1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-07-02 01:43:20 +00:00

Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into next

This commit is contained in:
Carles Fernandez 2016-01-30 08:00:28 +01:00
commit 8be7d9e2a0
2 changed files with 133 additions and 151 deletions

View File

@ -24,9 +24,9 @@ static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_generic(lv_16sc_t* outVe
#endif /* LV_HAVE_GENERIC */
#ifdef LV_HAVE_SSE2
#ifdef LV_HAVE_SSE3
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_a_sse2(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_a_sse3(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.345;
@ -35,14 +35,14 @@ static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_a_sse2(lv_16sc_t* outVec
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0] = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse2(outVector, inVector, phase_inc[0], phase, num_points);
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse3(outVector, inVector, phase_inc[0], phase, num_points);
}
#endif /* LV_HAVE_SSE2 */
#endif /* LV_HAVE_SSE3 */
#ifdef LV_HAVE_SSE2
#ifdef LV_HAVE_SSE3
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_u_sse2(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_u_sse3(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.345;
@ -51,10 +51,10 @@ static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_u_sse2(lv_16sc_t* outVec
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0] = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse2(outVector, inVector, phase_inc[0], phase, num_points);
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse3(outVector, inVector, phase_inc[0], phase, num_points);
}
#endif /* LV_HAVE_SSE2 */
#endif /* LV_HAVE_SSE3 */
#ifdef LV_HAVE_NEON

