1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-16 04:05:46 +00:00

Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into acq_performance

This commit is contained in:
Carles Fernandez 2018-06-21 08:13:01 +02:00
commit a43f691597
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
7 changed files with 632 additions and 364 deletions

View File

@ -121,6 +121,7 @@ pcps_acquisition::pcps_acquisition(const Acq_Conf& conf_) : gr::block("pcps_acqu
}
grid_ = arma::fmat();
d_step_two = false;
d_dump_number = 0;
}
@ -335,46 +336,47 @@ void pcps_acquisition::send_negative_acquisition()
}
void pcps_acquisition::dump_results(unsigned int doppler_index, int effective_fft_size)
void pcps_acquisition::dump_results(int effective_fft_size)
{
memcpy(grid_.colptr(doppler_index), d_magnitude, sizeof(float) * effective_fft_size);
if (doppler_index == (d_num_doppler_bins - 1))
d_dump_number++;
std::string filename = acq_parameters.dump_filename;
filename.append("_");
filename.append(1, d_gnss_synchro->System);
filename.append("_");
filename.append(1, d_gnss_synchro->Signal[0]);
filename.append(1, d_gnss_synchro->Signal[1]);
filename.append("_ch_");
filename.append(std::to_string(d_channel));
filename.append("_");
filename.append(std::to_string(d_dump_number));
filename.append("_sat_");
filename.append(std::to_string(d_gnss_synchro->PRN));
filename.append(".mat");
mat_t* matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if (matfp == NULL)
{
std::string filename = acq_parameters.dump_filename;
filename.append("_");
filename.append(1, d_gnss_synchro->System);
filename.append("_");
filename.append(1, d_gnss_synchro->Signal[0]);
filename.append(1, d_gnss_synchro->Signal[1]);
filename.append("_sat_");
filename.append(std::to_string(d_gnss_synchro->PRN));
filename.append(".mat");
std::cout << "Unable to create or open Acquisition dump file" << std::endl;
acq_parameters.dump = false;
}
else
{
size_t dims[2] = {static_cast<size_t>(effective_fft_size), static_cast<size_t>(d_num_doppler_bins)};
matvar_t* matvar = Mat_VarCreate("grid", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, grid_.memptr(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
mat_t* matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if (matfp == NULL)
{
std::cout << "Unable to create or open Acquisition dump file" << std::endl;
acq_parameters.dump = false;
}
else
{
size_t dims[2] = {static_cast<size_t>(effective_fft_size), static_cast<size_t>(d_num_doppler_bins)};
matvar_t* matvar = Mat_VarCreate("grid", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, grid_.memptr(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
dims[0] = static_cast<size_t>(1);
dims[1] = static_cast<size_t>(1);
matvar = Mat_VarCreate("doppler_max", MAT_C_UINT32, MAT_T_UINT32, 1, dims, &acq_parameters.doppler_max, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
dims[0] = static_cast<size_t>(1);
dims[1] = static_cast<size_t>(1);
matvar = Mat_VarCreate("doppler_max", MAT_C_UINT32, MAT_T_UINT32, 1, dims, &acq_parameters.doppler_max, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("doppler_step", MAT_C_UINT32, MAT_T_UINT32, 1, dims, &d_doppler_step, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("doppler_step", MAT_C_UINT32, MAT_T_UINT32, 1, dims, &d_doppler_step, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
Mat_Close(matfp);
}
Mat_Close(matfp);
}
}
@ -386,7 +388,7 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
// initialize acquisition algorithm
uint32_t indext = 0;
float magt = 0.0;
const gr_complex* in = d_data_buffer; //Get the input samples pointer
const gr_complex* in = d_data_buffer; // Get the input samples pointer
int effective_fft_size = (acq_parameters.bit_transition_flag ? d_fft_size / 2 : d_fft_size);
if (d_cshort)
{
@ -479,7 +481,7 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
// Record results to file if required
if (acq_parameters.dump)
{
pcps_acquisition::dump_results(doppler_index, effective_fft_size);
memcpy(grid_.colptr(doppler_index), d_magnitude, sizeof(float) * effective_fft_size);
}
}
}
@ -548,10 +550,15 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
// Record results to file if required
if (acq_parameters.dump)
{
pcps_acquisition::dump_results(doppler_index, effective_fft_size);
memcpy(grid_.colptr(doppler_index), d_magnitude, sizeof(float) * effective_fft_size);
}
}
}
// Record results to file if required
if (acq_parameters.dump)
{
pcps_acquisition::dump_results(effective_fft_size);
}
lk.lock();
if (!acq_parameters.bit_transition_flag)
{

View File

@ -93,7 +93,7 @@ private:
void send_positive_acquisition();
void dump_results(unsigned int doppler_index, int effective_fft_size);
void dump_results(int effective_fft_size);
Acq_Conf acq_parameters;
bool d_active;
@ -123,6 +123,7 @@ private:
gr::fft::fft_complex* d_ifft;
Gnss_Synchro* d_gnss_synchro;
arma::fmat grid_;
long int d_dump_number;
public:
~pcps_acquisition();

