mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-01-17 20:53:02 +00:00
Clean code
This commit is contained in:
parent
3508218307
commit
832f828d52
@ -535,317 +535,35 @@ int hybrid_observables_cc::general_work(int noutput_items __attribute__((unused)
|
|||||||
out[i][0].Flag_valid_pseudorange = false;
|
out[i][0].Flag_valid_pseudorange = false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return 1;
|
if(d_dump)
|
||||||
|
|
||||||
/* ANTONIO
|
|
||||||
it = d_gnss_synchro_history.begin();
|
|
||||||
double TOW_ref = std::numeric_limits<double>::max();
|
|
||||||
for(i = 0; i < d_nchannels; i++)
|
|
||||||
{
|
{
|
||||||
if(!valid_channels[i]) { out[i][0] = Gnss_Synchro(); }
|
// MULTIPLEXED FILE RECORDING - Record results to file
|
||||||
else
|
try
|
||||||
{
|
{
|
||||||
out[i][0] = it->first;
|
double tmp_double;
|
||||||
out[i][0].Flag_valid_pseudorange = true;
|
for (i = 0; i < d_nchannels; i++)
|
||||||
out[i][0].Carrier_Doppler_hz = Hybrid_Interpolate_data(*it, T_rx_s, 0);
|
{
|
||||||
out[i][0].Carrier_phase_rads = Hybrid_Interpolate_data(*it, T_rx_s, 1);
|
tmp_double = out[i][0].RX_time;
|
||||||
out[i][0].RX_time = Hybrid_Interpolate_data(*it, T_rx_s, 2);
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
out[i][0].Code_phase_samples = Hybrid_Interpolate_data(*it, T_rx_s, 3);
|
tmp_double = out[i][0].TOW_at_current_symbol_s;
|
||||||
//std::cout<<"T2: "<< it->first.RX_time<<". T1: "<< it->second.RX_time <<" T i: " << T_rx_s <<std::endl;
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
//std::cout<<"Doppler origin: "<< it->first.Carrier_Doppler_hz<<","<< it->second.Carrier_Doppler_hz<<" Doppler interp: " << out[i][0].Carrier_Doppler_hz <<std::endl;
|
tmp_double = out[i][0].Carrier_Doppler_hz;
|
||||||
if(out[i][0].RX_time < TOW_ref) { TOW_ref = out[i][0].RX_time; }
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
|
tmp_double = out[i][0].Carrier_phase_rads / GPS_TWO_PI;
|
||||||
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
|
tmp_double = out[i][0].Pseudorange_m;
|
||||||
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
|
tmp_double = static_cast<double>(out[i][0].PRN);
|
||||||
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
|
tmp_double = static_cast<double>(out[i][0].Flag_valid_pseudorange);
|
||||||
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
}
|
}
|
||||||
it++;
|
|
||||||
}
|
}
|
||||||
for(i = 0; i < d_nchannels; i++)
|
catch (const std::ifstream::failure& e)
|
||||||
{
|
{
|
||||||
if(valid_channels[i])
|
LOG(WARNING) << "Exception writing observables dump file " << e.what();
|
||||||
{
|
d_dump = false;
|
||||||
double traveltime_ms = (out[i][0].RX_time - TOW_ref) * 1000.0 + GPS_STARTOFFSET_ms;
|
|
||||||
out[i][0].Pseudorange_m = traveltime_ms * GPS_C_m_ms;
|
|
||||||
out[i][0].RX_time = TOW_ref + GPS_STARTOFFSET_ms / 1000.0;
|
|
||||||
//std::cout << "Sat " << out[i][0].PRN << ". Prang = " << out[i][0].Pseudorange_m << ". TOW = " << out[i][0].RX_time << std::endl;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return 1;
|
return 1;
|
||||||
|
|
||||||
*/
|
|
||||||
|
|
||||||
/******************************* OLD ALGORITHM ********************************/
|
|
||||||
|
|
||||||
// const Gnss_Synchro** in = reinterpret_cast<const Gnss_Synchro**>(&input_items[0]); // Get the input buffer pointer
|
|
||||||
// Gnss_Synchro** out = reinterpret_cast<Gnss_Synchro**>(&output_items[0]); // Get the output buffer pointer
|
|
||||||
// int n_outputs = 0;
|
|
||||||
// int n_consume[d_nchannels];
|
|
||||||
// double past_history_s = 100e-3;
|
|
||||||
//
|
|
||||||
// Gnss_Synchro current_gnss_synchro[d_nchannels];
|
|
||||||
// Gnss_Synchro aux = Gnss_Synchro();
|
|
||||||
// for(unsigned int i = 0; i < d_nchannels; i++)
|
|
||||||
// {
|
|
||||||
// current_gnss_synchro[i] = aux;
|
|
||||||
// }
|
|
||||||
// /*
|
|
||||||
// * 1. Read the GNSS SYNCHRO objects from available channels.
