not available?";
// restart the epoch counter
true_obs_data.restart();
std::cout << "Initial Doppler [Hz]=" << true_obs_data.doppler_l1_hz << " Initial code delay [Chips]=" << true_obs_data.prn_delay_chips << std::endl;
gnss_synchro.Acq_delay_samples = (GPS_L1_CA_CODE_LENGTH_CHIPS - true_obs_data.prn_delay_chips / GPS_L1_CA_CODE_LENGTH_CHIPS) * baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD;
gnss_synchro.Acq_doppler_hz = true_obs_data.doppler_l1_hz;
gnss_synchro.Acq_samplestamp_samples = 0;
ASSERT_NO_THROW({
tracking->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel.";
ASSERT_NO_THROW({
tracking->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW({
tracking->connect(top_block);
}) << "Failure connecting tracking to the top_block.";
ASSERT_NO_THROW({
std::string file = "./" + filename_raw_data;
const char* file_name = file.c_str();
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(int8_t), file_name, false);
gr::blocks::interleaved_char_to_complex::sptr gr_interleaved_char_to_complex = gr::blocks::interleaved_char_to_complex::make();
gr::blocks::null_sink::sptr sink = gr::blocks::null_sink::make(sizeof(Gnss_Synchro));
top_block->connect(file_source, 0, gr_interleaved_char_to_complex, 0);
top_block->connect(gr_interleaved_char_to_complex, 0, tracking->get_left_block(), 0);
top_block->connect(tracking->get_right_block(), 0, sink, 0);
top_block->msg_connect(tracking->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of tracking test.";
tracking->start_tracking();
EXPECT_NO_THROW({
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
}) << "Failure running the top_block.";
// check results
// load the true values
long int nepoch = true_obs_data.num_epochs();
std::cout << "True observation epochs=" << nepoch << std::endl;
arma::vec true_timestamp_s = arma::zeros(nepoch, 1);
arma::vec true_acc_carrier_phase_cycles = arma::zeros(nepoch, 1);
arma::vec true_Doppler_Hz = arma::zeros(nepoch, 1);
arma::vec true_prn_delay_chips = arma::zeros(nepoch, 1);
arma::vec true_tow_s = arma::zeros(nepoch, 1);
long int epoch_counter = 0;
while (true_obs_data.read_binary_obs())
{
true_timestamp_s(epoch_counter) = true_obs_data.signal_timestamp_s;
true_acc_carrier_phase_cycles(epoch_counter) = true_obs_data.acc_carrier_phase_cycles;
true_Doppler_Hz(epoch_counter) = true_obs_data.doppler_l1_hz;
true_prn_delay_chips(epoch_counter) = true_obs_data.prn_delay_chips;
true_tow_s(epoch_counter) = true_obs_data.tow;
epoch_counter++;
}
//load the measured values
tracking_dump_reader trk_dump;
ASSERT_EQ(trk_dump.open_obs_file(std::string("./tracking_ch_0.dat")), true)
<< "Failure opening tracking dump file";
nepoch = trk_dump.num_epochs();
std::cout << "Measured observation epochs=" << nepoch << std::endl;
//trk_dump.restart();
arma::vec trk_timestamp_s = arma::zeros(nepoch, 1);
arma::vec trk_acc_carrier_phase_cycles = arma::zeros(nepoch, 1);
arma::vec trk_Doppler_Hz = arma::zeros(nepoch, 1);
arma::vec trk_prn_delay_chips = arma::zeros(nepoch, 1);
std::vector<double> prompt;
std::vector<double> early;
std::vector<double> late;
std::vector<double> promptI;
std::vector<double> promptQ;
epoch_counter = 0;
while (trk_dump.read_binary_obs())
{
trk_timestamp_s(epoch_counter) = static_cast<double>(trk_dump.PRN_start_sample_count) / static_cast<double>(baseband_sampling_freq);
trk_acc_carrier_phase_cycles(epoch_counter) = trk_dump.acc_carrier_phase_rad / GPS_TWO_PI;
trk_Doppler_Hz(epoch_counter) = trk_dump.carrier_doppler_hz;
double delay_chips = GPS_L1_CA_CODE_LENGTH_CHIPS - GPS_L1_CA_CODE_LENGTH_CHIPS * (fmod((static_cast<double>(trk_dump.PRN_start_sample_count) + trk_dump.aux1) / static_cast<double>(baseband_sampling_freq), 1.0e-3) / 1.0e-3);