View File

@ -69,7 +69,7 @@
#elif defined(unix) || defined(__unix) || defined(__unix__) || defined(__APPLE__)
//all UNIX-like OSs (Linux, *BSD, MacOSX, Solaris, ...)
#include <unistd.h> // for access(), mkstemp()
#define GP_MAX_TMP_FILES 64
#define GP_MAX_TMP_FILES 1024
#else
#error unsupported or unknown operating system
#endif
@ -302,9 +302,9 @@ public:
///
/// \return <-- reference to the gnuplot object
// -----------------------------------------------
inline Gnuplot &set_multiplot()
inline Gnuplot &set_multiplot(int rows, int cols)
{
cmd("set multiplot");
cmd("set multiplot layout " + std::to_string(rows) + "," + std::to_string(cols)); //+ " rowfirst");
return *this;
};
@ -1906,11 +1906,11 @@ void Gnuplot::init()
std::string tmp = Gnuplot::m_sGNUPlotPath + "/" +
Gnuplot::m_sGNUPlotFileName;
// FILE *popen(const char *command, const char *mode);
// The popen() function shall execute the command specified by the string
// command, create a pipe between the calling program and the executed
// command, and return a pointer to a stream that can be used to either read
// from or write to the pipe.
// FILE *popen(const char *command, const char *mode);
// The popen() function shall execute the command specified by the string
// command, create a pipe between the calling program and the executed
// command, and return a pointer to a stream that can be used to either read
// from or write to the pipe.
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(__TOS_WIN__)
gnucmd = _popen(tmp.c_str(), "w");
#elif defined(unix) || defined(__unix) || defined(__unix__) || defined(__APPLE__)
@ -1974,7 +1974,7 @@ bool Gnuplot::get_program_path()
std::list<std::string> ls;
//split path (one long string) into list ls of strings
//split path (one long string) into list ls of strings
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(__TOS_WIN__)
stringtok(ls, path_str, ";");
#elif defined(unix) || defined(__unix) || defined(__unix__) || defined(__APPLE__)
@ -2018,16 +2018,16 @@ bool Gnuplot::file_exists(const std::string &filename, int mode)
return false;
}
// int _access(const char *path, int mode);
// returns 0 if the file has the given mode,
// it returns -1 if the named file does not exist or is not accessible in
// the given mode
// mode = 0 (F_OK) (default): checks file for existence only
// mode = 1 (X_OK): execution permission
// mode = 2 (W_OK): write permission
// mode = 4 (R_OK): read permission
// mode = 6 : read and write permission
// mode = 7 : read, write and execution permission
// int _access(const char *path, int mode);
// returns 0 if the file has the given mode,
// it returns -1 if the named file does not exist or is not accessible in
// the given mode
// mode = 0 (F_OK) (default): checks file for existence only
// mode = 1 (X_OK): execution permission
// mode = 2 (W_OK): write permission
// mode = 4 (R_OK): read permission
// mode = 6 : read and write permission
// mode = 7 : read, write and execution permission
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(__TOS_WIN__)
if (_access(filename.c_str(), mode) == 0)
#elif defined(unix) || defined(__unix) || defined(__unix__) || defined(__APPLE__)
@ -2089,19 +2089,19 @@ std::string Gnuplot::create_tmpfile(std::ofstream &tmp)
throw GnuplotException(except.str());
}
// int mkstemp(char *name);
// shall replace the contents of the string pointed to by "name" by a unique
// filename, and return a file descriptor for the file open for reading and
// writing. Otherwise, -1 shall be returned if no suitable file could be
// created. The string in template should look like a filename with six
// trailing 'X' s; mkstemp() replaces each 'X' with a character from the
// portable filename character set. The characters are chosen such that the
// resulting name does not duplicate the name of an existing file at the
// time of a call to mkstemp()
// int mkstemp(char *name);
// shall replace the contents of the string pointed to by "name" by a unique
// filename, and return a file descriptor for the file open for reading and
// writing. Otherwise, -1 shall be returned if no suitable file could be
// created. The string in template should look like a filename with six
// trailing 'X' s; mkstemp() replaces each 'X' with a character from the
// portable filename character set. The characters are chosen such that the
// resulting name does not duplicate the name of an existing file at the
// time of a call to mkstemp()
//
// open temporary files for output
//
//
// open temporary files for output
//
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(__TOS_WIN__)
if (_mktemp(name) == NULL)

View File

@ -73,6 +73,7 @@ bool acquisition_dump_reader::read_binary_acq()
Mat_Close(matfile);
return false;
}
std::vector<std::vector<float> >::iterator it1;
std::vector<float>::iterator it2;
float* aux = static_cast<float*>(var_->data);
@ -93,7 +94,13 @@ bool acquisition_dump_reader::read_binary_acq()
}
acquisition_dump_reader::acquisition_dump_reader(const std::string& basename, unsigned int sat, unsigned int doppler_max, unsigned int doppler_step, unsigned int samples_per_code)
acquisition_dump_reader::acquisition_dump_reader(const std::string& basename,
unsigned int sat,
unsigned int doppler_max,
unsigned int doppler_step,
unsigned int samples_per_code,
int channel,
int execution)
{
d_basename = basename;
d_sat = sat;
@ -103,7 +110,7 @@ acquisition_dump_reader::acquisition_dump_reader(const std::string& basename, un
d_num_doppler_bins = static_cast<unsigned int>(ceil(static_cast<double>(static_cast<int>(d_doppler_max) - static_cast<int>(-d_doppler_max)) / static_cast<double>(d_doppler_step)));
std::vector<std::vector<float> > mag_aux(d_num_doppler_bins, std::vector<float>(d_samples_per_code));
mag = mag_aux;
d_dump_filename = d_basename + "_sat_" + std::to_string(d_sat) + ".mat";
d_dump_filename = d_basename + "_ch_" + std::to_string(channel) + "_" + std::to_string(execution) + "_sat_" + std::to_string(d_sat) + ".mat";
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
doppler.push_back(-static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index);

View File

@ -38,7 +38,13 @@
class acquisition_dump_reader
{
public:
acquisition_dump_reader(const std::string& basename, unsigned int sat, unsigned int doppler_max, unsigned int doppler_step, unsigned int samples_per_code);
acquisition_dump_reader(const std::string& basename,
unsigned int sat,
unsigned int doppler_max,
unsigned int doppler_step,
unsigned int samples_per_code,
int channel = 0,
int execution = 1);
~acquisition_dump_reader();
bool read_binary_acq();