|
|
||||||
// * Multi-rate GNURADIO Block. Read how many input items are avaliable in each channel
|
|
||||||
// * Record all synchronization data into queues
|
|
||||||
// */
|
|
||||||
// for (unsigned int i = 0; i < d_nchannels; i++)
|
|
||||||
// {
|
|
||||||
// n_consume[i] = ninput_items[i]; // full throttle
|
|
||||||
// for(int j = 0; j < n_consume[i]; j++)
|
|
||||||
// {
|
|
||||||
// d_gnss_synchro_history_queue[i].push_back(in[i][j]);
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// bool channel_history_ok;
|
|
||||||
//
|
|
||||||
// do
|
|
||||||
// {
|
|
||||||
//
|
|
||||||
// try
|
|
||||||
// {
|
|
||||||
//
|
|
||||||
// channel_history_ok = true;
|
|
||||||
// for(unsigned int i = 0; i < d_nchannels; i++)
|
|
||||||
// {
|
|
||||||
// if (d_gnss_synchro_history_queue.at(i).size() < history_deep && !d_gnss_synchro_history_queue.at(i).empty())
|
|
||||||
// {
|
|
||||||
// channel_history_ok = false;
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
// if (channel_history_ok == true)
|
|
||||||
// {
|
|
||||||
// std::map<int,Gnss_Synchro>::const_iterator gnss_synchro_map_iter;
|
|
||||||
// std::deque<Gnss_Synchro>::const_iterator gnss_synchro_deque_iter;
|
|
||||||
//
|
|
||||||
// // 1. If the RX time is not set, set the Rx time
|
|
||||||
// if (T_rx_s == 0)
|
|
||||||
// {
|
|
||||||
// // 0. Read a gnss_synchro snapshot from the queue and store it in a map
|
|
||||||
// std::map<int,Gnss_Synchro> gnss_synchro_map;
|
|
||||||
// for (unsigned int i = 0; i < d_nchannels; i++)
|
|
||||||
// {
|
|
||||||
// if (!d_gnss_synchro_history_queue.at(i).empty())
|
|
||||||
// {
|
|
||||||
// gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).front().Channel_ID,
|
|
||||||
// d_gnss_synchro_history_queue.at(i).front()));
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
// if(gnss_synchro_map.empty()) { break; } // Breaks the do-while loop
|
|
||||||
//
|
|
||||||
// gnss_synchro_map_iter = std::min_element(gnss_synchro_map.cbegin(),
|
|
||||||
// gnss_synchro_map.cend(),
|
|
||||||
// Hybrid_pairCompare_gnss_synchro_sample_counter);
|
|
||||||
// T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / static_cast<double>(gnss_synchro_map_iter->second.fs);
|
|
||||||
// T_rx_s = floor(T_rx_s * 1000.0) / 1000.0; // truncate to ms
|
|
||||||
// T_rx_s += past_history_s; // increase T_rx to have a minimum past history to interpolate
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// // 2. Realign RX time in all valid channels
|
|
||||||
// std::map<int,Gnss_Synchro> realigned_gnss_synchro_map; // container for the aligned set of observables for the selected T_rx
|
|
||||||
// std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; // container for the previous observable values to interpolate
|
|
||||||
// // shift channels history to match the reference TOW
|
|
||||||
// for (unsigned int i = 0; i < d_nchannels; i++)
|
|
||||||
// {
|
|
||||||
// if (!d_gnss_synchro_history_queue.at(i).empty())
|
|
||||||
// {
|
|
||||||
// gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue.at(i).cbegin(),
|
|
||||||
// d_gnss_synchro_history_queue.at(i).cend(),
|
|
||||||
// T_rx_s,
|
|
||||||
// Hybrid_valueCompare_gnss_synchro_receiver_time);
|
|
||||||
// if (gnss_synchro_deque_iter != d_gnss_synchro_history_queue.at(i).cend())
|
|
||||||
// {
|
|
||||||
// if (gnss_synchro_deque_iter->Flag_valid_word == true)
|
|
||||||
// {
|
|
||||||
// double T_rx_channel = static_cast<double>(gnss_synchro_deque_iter->Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
|
|
||||||
// double delta_T_rx_s = T_rx_channel - T_rx_s;
|
|
||||||
//
|
|
||||||
// // check that T_rx difference is less than a threshold (the correlation interval)
|
|
||||||
// if (delta_T_rx_s * 1000.0 < static_cast<double>(gnss_synchro_deque_iter->correlation_length_ms))
|
|
||||||
// {
|
|
||||||
// // record the word structure in a map for pseudorange computation
|
|
||||||
// // save the previous observable
|
|
||||||
// int distance = std::distance(d_gnss_synchro_history_queue.at(i).cbegin(), gnss_synchro_deque_iter);
|
|
||||||
// if (distance > 0)
|
|
||||||
// {
|
|
||||||
// if (d_gnss_synchro_history_queue.at(i).at(distance - 1).Flag_valid_word)
|
|
||||||
// {
|
|
||||||
// double T_rx_channel_prev = static_cast<double>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
|
|
||||||
// double delta_T_rx_s_prev = T_rx_channel_prev - T_rx_s;
|
|
||||||
// if (fabs(delta_T_rx_s_prev) < fabs(delta_T_rx_s))
|
|
||||||
// {
|
|
||||||
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Channel_ID,