View File

@ -38,6 +38,7 @@
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
#include <math.h>
#include <stdio.h>
#define ROTATOR_RELOAD 512
@ -72,198 +73,179 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_generic(lv_16sc_t* ou
#endif /* LV_HAVE_GENERIC */
#ifdef LV_HAVE_SSE2
#include <emmintrin.h>
#ifdef LV_HAVE_SSE3
#include <pmmintrin.h>
static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse2(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse3(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
{
const unsigned int sse_iters = num_points / 4;
__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
__m128 a,b, two_phase_acc_reg,two_phase_inc_reg;
__m128i c1,c2,result;
__attribute__((aligned(16))) lv_32fc_t two_phase_inc[2];
two_phase_inc[0] = phase_inc*phase_inc;
two_phase_inc[1] = phase_inc*phase_inc;
two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
__attribute__((aligned(16))) lv_32fc_t two_phase_acc[2];
two_phase_acc[0] = (*phase);
two_phase_acc[1] = (*phase) * phase_inc;
two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc);
mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
const lv_16sc_t* _in = inVector;
const lv_16sc_t* _in_a = inVector;
__attribute__((aligned(32))) lv_32fc_t four_phase_rotations_32fc[4];
// debug
//__attribute__((aligned(16))) lv_16sc_t four_phase_rotations_16sc[4];
// specify how many bits are used in the rotation (2^(N-1)) (it WILL increase the output signal range!)
__attribute__((aligned(32))) float rotator_amplitude_float[4] = { 4.0f, 4.0f, 4.0f, 4.0f };
__m128 _rotator_amplitude_reg = _mm_load_ps(rotator_amplitude_float);
//const lv_16sc_t* _in_b = in_b;
lv_16sc_t* _out = outVector;
__m128 fc_reg1, fc_reg2;
__m128i sc_reg1, sc_reg2; // is __m128i defined in xmmintrin.h?
__m128 yl, yh, tmp1, tmp2, tmp3;
for(unsigned int number = 0; number < sse_iters; number++)
{
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
a = _mm_load_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
//b = _mm_loadu_si128((__m128i*)_in_b);
a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
//complex 32fc multiplication b=a*two_phase_acc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
b=_mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
c1 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
// compute next four 16ic complex exponential values for phase rotation
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
two_phase_acc_reg=_mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
// compute next four float complex rotations
four_phase_rotations_32fc[0]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[1]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[2]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[3]=*phase;
(*phase) *= phase_inc;
//convert the rotations to integers
fc_reg1 = _mm_load_ps((float*)&four_phase_rotations_32fc[0]);
//next two samples
_in += 2;
a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
//complex 32fc multiplication b=a*two_phase_acc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
b=_mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
c2 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
// disable next line for 1 bit rotation (equivalent to a square wave NCO)
fc_reg1 = _mm_mul_ps (fc_reg1, _rotator_amplitude_reg);
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
two_phase_acc_reg=_mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
fc_reg2 = _mm_load_ps((float*)&four_phase_rotations_32fc[2]);
sc_reg1 = _mm_cvtps_epi32(fc_reg1);
sc_reg2 = _mm_cvtps_epi32(fc_reg2);
b = _mm_packs_epi32(sc_reg1, sc_reg2);
// debug
//_mm_store_si128((__m128i*)four_phase_rotations_16sc, b);
//printf("phase fc: %f,%f phase sc: %i,%i \n",lv_creal(four_phase_rotations_32fc[0]),lv_cimag(four_phase_rotations_32fc[0]),lv_creal(four_phase_rotations_16sc[0]),lv_cimag(four_phase_rotations_16sc[0]));
// multiply the input vector times the rotations
c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
real = _mm_subs_epi16 (c, c_sr);
real = _mm_and_si128 (real, mask_real); // a3.r*b3.r-a3.i*b3.i , 0, a3.r*b3.r- a3.i*b3.i
b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
imag = _mm_adds_epi16(imag1, imag2);
imag = _mm_and_si128 (imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
result = _mm_or_si128 (real, imag);
// normalize the rotations
// TODO
// store results
// store four output samples
result = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
_mm_store_si128((__m128i*)_out, result);
_in_a += 4;
//next two samples
_in += 2;
_out += 4;
}
_mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg);
(*phase) = lv_cmake(two_phase_acc[0], two_phase_acc[0]) * phase_inc;
lv_16sc_t tmp16;
lv_32fc_t tmp32;
for (unsigned int i = sse_iters * 4; i < num_points; ++i)
{
*_out++ = *_in_a++ * (*phase);
tmp16 = *_in++;
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
*_out++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
(*phase) *= phase_inc;
}
}
#endif /* LV_HAVE_SSE2 */
#endif /* LV_HAVE_SSE3 */
#ifdef LV_HAVE_SSE2
#include <emmintrin.h>
#ifdef LV_HAVE_SSE3
#include <pmmintrin.h>
static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse2(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse3(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
{
const unsigned int sse_iters = num_points / 4;
__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
__m128 a,b, two_phase_acc_reg,two_phase_inc_reg;
__m128i c1,c2,result;
__attribute__((aligned(16))) lv_32fc_t two_phase_inc[2];
two_phase_inc[0] = phase_inc*phase_inc;
two_phase_inc[1] = phase_inc*phase_inc;
two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
__attribute__((aligned(16))) lv_32fc_t two_phase_acc[2];
two_phase_acc[0] = (*phase);
two_phase_acc[1] = (*phase)*phase_inc;
two_phase_acc_reg = _mm_load_ps((float*) two_phase_acc);
mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
const lv_16sc_t* _in = inVector;
const lv_16sc_t* _in_a = inVector;
__attribute__((aligned(32))) lv_32fc_t four_phase_rotations_32fc[4];
// debug
//__attribute__((aligned(16))) lv_16sc_t four_phase_rotations_16sc[4];
// specify how many bits are used in the rotation (2^(N-1)) (it WILL increase the output signal range!)
__attribute__((aligned(32))) float rotator_amplitude_float[4] = { 4.0f, 4.0f, 4.0f, 4.0f };
__m128 _rotator_amplitude_reg = _mm_load_ps(rotator_amplitude_float);
//const lv_16sc_t* _in_b = in_b;
lv_16sc_t* _out = outVector;
__m128 fc_reg1, fc_reg2;
__m128i sc_reg1, sc_reg2; // is __m128i defined in xmmintrin.h?
__m128 yl, yh, tmp1, tmp2, tmp3;
for(unsigned int number = 0; number < sse_iters; number++)
{
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
a = _mm_loadu_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
//b = _mm_loadu_si128((__m128i*)_in_b);
a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
//complex 32fc multiplication b=a*two_phase_acc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
b=_mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
c1 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
// compute next four 16ic complex exponential values for phase rotation
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
two_phase_acc_reg=_mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
// compute next four float complex rotations
four_phase_rotations_32fc[0]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[1]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[2]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[3]=*phase;
(*phase) *= phase_inc;
//convert the rotations to integers
fc_reg1 = _mm_load_ps((float*)&four_phase_rotations_32fc[0]);
//next two samples
_in += 2;
a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
//complex 32fc multiplication b=a*two_phase_acc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
b=_mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
c2 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
// disable next line for 1 bit rotation (equivalent to a square wave NCO)
fc_reg1 = _mm_mul_ps (fc_reg1, _rotator_amplitude_reg);
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
fc_reg2 = _mm_load_ps((float*)&four_phase_rotations_32fc[2]);
sc_reg1 = _mm_cvtps_epi32(fc_reg1);
sc_reg2 = _mm_cvtps_epi32(fc_reg2);
b = _mm_packs_epi32(sc_reg1, sc_reg2);
// debug
//_mm_store_si128((__m128i*)four_phase_rotations_16sc, b);
//printf("phase fc: %f,%f phase sc: %i,%i \n",lv_creal(four_phase_rotations_32fc[0]),lv_cimag(four_phase_rotations_32fc[0]),lv_creal(four_phase_rotations_16sc[0]),lv_cimag(four_phase_rotations_16sc[0]));
// multiply the input vector times the rotations
c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
real = _mm_subs_epi16 (c, c_sr);
real = _mm_and_si128 (real, mask_real); // a3.r*b3.r-a3.i*b3.i , 0, a3.r*b3.r- a3.i*b3.i
b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
imag = _mm_adds_epi16(imag1, imag2);
imag = _mm_and_si128 (imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
result = _mm_or_si128 (real, imag);
// normalize the rotations
// TODO
// store results
// store four output samples
result = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
_mm_storeu_si128((__m128i*)_out, result);
_in_a += 4;
//next two samples
_in += 2;
_out += 4;
}
_mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg);
(*phase) = lv_cmake(two_phase_acc[0], two_phase_acc[0]) * phase_inc;
lv_16sc_t tmp16;
lv_32fc_t tmp32;
for (unsigned int i = sse_iters * 4; i < num_points; ++i)
{
*_out++ = *_in_a++ * (*phase);
tmp16 = *_in++;
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
*_out++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
(*phase) *= phase_inc;
}
}
#endif /* LV_HAVE_SSE2 */
#endif /* LV_HAVE_SSE3 */
#ifdef LV_HAVE_NEON
#include <arm_neon.h>
@ -357,7 +339,7 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_neon(lv_16sc_t* outVe
vst1q_f32((float32_t*)__phase_real, _phase_real);
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
(*phase) = lv_cmake(__phase_real[3], __phase_imag[3]);
(*phase) = lv_cmake((float32_t)__phase_real[3], (float32_t)__phase_imag[3]) * phase_inc;
}
for(i = 0; i < neon_iters % 4; ++i)
{