View File

@ -61,6 +61,15 @@ DEFINE_double(CN0_dBHz_start, std::numeric_limits<double>::infinity(), "Enable n
DEFINE_double(CN0_dBHz_stop, std::numeric_limits<double>::infinity(), "Enable noise generator and set the CN0 stop sweep value [dB-Hz]");
DEFINE_double(CN0_dB_step, 3.0, "Noise generator CN0 sweep step value [dB]");
DEFINE_double(PLL_bw_hz_start, 40.0, "PLL Wide configuration start sweep value [Hz]");
DEFINE_double(PLL_bw_hz_stop, 40.0, "PLL Wide configuration stop sweep value [Hz]");
DEFINE_double(PLL_bw_hz_step, 5.0, "PLL Wide configuration sweep step value [Hz]");
DEFINE_double(DLL_bw_hz_start, 1.5, "DLL Wide configuration start sweep value [Hz]");
DEFINE_double(DLL_bw_hz_stop, 1.5, "DLL Wide configuration stop sweep value [Hz]");
DEFINE_double(DLL_bw_hz_step, 0.25, "DLL Wide configuration sweep step value [Hz]");
DEFINE_bool(plot_extra, false, "Enable or disable plots of the correlators output and constellation diagrams");
//Emulated acquisition configuration
@ -148,15 +157,21 @@ public:
std::vector<double> check_results_doppler(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value);
arma::vec& meas_value,
double& mean_error,
double& std_dev_error);
std::vector<double> check_results_acc_carrier_phase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value);
arma::vec& meas_value,
double& mean_error,
double& std_dev_error);
std::vector<double> check_results_codephase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value);
arma::vec& meas_value,
double& mean_error,
double& std_dev_error);
GpsL1CADllPllTrackingTest()
{
@ -170,7 +185,11 @@ public:
{
}
void configure_receiver();
void configure_receiver(double PLL_wide_bw_hz,
double DLL_wide_bw_hz,
double PLL_narrow_bw_hz,
double DLL_narrow_bw_hz,
int extend_correlation_symbols);
gr::top_block_sptr top_block;
std::shared_ptr<GNSSBlockFactory> factory;
@ -225,7 +244,12 @@ int GpsL1CADllPllTrackingTest::generate_signal()
}
void GpsL1CADllPllTrackingTest::configure_receiver()
void GpsL1CADllPllTrackingTest::configure_receiver(
double PLL_wide_bw_hz,
double DLL_wide_bw_hz,
double PLL_narrow_bw_hz,
double DLL_narrow_bw_hz,
int extend_correlation_symbols)
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'G';
@ -233,26 +257,40 @@ void GpsL1CADllPllTrackingTest::configure_receiver()
signal.copy(gnss_synchro.Signal, 2, 0);
gnss_synchro.PRN = FLAGS_test_satellite_PRN;
config = std::make_shared<InMemoryConfiguration>();
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(baseband_sampling_freq));
// Set Tracking
config->set_property("Tracking_1C.implementation", implementation);
config->set_property("Tracking_1C.item_type", "gr_complex");
config->set_property("Tracking_1C.pll_bw_hz", "20.0");
config->set_property("Tracking_1C.dll_bw_hz", "1.5");
config->set_property("Tracking_1C.pll_bw_hz", std::to_string(PLL_wide_bw_hz));
config->set_property("Tracking_1C.dll_bw_hz", std::to_string(DLL_wide_bw_hz));
config->set_property("Tracking_1C.early_late_space_chips", "0.5");
config->set_property("Tracking_1C.extend_correlation_symbols", std::to_string(FLAGS_extend_correlation_symbols));
config->set_property("Tracking_1C.pll_bw_narrow_hz", "2.0");
config->set_property("Tracking_1C.dll_bw_narrow_hz", "1.0");
config->set_property("Tracking_1C.extend_correlation_symbols", std::to_string(extend_correlation_symbols));
config->set_property("Tracking_1C.pll_bw_narrow_hz", std::to_string(PLL_narrow_bw_hz));
config->set_property("Tracking_1C.dll_bw_narrow_hz", std::to_string(DLL_narrow_bw_hz));
config->set_property("Tracking_1C.early_late_space_narrow_chips", "0.5");
config->set_property("Tracking_1C.dump", "true");
config->set_property("Tracking_1C.dump_filename", "./tracking_ch_");
std::cout << "*****************************************\n";
std::cout << "*** Tracking configuration parameters ***\n";
std::cout << "*****************************************\n";
std::cout << "pll_bw_hz: " << config->property("Tracking_1C.pll_bw_hz", 0.0) << " Hz\n";
std::cout << "dll_bw_hz: " << config->property("Tracking_1C.dll_bw_hz", 0.0) << " Hz\n";
std::cout << "pll_bw_narrow_hz: " << config->property("Tracking_1C.pll_bw_narrow_hz", 0.0) << " Hz\n";
std::cout << "dll_bw_narrow_hz: " << config->property("Tracking_1C.dll_bw_narrow_hz", 0.0) << " Hz\n";
std::cout << "extend_correlation_symbols: " << config->property("Tracking_1C.extend_correlation_symbols", 0) << " Symbols\n";
std::cout << "*****************************************\n";
std::cout << "*****************************************\n";
}
std::vector<double> GpsL1CADllPllTrackingTest::check_results_doppler(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value)
arma::vec& meas_value,
double& mean_error,
double& std_dev_error)
{
// 1. True value interpolation to match the measurement times
arma::vec true_value_interp;
@ -280,6 +318,9 @@ std::vector<double> GpsL1CADllPllTrackingTest::check_results_doppler(arma::vec&
double error_mean = arma::mean(err);
double error_var = arma::var(err);
mean_error = error_mean;
std_dev_error = sqrt(error_var);
// 4. Peaks
double max_error = arma::max(err);
double min_error = arma::min(err);
@ -297,7 +338,9 @@ std::vector<double> GpsL1CADllPllTrackingTest::check_results_doppler(arma::vec&
std::vector<double> GpsL1CADllPllTrackingTest::check_results_acc_carrier_phase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value)
arma::vec& meas_value,
double& mean_error,
double& std_dev_error)
{
// 1. True value interpolation to match the measurement times
arma::vec true_value_interp;
@ -323,6 +366,8 @@ std::vector<double> GpsL1CADllPllTrackingTest::check_results_acc_carrier_phase(a
double error_mean = arma::mean(err);
double error_var = arma::var(err);
mean_error = error_mean;
std_dev_error = sqrt(error_var);
// 4. Peaks
double max_error = arma::max(err);
double min_error = arma::min(err);
@ -340,7 +385,9 @@ std::vector<double> GpsL1CADllPllTrackingTest::check_results_acc_carrier_phase(a
std::vector<double> GpsL1CADllPllTrackingTest::check_results_codephase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value)
arma::vec& meas_value,
double& mean_error,
double& std_dev_error)
{
// 1. True value interpolation to match the measurement times
arma::vec true_value_interp;
@ -367,6 +414,9 @@ std::vector<double> GpsL1CADllPllTrackingTest::check_results_codephase(arma::vec
double error_mean = arma::mean(err);
double error_var = arma::var(err);
mean_error = error_mean;
std_dev_error = sqrt(error_var);
// 4. Peaks
double max_error = arma::max(err);
double min_error = arma::min(err);
@ -389,18 +439,18 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
std::vector<double> generator_CN0_values;
std::vector<std::vector<double>> prompt_sweep;
std::vector<std::vector<double>> early_sweep;