|
|
||||||
// d_gnss_synchro_history_queue.at(i).at(distance - 1)));
|
|
||||||
// adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
|
||||||
// }
|
|
||||||
// else
|
|
||||||
// {
|
|
||||||
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
|
||||||
// adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Channel_ID,
|
|
||||||
// d_gnss_synchro_history_queue.at(i).at(distance - 1)));
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// }
|
|
||||||
// else
|
|
||||||
// {
|
|
||||||
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// if(!realigned_gnss_synchro_map.empty())
|
|
||||||
// {
|
|
||||||
// /*
|
|
||||||
// * 2.1 Use CURRENT set of measurements and find the nearest satellite
|
|
||||||
// * common RX time algorithm
|
|
||||||
// */
|
|
||||||
// // what is the most recent symbol TOW in the current set? -> this will be the reference symbol
|
|
||||||
// gnss_synchro_map_iter = std::max_element(realigned_gnss_synchro_map.cbegin(),
|
|
||||||
// realigned_gnss_synchro_map.cend(),
|
|
||||||
// Hybrid_pairCompare_gnss_synchro_d_TOW);
|
|
||||||
// double ref_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
|
|
||||||
//
|
|
||||||
// // compute interpolated TOW value at T_rx_s
|
|
||||||
// int ref_channel_key = gnss_synchro_map_iter->second.Channel_ID;
|
|
||||||
// Gnss_Synchro adj_obs;
|
|
||||||
// adj_obs = adjacent_gnss_synchro_map.at(ref_channel_key);
|
|
||||||
// double ref_adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / ref_fs_hz + adj_obs.Code_phase_samples / ref_fs_hz;
|
|
||||||
//
|
|
||||||
// double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
|
|
||||||
// double d_ref_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / ref_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / ref_fs_hz;
|
|
||||||
//
|
|
||||||
// double selected_T_rx_s = T_rx_s;
|
|
||||||
// // two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
|
|
||||||
// double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s +
|
|
||||||
// (selected_T_rx_s - ref_adj_T_rx_s) * (d_TOW_reference - adj_obs.TOW_at_current_symbol_s) / (d_ref_T_rx_s - ref_adj_T_rx_s);
|
|
||||||
//
|
|
||||||
// // Now compute RX time differences due to the PRN alignment in the correlators
|
|
||||||
// double traveltime_ms;
|
|
||||||
// double pseudorange_m;
|
|
||||||
// double channel_T_rx_s;
|
|
||||||
// double channel_fs_hz;
|
|
||||||
// double channel_TOW_s;
|
|
||||||
// for(gnss_synchro_map_iter = realigned_gnss_synchro_map.cbegin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.cend(); gnss_synchro_map_iter++)
|
|
||||||
// {
|
|
||||||
// channel_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
|
|
||||||
// channel_TOW_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
|
|
||||||
// channel_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / channel_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / channel_fs_hz;
|
|
||||||
// // compute interpolated observation values
|
|
||||||
// // two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
|
|
||||||
// // TOW at the selected receiver time T_rx_s
|
|
||||||
// int element_key = gnss_synchro_map_iter->second.Channel_ID;
|
|
||||||
// adj_obs = adjacent_gnss_synchro_map.at(element_key);
|
|
||||||
//
|
|
||||||
// double adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / channel_fs_hz + adj_obs.Code_phase_samples / channel_fs_hz;
|
|
||||||
//
|
|
||||||
// double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - adj_T_rx_s) * (channel_TOW_s - adj_obs.TOW_at_current_symbol_s) / (channel_T_rx_s - adj_T_rx_s);
|
|
||||||
//
|
|
||||||
// // Doppler and Accumulated carrier phase
|
|
||||||
// double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_phase_rads - adj_obs.Carrier_phase_rads) / (channel_T_rx_s - adj_T_rx_s);
|
|
||||||
// double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_Doppler_hz - adj_obs.Carrier_Doppler_hz) / (channel_T_rx_s - adj_T_rx_s);
|
|
||||||
//
|
|
||||||
// // compute the pseudorange (no rx time offset correction)
|
|
||||||
// traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0 + GPS_STARTOFFSET_ms;
|
|
||||||
// // convert to meters
|
|
||||||
// pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
|
|
||||||
// // update the pseudorange object
|
|
||||||
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
|
|
||||||
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
|
|
||||||
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
|
|
||||||
// // Save the estimated RX time (no RX clock offset correction yet!)