trk_prn_delay_chips(epoch_counter) = delay_chips;
epoch_counter++;
prompt.push_back(trk_dump.abs_P);
early.push_back(trk_dump.abs_E);
late.push_back(trk_dump.abs_L);
promptI.push_back(trk_dump.prompt_I);
promptQ.push_back(trk_dump.prompt_Q);
}
// Align initial measurements and cut the tracking pull-in transitory
double pull_in_offset_s = 1.0;
arma::uvec initial_meas_point = arma::find(trk_timestamp_s >= (true_timestamp_s(0) + pull_in_offset_s), 1, "first");
trk_timestamp_s = trk_timestamp_s.subvec(initial_meas_point(0), trk_timestamp_s.size() - 1);
trk_acc_carrier_phase_cycles = trk_acc_carrier_phase_cycles.subvec(initial_meas_point(0), trk_acc_carrier_phase_cycles.size() - 1);
trk_Doppler_Hz = trk_Doppler_Hz.subvec(initial_meas_point(0), trk_Doppler_Hz.size() - 1);
trk_prn_delay_chips = trk_prn_delay_chips.subvec(initial_meas_point(0), trk_prn_delay_chips.size() - 1);
check_results_doppler(true_timestamp_s, true_Doppler_Hz, trk_timestamp_s, trk_Doppler_Hz);
check_results_codephase(true_timestamp_s, true_prn_delay_chips, trk_timestamp_s, trk_prn_delay_chips);
check_results_acc_carrier_phase(true_timestamp_s, true_acc_carrier_phase_cycles, trk_timestamp_s, trk_acc_carrier_phase_cycles);
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "Signal tracking completed in " << elapsed_seconds.count() << " seconds." << std::endl;
if (FLAGS_plot_gps_l1_kf_tracking_test == true)
{
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
if (gnuplot_executable.empty())
{
std::cout << "WARNING: Although the flag plot_gps_l1_tracking_test has been set to TRUE," << std::endl;
std::cout << "gnuplot has not been found in your system." << std::endl;
std::cout << "Test results will not be plotted." << std::endl;
}
else
{
try
{
boost::filesystem::path p(gnuplot_executable);
boost::filesystem::path dir = p.parent_path();
std::string gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
std::vector<double> timevec;
double t = 0.0;
for (auto it = prompt.begin(); it != prompt.end(); it++)
{
timevec.push_back(t);
t = t + GPS_L1_CA_CODE_PERIOD;
}
Gnuplot g1("linespoints");
g1.set_title("GPS L1 C/A signal tracking correlators' output (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g1.set_grid();
g1.set_xlabel("Time [s]");
g1.set_ylabel("Correlators' output");
g1.cmd("set key box opaque");
unsigned int decimate = static_cast<unsigned int>(FLAGS_plot_decimate);
g1.plot_xy(timevec, prompt, "Prompt", decimate);
g1.plot_xy(timevec, early, "Early", decimate);
g1.plot_xy(timevec, late, "Late", decimate);
g1.savetops("Correlators_outputs");
g1.savetopdf("Correlators_outputs", 18);
g1.showonscreen(); // window output
Gnuplot g2("points");
g2.set_title("Constellation diagram (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g2.set_grid();
g2.set_xlabel("Inphase");
g2.set_ylabel("Quadrature");
g2.cmd("set size ratio -1");
g2.plot_xy(promptI, promptQ);
g2.savetops("Constellation");
g2.savetopdf("Constellation", 18);
g2.showonscreen(); // window output
}
catch (const GnuplotException& ge)
{
std::cout << ge.what() << std::endl;
}
}
}
}

View File

@ -0,0 +1,93 @@
% Reads GNSS-SDR Tracking dump binary file using the provided
% function and plots some internal variables
% Javier Arribas, 2011. jarribas(at)cttc.es
% -------------------------------------------------------------------------
%
% Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
%
% GNSS-SDR is a software defined Global Navigation
% Satellite Systems receiver
%
% This file is part of GNSS-SDR.