std::vector<std::vector<double>> late_sweep;
std::vector<std::vector<double>> promptI_sweep;
std::vector<std::vector<double>> promptQ_sweep;
std::vector<std::vector<double>> CN0_dBHz_sweep;
//error vectors
std::vector<std::vector<double>> doppler_error_sweep;
std::vector<std::vector<double>> code_phase_error_sweep;
std::vector<std::vector<double>> acc_carrier_phase_error_sweep;
std::vector<std::vector<double>> trk_timestamp_s_sweep;
//data containers for config param sweep
std::vector<std::vector<double>> mean_doppler_error_sweep; //swep config param and cn0 sweep
std::vector<std::vector<double>> std_dev_doppler_error_sweep; //swep config param and cn0 sweep
std::vector<std::vector<double>> mean_code_phase_error_sweep; //swep config param and cn0 sweep
std::vector<std::vector<double>> std_dev_code_phase_error_sweep; //swep config param and cn0 sweep
std::vector<std::vector<double>> mean_carrier_phase_error_sweep; //swep config param and cn0 sweep
std::vector<std::vector<double>> std_dev_carrier_phase_error_sweep; //swep config param and cn0 sweep
std::vector<std::vector<double>> trk_valid_timestamp_s_sweep;
if (FLAGS_CN0_dBHz_start == FLAGS_CN0_dBHz_stop)
{
@ -444,192 +494,430 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
}
//CN0 LOOP
// CONFIG PARAM SWEEP LOOP
std::vector<double> PLL_wide_bw_values;
std::vector<double> DLL_wide_bw_values;
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
if (FLAGS_PLL_bw_hz_start == FLAGS_PLL_bw_hz_stop)
{
//******************************************************************************************
//***** Obtain the initial signal sinchronization parameters (emulating an acquisition) ****
//******************************************************************************************
if (!FLAGS_enable_external_signal_file)
if (FLAGS_DLL_bw_hz_start == FLAGS_DLL_bw_hz_stop)
{
test_satellite_PRN = FLAGS_test_satellite_PRN;
std::string true_obs_file = std::string("./gps_l1_ca_obs_prn");
true_obs_file.append(std::to_string(test_satellite_PRN));
true_obs_file.append(".dat");
true_obs_data.close_obs_file();
ASSERT_EQ(true_obs_data.open_obs_file(true_obs_file), true) << "Failure opening true observables file";
// load acquisition data based on the first epoch of the true observations
ASSERT_EQ(true_obs_data.read_binary_obs(), true)
<< "Failure reading true tracking dump file." << std::endl
<< "Maybe sat PRN #" + std::to_string(FLAGS_test_satellite_PRN) +
" is not available?";
std::cout << "Testing satellite PRN=" << test_satellite_PRN << std::endl;
std::cout << "Initial Doppler [Hz]=" << true_obs_data.doppler_l1_hz << " Initial code delay [Chips]=" << true_obs_data.prn_delay_chips << std::endl;
acq_doppler_hz = true_obs_data.doppler_l1_hz;
acq_delay_samples = (GPS_L1_CA_CODE_LENGTH_CHIPS - true_obs_data.prn_delay_chips / GPS_L1_CA_CODE_LENGTH_CHIPS) * static_cast<double>(baseband_sampling_freq) * GPS_L1_CA_CODE_PERIOD;
// restart the epoch counter
true_obs_data.restart();
//NO PLL/DLL BW sweep
PLL_wide_bw_values.push_back(FLAGS_PLL_bw_hz_start);
DLL_wide_bw_values.push_back(FLAGS_DLL_bw_hz_start);
}
//***** STEP 4: Configure the signal tracking parameters *****
//************************************************************
std::chrono::time_point<std::chrono::system_clock> start, end;
configure_receiver();
top_block = gr::make_top_block("Tracking test");
std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config, "Tracking_1C", implementation, 1, 1);
std::shared_ptr<TrackingInterface> tracking = std::dynamic_pointer_cast<TrackingInterface>(trk_);
boost::shared_ptr<GpsL1CADllPllTrackingTest_msg_rx> msg_rx = GpsL1CADllPllTrackingTest_msg_rx_make();
gnss_synchro.Acq_delay_samples = acq_delay_samples;
gnss_synchro.Acq_doppler_hz = acq_doppler_hz;
gnss_synchro.Acq_samplestamp_samples = 0;
ASSERT_NO_THROW({
tracking->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel.";
ASSERT_NO_THROW({
tracking->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW({
tracking->connect(top_block);
}) << "Failure connecting tracking to the top_block.";
ASSERT_NO_THROW({
std::string file = "./" + filename_raw_data + std::to_string(current_cn0_idx);
const char* file_name = file.c_str();
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(int8_t), file_name, false);
gr::blocks::interleaved_char_to_complex::sptr gr_interleaved_char_to_complex = gr::blocks::interleaved_char_to_complex::make();
gr::blocks::null_sink::sptr sink = gr::blocks::null_sink::make(sizeof(Gnss_Synchro));
top_block->connect(file_source, 0, gr_interleaved_char_to_complex, 0);
top_block->connect(gr_interleaved_char_to_complex, 0, tracking->get_left_block(), 0);
top_block->connect(tracking->get_right_block(), 0, sink, 0);
top_block->msg_connect(tracking->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of tracking test.";
//********************************************************************
//***** STEP 5: Perform the signal tracking and read the results *****
//********************************************************************
tracking->start_tracking();
EXPECT_NO_THROW({
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
}) << "Failure running the top_block.";
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "Signal tracking completed in " << elapsed_seconds.count() << " seconds" << std::endl;
//check results
//load the measured values
tracking_dump_reader trk_dump;
ASSERT_EQ(trk_dump.open_obs_file(std::string("./tracking_ch_0.dat")), true)
<< "Failure opening tracking dump file";
long int n_measured_epochs = trk_dump.num_epochs();
std::cout << "Measured observation epochs=" << n_measured_epochs << std::endl;
arma::vec trk_timestamp_s = arma::zeros(n_measured_epochs, 1);
arma::vec trk_acc_carrier_phase_cycles = arma::zeros(n_measured_epochs, 1);
arma::vec trk_Doppler_Hz = arma::zeros(n_measured_epochs, 1);
arma::vec trk_prn_delay_chips = arma::zeros(n_measured_epochs, 1);
long int epoch_counter = 0;
std::vector<double> prompt;
std::vector<double> early;
std::vector<double> late;
std::vector<double> promptI;
std::vector<double> promptQ;
std::vector<double> CN0_dBHz;
while (trk_dump.read_binary_obs())
else
{
trk_timestamp_s(epoch_counter) = static_cast<double>(trk_dump.PRN_start_sample_count) / static_cast<double>(baseband_sampling_freq);
trk_acc_carrier_phase_cycles(epoch_counter) = trk_dump.acc_carrier_phase_rad / GPS_TWO_PI;
trk_Doppler_Hz(epoch_counter) = trk_dump.carrier_doppler_hz;
double delay_chips = GPS_L1_CA_CODE_LENGTH_CHIPS - GPS_L1_CA_CODE_LENGTH_CHIPS * (fmod((static_cast<double>(trk_dump.PRN_start_sample_count) + trk_dump.aux1) / static_cast<double>(baseband_sampling_freq), 1.0e-3) / 1.0e-3);
trk_prn_delay_chips(epoch_counter) = delay_chips;
epoch_counter++;
prompt.push_back(trk_dump.abs_P);
early.push_back(trk_dump.abs_E);
late.push_back(trk_dump.abs_L);
promptI.push_back(trk_dump.prompt_I);
promptQ.push_back(trk_dump.prompt_Q);
CN0_dBHz.push_back(trk_dump.CN0_SNV_dB_Hz);
//DLL BW Sweep
for (double dll_bw = FLAGS_DLL_bw_hz_start; dll_bw > FLAGS_DLL_bw_hz_stop; dll_bw = dll_bw - FLAGS_DLL_bw_hz_step)
{
PLL_wide_bw_values.push_back(FLAGS_PLL_bw_hz_start);
DLL_wide_bw_values.push_back(dll_bw);
}
}
prompt_sweep.push_back(prompt);
early_sweep.push_back(early);
late_sweep.push_back(late);
promptI_sweep.push_back(promptI);
promptQ_sweep.push_back(promptQ);
CN0_dBHz_sweep.push_back(CN0_dBHz);
//***********************************************************
//***** STEP 6: Compare with true values (if available) *****
//***********************************************************
if (!FLAGS_enable_external_signal_file)
}
else
{
//PLL BW Sweep
for (double pll_bw = FLAGS_PLL_bw_hz_start; pll_bw > FLAGS_PLL_bw_hz_stop; pll_bw = pll_bw - FLAGS_PLL_bw_hz_step)
{
// load the true values
long int n_true_epochs = true_obs_data.num_epochs();
std::cout << "True observation epochs=" << n_true_epochs << std::endl;
PLL_wide_bw_values.push_back(pll_bw);
DLL_wide_bw_values.push_back(FLAGS_DLL_bw_hz_start);
}
}
arma::vec true_timestamp_s = arma::zeros(n_true_epochs, 1);
arma::vec true_acc_carrier_phase_cycles = arma::zeros(n_true_epochs, 1);
arma::vec true_Doppler_Hz = arma::zeros(n_true_epochs, 1);
arma::vec true_prn_delay_chips = arma::zeros(n_true_epochs, 1);
arma::vec true_tow_s = arma::zeros(n_true_epochs, 1);
for (int config_idx = 0; config_idx < PLL_wide_bw_values.size(); config_idx++)
{
//CN0 LOOP
// data containers for CN0 sweep
std::vector<std::vector<double>> prompt_sweep;
std::vector<std::vector<double>> early_sweep;
std::vector<std::vector<double>> late_sweep;
std::vector<std::vector<double>> promptI_sweep;
std::vector<std::vector<double>> promptQ_sweep;
std::vector<std::vector<double>> CN0_dBHz_sweep;
std::vector<std::vector<double>> trk_timestamp_s_sweep;
std::vector<std::vector<double>> doppler_error_sweep;
std::vector<std::vector<double>> code_phase_error_sweep;
std::vector<std::vector<double>> acc_carrier_phase_error_sweep;
std::vector<double> mean_doppler_error;
std::vector<double> std_dev_doppler_error;
std::vector<double> mean_code_phase_error;
std::vector<double> std_dev_code_phase_error;
std::vector<double> mean_carrier_phase_error;
std::vector<double> std_dev_carrier_phase_error;
configure_receiver(PLL_wide_bw_values.at(config_idx),
DLL_wide_bw_values.at(config_idx),
2.0,
1.0,
FLAGS_extend_correlation_symbols);
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
//******************************************************************************************
//***** Obtain the initial signal sinchronization parameters (emulating an acquisition) ****
//******************************************************************************************
if (!FLAGS_enable_external_signal_file)
{
test_satellite_PRN = FLAGS_test_satellite_PRN;
std::string true_obs_file = std::string("./gps_l1_ca_obs_prn");
true_obs_file.append(std::to_string(test_satellite_PRN));
true_obs_file.append(".dat");
true_obs_data.close_obs_file();
ASSERT_EQ(true_obs_data.open_obs_file(true_obs_file), true) << "Failure opening true observables file";
// load acquisition data based on the first epoch of the true observations
ASSERT_EQ(true_obs_data.read_binary_obs(), true)
<< "Failure reading true tracking dump file." << std::endl
<< "Maybe sat PRN #" + std::to_string(FLAGS_test_satellite_PRN) +
" is not available?";
std::cout << "Testing satellite PRN=" << test_satellite_PRN << std::endl;
std::cout << "Initial Doppler [Hz]=" << true_obs_data.doppler_l1_hz << " Initial code delay [Chips]=" << true_obs_data.prn_delay_chips << std::endl;
acq_doppler_hz = true_obs_data.doppler_l1_hz;
acq_delay_samples = (GPS_L1_CA_CODE_LENGTH_CHIPS - true_obs_data.prn_delay_chips / GPS_L1_CA_CODE_LENGTH_CHIPS) * static_cast<double>(baseband_sampling_freq) * GPS_L1_CA_CODE_PERIOD;
// restart the epoch counter
true_obs_data.restart();
}
//***** STEP 4: Configure the signal tracking parameters *****
//************************************************************
std::chrono::time_point<std::chrono::system_clock> start, end;
top_block = gr::make_top_block("Tracking test");
std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config, "Tracking_1C", implementation, 1, 1);
std::shared_ptr<TrackingInterface> tracking = std::dynamic_pointer_cast<TrackingInterface>(trk_);
boost::shared_ptr<GpsL1CADllPllTrackingTest_msg_rx> msg_rx = GpsL1CADllPllTrackingTest_msg_rx_make();
gnss_synchro.Acq_delay_samples = acq_delay_samples;
gnss_synchro.Acq_doppler_hz = acq_doppler_hz;
gnss_synchro.Acq_samplestamp_samples = 0;
ASSERT_NO_THROW({
tracking->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel.";
ASSERT_NO_THROW({
tracking->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW({
tracking->connect(top_block);
}) << "Failure connecting tracking to the top_block.";
ASSERT_NO_THROW({
std::string file = "./" + filename_raw_data + std::to_string(current_cn0_idx);
const char* file_name = file.c_str();
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(int8_t), file_name, false);
gr::blocks::interleaved_char_to_complex::sptr gr_interleaved_char_to_complex = gr::blocks::interleaved_char_to_complex::make();
gr::blocks::null_sink::sptr sink = gr::blocks::null_sink::make(sizeof(Gnss_Synchro));
top_block->connect(file_source, 0, gr_interleaved_char_to_complex, 0);
top_block->connect(gr_interleaved_char_to_complex, 0, tracking->get_left_block(), 0);
top_block->connect(tracking->get_right_block(), 0, sink, 0);
top_block->msg_connect(tracking->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of tracking test.";
//********************************************************************
//***** STEP 5: Perform the signal tracking and read the results *****
//********************************************************************
tracking->start_tracking();
EXPECT_NO_THROW({
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
}) << "Failure running the top_block.";
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "Signal tracking completed in " << elapsed_seconds.count() << " seconds" << std::endl;
//check results
//load the measured values
tracking_dump_reader trk_dump;
ASSERT_EQ(trk_dump.open_obs_file(std::string("./tracking_ch_0.dat")), true)
<< "Failure opening tracking dump file";
long int n_measured_epochs = trk_dump.num_epochs();
std::cout << "Measured observation epochs=" << n_measured_epochs << std::endl;
arma::vec trk_timestamp_s = arma::zeros(n_measured_epochs, 1);