%
% GNSS-SDR is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% at your option) any later version.
%
% GNSS-SDR is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
%
% -------------------------------------------------------------------------
%
close all;
clear all;
if ~exist('dll_pll_veml_read_tracking_dump.m', 'file')
addpath('./libs')
end
samplingFreq = 6625000; %[Hz]
channels = 8;
first_channel = 0;
code_period = 0.001;
path = '/archive/'; %% CHANGE THIS PATH
figpath = [path];
for N=1:1:channels
tracking_log_path = [path 'epl_tracking_ch_' num2str(N+first_channel-1) '.dat']; %% CHANGE epl_tracking_ch_ BY YOUR dump_filename
GNSS_tracking(N) = gps_l1_ca_kf_read_tracking_dump(tracking_log_path);
end
% GNSS-SDR format conversion to MATLAB GPS receiver
for N=1:1:channels
trackResults(N).status = 'T'; %fake track
trackResults(N).codeFreq = GNSS_tracking(N).code_freq_hz.';
trackResults(N).carrFreq = GNSS_tracking(N).carrier_doppler_hz.';
trackResults(N).carrFreqRate = GNSS_tracking(N).carrier_dopplerrate_hz2.';
trackResults(N).dllDiscr = GNSS_tracking(N).code_error.';
trackResults(N).dllDiscrFilt = GNSS_tracking(N).code_nco.';
trackResults(N).pllDiscr = GNSS_tracking(N).carr_error.';
trackResults(N).pllDiscrFilt = GNSS_tracking(N).carr_nco.';
trackResults(N).I_P = GNSS_tracking(N).prompt_I.';
trackResults(N).Q_P = GNSS_tracking(N).prompt_Q.';
trackResults(N).I_E = GNSS_tracking(N).E.';
trackResults(N).I_L = GNSS_tracking(N).L.';
trackResults(N).Q_E = zeros(1,length(GNSS_tracking(N).E));
trackResults(N).Q_L = zeros(1,length(GNSS_tracking(N).E));
trackResults(N).PRN = GNSS_tracking(N).PRN.';
trackResults(N).CNo = GNSS_tracking(N).CN0_SNV_dB_Hz.';
kalmanResults(N).PRN = GNSS_tracking(N).PRN.';
kalmanResults(N).innovation = GNSS_tracking(N).carr_error.';
kalmanResults(N).state1 = GNSS_tracking(N).carr_nco.';
kalmanResults(N).state2 = GNSS_tracking(N).carrier_doppler_hz.';
kalmanResults(N).state3 = GNSS_tracking(N).carrier_dopplerrate_hz2.';
kalmanResults(N).r_noise_cov = GNSS_tracking(N).carr_noise_sigma2.';
kalmanResults(N).CNo = GNSS_tracking(N).CN0_SNV_dB_Hz.';
% Use original MATLAB tracking plot function
settings.numberOfChannels = channels;
settings.msToProcess = length(GNSS_tracking(N).E);
settings.codePeriod = code_period;
settings.timeStartInSeconds = 20;
%plotTracking(N, trackResults, settings)
plotKalman(N, kalmanResults, settings)
saveas(gcf, [figpath 'epl_tracking_ch_' num2str(N) '_PRN_' num2str(trackResults(N).PRN(end)) '.png'], 'png')
end

View File

@ -0,0 +1,158 @@
% Usage: gps_l1_ca_kf_read_tracking_dump (filename, [count])
%
% Opens GNSS-SDR tracking binary log file .dat and returns the contents
% Read GNSS-SDR Tracking dump binary file into MATLAB.
% Javier Arribas, 2011. jarribas(at)cttc.es
% -------------------------------------------------------------------------
%
% Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
%
% GNSS-SDR is a software defined Global Navigation
% Satellite Systems receiver
%
% This file is part of GNSS-SDR.
%
% GNSS-SDR is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% at your option) any later version.