arma::vec trk_acc_carrier_phase_cycles = arma::zeros(n_measured_epochs, 1);
arma::vec trk_Doppler_Hz = arma::zeros(n_measured_epochs, 1);
arma::vec trk_prn_delay_chips = arma::zeros(n_measured_epochs, 1);
long int epoch_counter = 0;
while (true_obs_data.read_binary_obs())
std::vector<double> timestamp_s;
std::vector<double> prompt;
std::vector<double> early;
std::vector<double> late;
std::vector<double> promptI;
std::vector<double> promptQ;
std::vector<double> CN0_dBHz;
while (trk_dump.read_binary_obs())
{
true_timestamp_s(epoch_counter) = true_obs_data.signal_timestamp_s;
true_acc_carrier_phase_cycles(epoch_counter) = true_obs_data.acc_carrier_phase_cycles;
true_Doppler_Hz(epoch_counter) = true_obs_data.doppler_l1_hz;
true_prn_delay_chips(epoch_counter) = true_obs_data.prn_delay_chips;
true_tow_s(epoch_counter) = true_obs_data.tow;
trk_timestamp_s(epoch_counter) = static_cast<double>(trk_dump.PRN_start_sample_count) / static_cast<double>(baseband_sampling_freq);
trk_acc_carrier_phase_cycles(epoch_counter) = trk_dump.acc_carrier_phase_rad / GPS_TWO_PI;
trk_Doppler_Hz(epoch_counter) = trk_dump.carrier_doppler_hz;
double delay_chips = GPS_L1_CA_CODE_LENGTH_CHIPS - GPS_L1_CA_CODE_LENGTH_CHIPS * (fmod((static_cast<double>(trk_dump.PRN_start_sample_count) + trk_dump.aux1) / static_cast<double>(baseband_sampling_freq), 1.0e-3) / 1.0e-3);
trk_prn_delay_chips(epoch_counter) = delay_chips;
timestamp_s.push_back(trk_timestamp_s(epoch_counter));
prompt.push_back(trk_dump.abs_P);
early.push_back(trk_dump.abs_E);
late.push_back(trk_dump.abs_L);
promptI.push_back(trk_dump.prompt_I);
promptQ.push_back(trk_dump.prompt_Q);
CN0_dBHz.push_back(trk_dump.CN0_SNV_dB_Hz);
epoch_counter++;
}
// Align initial measurements and cut the tracking pull-in transitory
double pull_in_offset_s = 1.0;
arma::uvec initial_meas_point = arma::find(trk_timestamp_s >= (true_timestamp_s(0) + pull_in_offset_s), 1, "first");
trk_timestamp_s_sweep.push_back(timestamp_s);
prompt_sweep.push_back(prompt);
early_sweep.push_back(early);
late_sweep.push_back(late);
promptI_sweep.push_back(promptI);
promptQ_sweep.push_back(promptQ);
CN0_dBHz_sweep.push_back(CN0_dBHz);
trk_timestamp_s = trk_timestamp_s.subvec(initial_meas_point(0), trk_timestamp_s.size() - 1);
trk_acc_carrier_phase_cycles = trk_acc_carrier_phase_cycles.subvec(initial_meas_point(0), trk_acc_carrier_phase_cycles.size() - 1);
trk_Doppler_Hz = trk_Doppler_Hz.subvec(initial_meas_point(0), trk_Doppler_Hz.size() - 1);
trk_prn_delay_chips = trk_prn_delay_chips.subvec(initial_meas_point(0), trk_prn_delay_chips.size() - 1);
//***********************************************************
//***** STEP 6: Compare with true values (if available) *****
//***********************************************************
if (!FLAGS_enable_external_signal_file)
{
std::vector<double> doppler_error_hz;
std::vector<double> code_phase_error_chips;
std::vector<double> acc_carrier_phase_hz;
try
{
// load the true values
long int n_true_epochs = true_obs_data.num_epochs();
std::cout << "True observation epochs=" << n_true_epochs << std::endl;
std::vector<double> doppler_error_hz;
std::vector<double> code_phase_error_chips;
std::vector<double> acc_carrier_phase_hz;
doppler_error_hz = check_results_doppler(true_timestamp_s, true_Doppler_Hz, trk_timestamp_s, trk_Doppler_Hz);
code_phase_error_chips = check_results_codephase(true_timestamp_s, true_prn_delay_chips, trk_timestamp_s, trk_prn_delay_chips);
acc_carrier_phase_hz = check_results_acc_carrier_phase(true_timestamp_s, true_acc_carrier_phase_cycles, trk_timestamp_s, trk_acc_carrier_phase_cycles);
//save tracking measurement timestamps to std::vector
std::vector<double> vector_trk_timestamp_s(trk_timestamp_s.colptr(0), trk_timestamp_s.colptr(0) + trk_timestamp_s.n_rows);
trk_timestamp_s_sweep.push_back(vector_trk_timestamp_s);
arma::vec true_timestamp_s = arma::zeros(n_true_epochs, 1);
arma::vec true_acc_carrier_phase_cycles = arma::zeros(n_true_epochs, 1);
arma::vec true_Doppler_Hz = arma::zeros(n_true_epochs, 1);
arma::vec true_prn_delay_chips = arma::zeros(n_true_epochs, 1);
arma::vec true_tow_s = arma::zeros(n_true_epochs, 1);
doppler_error_sweep.push_back(doppler_error_hz);
code_phase_error_sweep.push_back(code_phase_error_chips);
acc_carrier_phase_error_sweep.push_back(acc_carrier_phase_hz);
long int epoch_counter = 0;
while (true_obs_data.read_binary_obs())
{
true_timestamp_s(epoch_counter) = true_obs_data.signal_timestamp_s;
true_acc_carrier_phase_cycles(epoch_counter) = true_obs_data.acc_carrier_phase_cycles;
true_Doppler_Hz(epoch_counter) = true_obs_data.doppler_l1_hz;
true_prn_delay_chips(epoch_counter) = true_obs_data.prn_delay_chips;
true_tow_s(epoch_counter) = true_obs_data.tow;
epoch_counter++;
}
// Align initial measurements and cut the tracking pull-in transitory
double pull_in_offset_s = 1.0;
arma::uvec initial_meas_point = arma::find(trk_timestamp_s >= (true_timestamp_s(0) + pull_in_offset_s), 1, "first");
trk_timestamp_s = trk_timestamp_s.subvec(initial_meas_point(0), trk_timestamp_s.size() - 1);
trk_acc_carrier_phase_cycles = trk_acc_carrier_phase_cycles.subvec(initial_meas_point(0), trk_acc_carrier_phase_cycles.size() - 1);
trk_Doppler_Hz = trk_Doppler_Hz.subvec(initial_meas_point(0), trk_Doppler_Hz.size() - 1);
trk_prn_delay_chips = trk_prn_delay_chips.subvec(initial_meas_point(0), trk_prn_delay_chips.size() - 1);
double mean_error;
double std_dev_error;
doppler_error_hz = check_results_doppler(true_timestamp_s, true_Doppler_Hz, trk_timestamp_s, trk_Doppler_Hz, mean_error, std_dev_error);
mean_doppler_error.push_back(mean_error);
std_dev_doppler_error.push_back(std_dev_error);
code_phase_error_chips = check_results_codephase(true_timestamp_s, true_prn_delay_chips, trk_timestamp_s, trk_prn_delay_chips, mean_error, std_dev_error);
mean_code_phase_error.push_back(mean_error);
std_dev_code_phase_error.push_back(std_dev_error);
acc_carrier_phase_hz = check_results_acc_carrier_phase(true_timestamp_s, true_acc_carrier_phase_cycles, trk_timestamp_s, trk_acc_carrier_phase_cycles, mean_error, std_dev_error);
mean_carrier_phase_error.push_back(mean_error);
std_dev_carrier_phase_error.push_back(std_dev_error);
//save tracking measurement timestamps to std::vector
std::vector<double> vector_trk_timestamp_s(trk_timestamp_s.colptr(0), trk_timestamp_s.colptr(0) + trk_timestamp_s.n_rows);
trk_valid_timestamp_s_sweep.push_back(vector_trk_timestamp_s);
doppler_error_sweep.push_back(doppler_error_hz);
code_phase_error_sweep.push_back(code_phase_error_chips);
acc_carrier_phase_error_sweep.push_back(acc_carrier_phase_hz);
}
catch (const std::exception& ex)
{
std::cout << "Tracking output could not be used, possible loss of lock " << ex.what() << std::endl;
std::vector<double> vector_trk_timestamp_s;
trk_valid_timestamp_s_sweep.push_back(vector_trk_timestamp_s);
doppler_error_sweep.push_back(doppler_error_hz);
code_phase_error_sweep.push_back(code_phase_error_chips);
acc_carrier_phase_error_sweep.push_back(acc_carrier_phase_hz);
}
}
} //CN0 LOOP
if (!FLAGS_enable_external_signal_file)
{
mean_doppler_error_sweep.push_back(mean_doppler_error);
std_dev_doppler_error_sweep.push_back(std_dev_doppler_error);
mean_code_phase_error_sweep.push_back(mean_code_phase_error);
std_dev_code_phase_error_sweep.push_back(std_dev_code_phase_error);
mean_carrier_phase_error_sweep.push_back(mean_carrier_phase_error);
std_dev_carrier_phase_error_sweep.push_back(std_dev_carrier_phase_error);
}
} //CN0 LOOP
std::cout << "A\n\n\n";
//********************************
//***** STEP 7: Plot results *****
//********************************
if (FLAGS_plot_gps_l1_tracking_test == true)
{
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
if (gnuplot_executable.empty())
{
std::cout << "WARNING: Although the flag plot_gps_l1_tracking_test has been set to TRUE," << std::endl;
std::cout << "gnuplot has not been found in your system." << std::endl;
std::cout << "Test results will not be plotted." << std::endl;
}
else
{
try
{
boost::filesystem::path p(gnuplot_executable);
boost::filesystem::path dir = p.parent_path();
std::string gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
unsigned int decimate = static_cast<unsigned int>(FLAGS_plot_decimate);
if (FLAGS_plot_extra)
{
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
Gnuplot g1("linespoints");
g1.showonscreen(); // window output
g1.set_title(std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz, " + "PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_idx)) + "," + std::to_string(DLL_wide_bw_values.at(config_idx)) + " Hz" + "GPS L1 C/A (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g1.set_grid();
g1.set_xlabel("Time [s]");
g1.set_ylabel("Correlators' output");
//g1.cmd("set key box opaque");
g1.plot_xy(trk_timestamp_s_sweep.at(current_cn0_idx), prompt_sweep.at(current_cn0_idx), "Prompt", decimate);
g1.plot_xy(trk_timestamp_s_sweep.at(current_cn0_idx), early_sweep.at(current_cn0_idx), "Early", decimate);
g1.plot_xy(trk_timestamp_s_sweep.at(current_cn0_idx), late_sweep.at(current_cn0_idx), "Late", decimate);
g1.set_legend();
g1.savetops("Correlators_outputs" + std::to_string(generator_CN0_values.at(current_cn0_idx)));
g1.savetopdf("Correlators_outputs" + std::to_string(generator_CN0_values.at(current_cn0_idx)), 18);
}
Gnuplot g2("points");
g2.showonscreen(); // window output
g2.set_multiplot(ceil(static_cast<float>(generator_CN0_values.size()) / 2.0),
ceil(static_cast<float>(generator_CN0_values.size()) / 2));
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
g2.reset_plot();
g2.set_title(std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz Constellation " + "PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_idx)) + "," + std::to_string(DLL_wide_bw_values.at(config_idx)) + " Hz" + "GPS L1 C/A (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g2.set_grid();
g2.set_xlabel("Inphase");
g2.set_ylabel("Quadrature");
//g2.cmd("set size ratio -1");
g2.plot_xy(promptI_sweep.at(current_cn0_idx), promptQ_sweep.at(current_cn0_idx));
}
g2.unset_multiplot();
g2.savetops("Constellation");
g2.savetopdf("Constellation", 18);
Gnuplot g3("linespoints");
g3.set_title("GPS L1 C/A tracking CN0 output (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Reported CN0 [dB-Hz]");
g3.cmd("set key box opaque");
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
g3.plot_xy(trk_timestamp_s_sweep.at(current_cn0_idx), CN0_dBHz_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + "[dB-Hz]", decimate);
}
g3.set_legend();
g3.savetops("CN0_output");
g3.savetopdf("CN0_output", 18);
g3.showonscreen(); // window output
}
std::cout << "B\n\n\n";
//PLOT ERROR FIGURES (only if it is used the signal generator)
if (!FLAGS_enable_external_signal_file)
{
Gnuplot g4("points");
g4.showonscreen(); // window output
g4.set_multiplot(ceil(static_cast<float>(generator_CN0_values.size()) / 2.0),
ceil(static_cast<float>(generator_CN0_values.size()) / 2));
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
g4.reset_plot();
g4.set_title(std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + "[dB-Hz] Doppler error " + "PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_idx)) + "," + std::to_string(DLL_wide_bw_values.at(config_idx)) + " Hz (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g4.set_grid();
//g4.cmd("set key box opaque");
g4.set_xlabel("Time [s]");
g4.set_ylabel("Dopper error [Hz]");
g4.plot_xy(trk_valid_timestamp_s_sweep.at(current_cn0_idx), doppler_error_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + "[dB-Hz]", decimate);
//g4.set_legend();
}
g4.unset_multiplot();
g4.savetops("Doppler_error_output");
g4.savetopdf("Doppler_error_output", 18);
Gnuplot g5("points");
g5.set_title("Code delay error, PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_idx)) + "," + std::to_string(DLL_wide_bw_values.at(config_idx)) + " Hz (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g5.set_grid();
g5.set_xlabel("Time [s]");
g5.set_ylabel("Code delay error [Chips]");
g5.cmd("set key box opaque");
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
g5.plot_xy(trk_valid_timestamp_s_sweep.at(current_cn0_idx), code_phase_error_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + "[dB-Hz]", decimate);
}
g5.set_legend();
g5.savetops("Code_error_output");
g5.savetopdf("Code_error_output", 18);
g5.showonscreen(); // window output
Gnuplot g6("points");
g6.set_title("Accumulated carrier phase error, PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_idx)) + "," + std::to_string(DLL_wide_bw_values.at(config_idx)) + " Hz (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g6.set_grid();
g6.set_xlabel("Time [s]");
g6.set_ylabel("Accumulated carrier phase error [Cycles]");
g6.cmd("set key box opaque");
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
g6.plot_xy(trk_valid_timestamp_s_sweep.at(current_cn0_idx), acc_carrier_phase_error_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + "[dB-Hz]", decimate);
}
g6.set_legend();
g6.savetops("Carrier_phase_error_output");
g6.savetopdf("Carrier_phase_error_output", 18);
g6.showonscreen(); // window output
}
}
catch (const GnuplotException& ge)
{
std::cout << ge.what() << std::endl;
}
}
}
}
//********************************
//***** STEP 7: Plot results *****
//********************************
if (FLAGS_plot_gps_l1_tracking_test == true)
{
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
@ -643,110 +931,67 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
{
try