%
% GNSS-SDR is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
%
% -------------------------------------------------------------------------
%
function [GNSS_tracking] = gps_l1_ca_kf_read_tracking_dump (filename, count)
m = nargchk (1,2,nargin);
num_float_vars = 19;
num_unsigned_long_int_vars = 1;
num_double_vars = 1;
num_unsigned_int_vars = 1;
if(~isempty(strfind(computer('arch'), '64')))
% 64-bit computer
double_size_bytes = 8;
unsigned_long_int_size_bytes = 8;
float_size_bytes = 4;
unsigned_int_size_bytes = 4;
else
double_size_bytes = 8;
unsigned_long_int_size_bytes = 4;
float_size_bytes = 4;
unsigned_int_size_bytes = 4;
end
skip_bytes_each_read = float_size_bytes * num_float_vars + unsigned_long_int_size_bytes * num_unsigned_long_int_vars + ...
double_size_bytes * num_double_vars + num_unsigned_int_vars*unsigned_int_size_bytes;
bytes_shift = 0;
if (m)
usage (m);
end
if (nargin < 2)
count = Inf;
end
%loops_counter = fread (f, count, 'uint32',4*12);
f = fopen (filename, 'rb');
if (f < 0)
else
v1 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v2 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v3 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v4 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v5 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v6 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v7 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v8 = fread (f, count, 'long', skip_bytes_each_read - unsigned_long_int_size_bytes);
bytes_shift = bytes_shift + unsigned_long_int_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v9 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v10 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v11 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v12 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v13 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v14 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v15 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v16 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v17 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v18 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v19 = fread (f, count, 'float', skip_bytes_each_read - float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next float
v20 = fread (f, count, 'float', skip_bytes_each_read-float_size_bytes);
bytes_shift = bytes_shift + float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next double
v21 = fread (f, count, 'double', skip_bytes_each_read - double_size_bytes);
bytes_shift = bytes_shift + double_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next unsigned int
v22 = fread (f, count, 'uint', skip_bytes_each_read - unsigned_int_size_bytes);
fclose (f);
GNSS_tracking.VE = v1;
GNSS_tracking.E = v2;
GNSS_tracking.P = v3;
GNSS_tracking.L = v4;
GNSS_tracking.VL = v5;
GNSS_tracking.prompt_I = v6;
GNSS_tracking.prompt_Q = v7;
GNSS_tracking.PRN_start_sample = v8;
GNSS_tracking.acc_carrier_phase_rad = v9;
GNSS_tracking.carrier_doppler_hz = v10;
GNSS_tracking.carrier_dopplerrate_hz2 = v11;
GNSS_tracking.code_freq_hz = v12;
GNSS_tracking.carr_error = v13;
GNSS_tracking.carr_noise_sigma2 = v14;
GNSS_tracking.carr_nco = v15;
GNSS_tracking.code_error = v16;
GNSS_tracking.code_nco = v17;
GNSS_tracking.CN0_SNV_dB_Hz = v18;
GNSS_tracking.carrier_lock_test = v19;
GNSS_tracking.var1 = v20;
GNSS_tracking.var2 = v21;
GNSS_tracking.PRN = v22;
end

View File

@ -0,0 +1,135 @@
function plotKalman(channelList, trackResults, settings)
% This function plots the tracking results for the given channel list.
%
% plotTracking(channelList, trackResults, settings)
%
% Inputs:
% channelList - list of channels to be plotted.
% trackResults - tracking results from the tracking function.
% settings - receiver settings.
%--------------------------------------------------------------------------
% SoftGNSS v3.0
%
% Copyright (C) Darius Plausinaitis
% Written by Darius Plausinaitis
%--------------------------------------------------------------------------
%This program is free software; you can redistribute it and/or
%modify it under the terms of the GNU General Public License
%as published by the Free Software Foundation; either version 2
%of the License, or (at your option) any later version.
%
%This program is distributed in the hope that it will be useful,
%but WITHOUT ANY WARRANTY; without even the implied warranty of
%MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%GNU General Public License for more details.
%
%You should have received a copy of the GNU General Public License
%along with this program; if not, write to the Free Software
%Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
%USA.
%--------------------------------------------------------------------------
% Protection - if the list contains incorrect channel numbers
channelList = intersect(channelList, 1:settings.numberOfChannels);
%=== For all listed channels ==============================================
for channelNr = channelList
%% Select (or create) and clear the figure ================================
% The number 200 is added just for more convenient handling of the open
% figure windows, when many figures are closed and reopened.