{
boost::filesystem::path p(gnuplot_executable);
boost::filesystem::path dir = p.parent_path();
std::string gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
std::vector<double> timevec;
unsigned int decimate = static_cast<unsigned int>(FLAGS_plot_decimate);
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
if (generator_CN0_values.size() > 1)
{
timevec.clear();
//todo: timevector MUST BE READED from the trk output file
double t = 0.0;
for (auto it = prompt_sweep.at(current_cn0_idx).begin(); it != prompt_sweep.at(current_cn0_idx).end(); it++)
//plot metrics
Gnuplot g7("linespoints");
g7.set_title("Doppler error metrics (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g7.set_grid();
g7.set_xlabel("CN0 [dB-Hz]");
g7.set_ylabel("Doppler error [Hz]");
g7.set_pointsize(2);
g7.cmd("set termoption lw 2");
g7.cmd("set key box opaque");
for (int config_sweep_idx = 0; config_sweep_idx < mean_doppler_error_sweep.size(); config_sweep_idx++)
{
timevec.push_back(t);
t = t + GPS_L1_CA_CODE_PERIOD;
g7.plot_xy_err(generator_CN0_values,
mean_doppler_error_sweep.at(config_sweep_idx),
std_dev_doppler_error_sweep.at(config_sweep_idx),
"PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_sweep_idx)) +
+"," + std::to_string(DLL_wide_bw_values.at(config_sweep_idx)) + " Hz");
}
Gnuplot g1("linespoints");
g1.set_title("[" + std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz ] GPS L1 C/A signal tracking correlators' output (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g1.set_grid();
g1.set_xlabel("Time [s]");
g1.set_ylabel("Correlators' output");
g1.cmd("set key box opaque");
g1.plot_xy(timevec, prompt_sweep.at(current_cn0_idx), "Prompt", decimate);
g1.plot_xy(timevec, early_sweep.at(current_cn0_idx), "Early", decimate);
g1.plot_xy(timevec, late_sweep.at(current_cn0_idx), "Late", decimate);
g1.savetops("Correlators_outputs");
g1.savetopdf("Correlators_outputs", 18);
g1.showonscreen(); // window output
Gnuplot g2("points");
g2.set_title("[" + std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz ] Constellation diagram (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g2.set_grid();
g2.set_xlabel("Inphase");
g2.set_ylabel("Quadrature");
g2.cmd("set size ratio -1");
g2.plot_xy(promptI_sweep.at(current_cn0_idx), promptQ_sweep.at(current_cn0_idx));
g2.savetops("Constellation");
g2.savetopdf("Constellation", 18);
g2.showonscreen(); // window output
}
Gnuplot g3("linespoints");
g3.set_title("GPS L1 C/A tracking CN0 output (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Reported CN0 [dB-Hz]");
g3.cmd("set key box opaque");
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
g3.plot_xy(timevec, CN0_dBHz_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + "[dB-Hz]", decimate);
}
g3.set_legend();
g3.savetops("CN0_output");
g3.savetopdf("CN0_output", 18);
g3.showonscreen(); // window output
g7.savetops("Doppler_error_metrics");
g7.savetopdf("Doppler_error_metrics", 18);
Gnuplot g4("points");
g4.set_title("Doppler error (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g4.set_grid();
g4.set_xlabel("Time [s]");
g4.set_ylabel("Dopper error [Hz]");
g4.cmd("set key box opaque");
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
g4.plot_xy(trk_timestamp_s_sweep.at(current_cn0_idx), doppler_error_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + "[dB-Hz]", decimate);
Gnuplot g8("linespoints");
g8.set_title("Accumulated carrier phase error metrics (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g8.set_grid();
g8.set_xlabel("CN0 [dB-Hz]");
g8.set_ylabel("Accumulated Carrier Phase error [Cycles]");
g8.cmd("set key box opaque");
g8.cmd("set termoption lw 2");
g8.set_pointsize(2);
for (int config_sweep_idx = 0; config_sweep_idx < mean_doppler_error_sweep.size(); config_sweep_idx++)
{
g8.plot_xy_err(generator_CN0_values,
mean_carrier_phase_error_sweep.at(config_sweep_idx),
std_dev_carrier_phase_error_sweep.at(config_sweep_idx),
"PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_sweep_idx)) +
+"," + std::to_string(DLL_wide_bw_values.at(config_sweep_idx)) + " Hz");
}
g8.savetops("Carrier_error_metrics");
g8.savetopdf("Carrier_error_metrics", 18);
Gnuplot g9("linespoints");
g9.set_title("Code Phase error metrics (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g9.set_grid();
g9.set_xlabel("CN0 [dB-Hz]");
g9.set_ylabel("Code Phase error [Chips]");
g9.cmd("set key box opaque");
g9.cmd("set termoption lw 2");
g9.set_pointsize(2);
for (int config_sweep_idx = 0; config_sweep_idx < mean_doppler_error_sweep.size(); config_sweep_idx++)
{
g9.plot_xy_err(generator_CN0_values,
mean_code_phase_error_sweep.at(config_sweep_idx),
std_dev_code_phase_error_sweep.at(config_sweep_idx),
"PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_sweep_idx)) +
+"," + std::to_string(DLL_wide_bw_values.at(config_sweep_idx)) + " Hz");
}
g9.savetops("Code_error_metrics");
g9.savetopdf("Code_error_metrics", 18);
}
g4.set_legend();
g4.savetops("Doppler_error_output");
g4.savetopdf("Doppler_error_output", 18);
g4.showonscreen(); // window output
Gnuplot g5("points");
g5.set_title("Code delay error (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g5.set_grid();
g5.set_xlabel("Time [s]");
g5.set_ylabel("Code delay error [Chips]");
g5.cmd("set key box opaque");
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
g5.plot_xy(trk_timestamp_s_sweep.at(current_cn0_idx), code_phase_error_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + "[dB-Hz]", decimate);
}
g5.set_legend();
g5.savetops("Code_error_output");
g5.savetopdf("Code_error_output", 18);
g5.showonscreen(); // window output
Gnuplot g6("points");
g6.set_title("Accumulated carrier phase error (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g6.set_grid();
g6.set_xlabel("Time [s]");
g6.set_ylabel("Accumulated carrier phase error [Cycles]");
g6.cmd("set key box opaque");
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
g6.plot_xy(trk_timestamp_s_sweep.at(current_cn0_idx), acc_carrier_phase_error_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + "[dB-Hz]", decimate);
}
g6.set_legend();
g6.savetops("Carrier_phase_error_output");
g6.savetopdf("Carrier_phase_error_output", 18);
g6.showonscreen(); // window output
}
catch (const GnuplotException& ge)
{

View File

@ -33,6 +33,8 @@ file = 'acq';
sat = 7;
channel = 0;
execution = 1;
% Signal:
% 1 GPS L1
% 2 GPS L2M
@ -77,7 +79,7 @@ switch(signal_type)
system = 'R';
signal = '1G';
end
filename = [path file '_' system '_' signal '_sat_' num2str(sat) '.mat'];
filename = [path file '_' system '_' signal '_ch_' num2str(channel) '_' num2str(execution) '_sat_' num2str(sat) '.mat'];
load(filename);
[n_fft n_dop_bins] = size(grid);
[d_max f_max] = find(grid == max(max(grid)));