% Figures drawn or opened by the user, will not be "overwritten" by
% this function.
figure(channelNr +200);
clf(channelNr +200);
set(channelNr +200, 'Name', ['Channel ', num2str(channelNr), ...
' (PRN ', ...
num2str(trackResults(channelNr).PRN(end-1)), ...
') results']);
timeStart = settings.timeStartInSeconds;
%% Draw axes ==============================================================
% Row 1
handles(1, 1) = subplot(4, 2, 1);
handles(1, 2) = subplot(4, 2, 2);
% Row 2
handles(2, 1) = subplot(4, 2, 3);
handles(2, 2) = subplot(4, 2, 4);
% Row 3
handles(3, 1) = subplot(4, 2, [5 6]);
% Row 4
handles(4, 1) = subplot(4, 2, [7 8]);
%% Plot all figures =======================================================
timeAxisInSeconds = (1:settings.msToProcess)/1000;
%----- CNo for signal----------------------------------
plot (handles(1, 1), timeAxisInSeconds, ...
trackResults(channelNr).CNo(1:settings.msToProcess), 'b');
grid (handles(1, 1));
axis (handles(1, 1), 'tight');
xlabel(handles(1, 1), 'Time (s)');
ylabel(handles(1, 1), 'CNo (dB-Hz)');
title (handles(1, 1), 'Carrier to Noise Ratio');
%----- PLL discriminator filtered----------------------------------
plot (handles(1, 2), timeAxisInSeconds, ...
trackResults(channelNr).state1(1:settings.msToProcess), 'b');
grid (handles(1, 2));
axis (handles(1, 2), 'tight');
xlim (handles(1, 2), [timeStart, timeAxisInSeconds(end)]);
xlabel(handles(1, 2), 'Time (s)');
ylabel(handles(1, 2), 'Phase Amplitude');
title (handles(1, 2), 'Filtered Carrier Phase');
%----- Carrier Frequency --------------------------------
plot (handles(2, 1), timeAxisInSeconds(2:end), ...
trackResults(channelNr).state2(2:settings.msToProcess), 'Color',[0.42 0.25 0.39]);
grid (handles(2, 1));
axis (handles(2, 1));
xlim (handles(2, 1), [timeStart, timeAxisInSeconds(end)]);
xlabel(handles(2, 1), 'Time (s)');
ylabel(handles(2, 1), 'Freq (hz)');
title (handles(2, 1), 'Filtered Doppler Frequency');
%----- Carrier Frequency Rate --------------------------------
plot (handles(2, 2), timeAxisInSeconds(2:end), ...
trackResults(channelNr).state3(2:settings.msToProcess), 'Color',[0.42 0.25 0.39]);
grid (handles(2, 2));
axis (handles(2, 2));
xlim (handles(2, 2), [timeStart, timeAxisInSeconds(end)]);
xlabel(handles(2, 2), 'Time (s)');
ylabel(handles(2, 2), 'Freq (hz)');
title (handles(2, 2), 'Filtered Doppler Frequency Rate');
%----- PLL discriminator unfiltered--------------------------------
plot (handles(3, 1), timeAxisInSeconds, ...
trackResults(channelNr).innovation, 'r');
grid (handles(3, 1));
axis (handles(3, 1), 'auto');
xlim (handles(3, 1), [timeStart, timeAxisInSeconds(end)]);
xlabel(handles(3, 1), 'Time (s)');
ylabel(handles(3, 1), 'Amplitude');
title (handles(3, 1), 'Raw PLL discriminator (Innovation)');
%----- PLL discriminator covariance --------------------------------
plot (handles(4, 1), timeAxisInSeconds, ...
trackResults(channelNr).r_noise_cov, 'r');
grid (handles(4, 1));
axis (handles(4, 1), 'auto');
xlim (handles(4, 1), [timeStart, timeAxisInSeconds(end)]);
xlabel(handles(4, 1), 'Time (s)');
ylabel(handles(4, 1), 'Variance');
title (handles(4, 1), 'Estimated Noise Variance');
end % for channelNr = channelList