|
|
||||||
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = ref_TOW_at_T_rx_s + GPS_STARTOFFSET_ms / 1000.0;
|
|
||||||
//
|
|
||||||
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_phase_rads = Carrier_phase_lin_rads;
|
|
||||||
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_Doppler_hz = Carrier_Doppler_lin_hz;
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// if(d_dump == true)
|
|
||||||
// {
|
|
||||||
// // MULTIPLEXED FILE RECORDING - Record results to file
|
|
||||||
// try
|
|
||||||
// {
|
|
||||||
// double tmp_double;
|
|
||||||
// for (unsigned int i = 0; i < d_nchannels; i++)
|
|
||||||
// {
|
|
||||||
// tmp_double = current_gnss_synchro[i].RX_time;
|
|
||||||
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
||||||
// tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
|
|
||||||
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
||||||
// tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
|
|
||||||
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
||||||
// tmp_double = current_gnss_synchro[i].Carrier_phase_rads / GPS_TWO_PI;
|
|
||||||
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
||||||
// tmp_double = current_gnss_synchro[i].Pseudorange_m;
|
|
||||||
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
||||||
// tmp_double = current_gnss_synchro[i].PRN;
|
|
||||||
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
||||||
// tmp_double = static_cast<double>(current_gnss_synchro[i].Flag_valid_pseudorange);
|
|
||||||
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
// catch (const std::ifstream::failure& e)
|
|
||||||
// {
|
|
||||||
// LOG(WARNING) << "Exception writing observables dump file " << e.what();
|
|
||||||
// d_dump = false;
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// for (unsigned int i = 0; i < d_nchannels; i++)
|
|
||||||
// {
|
|
||||||
// out[i][n_outputs] = current_gnss_synchro[i];
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// n_outputs++;
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// // Move RX time
|
|
||||||
// T_rx_s += T_rx_step_s;
|
|
||||||
// // pop old elements from queue
|
|
||||||
// for (unsigned int i = 0; i < d_nchannels; i++)
|
|
||||||
// {
|
|
||||||
// if (!d_gnss_synchro_history_queue.at(i).empty())
|
|
||||||
// {
|
|
||||||
// while (static_cast<double>(d_gnss_synchro_history_queue.at(i).front().Tracking_sample_counter) / static_cast<double>(d_gnss_synchro_history_queue.at(i).front().fs) < (T_rx_s - past_history_s))
|
|
||||||
// {
|
|
||||||
// d_gnss_synchro_history_queue.at(i).pop_front();
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// }// End of try{...}
|
|
||||||
// catch(const std::out_of_range& e)
|
|
||||||
// {
|
|
||||||
// LOG(WARNING) << "Out of range exception thrown by Hybrid Observables block. Exception message: " << e.what();
|
|
||||||
// std::cout << "Out of range exception thrown by Hybrid Observables block. Exception message: " << e.what() << std::endl;
|
|
||||||
// return gr::block::WORK_DONE;
|
|
||||||
// }
|
|
||||||
// catch(const std::exception& e)
|
|
||||||
// {
|
|
||||||
// LOG(WARNING) << "Exception thrown by Hybrid Observables block. Exception message: " << e.what();
|
|
||||||
// std::cout << "Exception thrown by Hybrid Observables block. Exception message: " << e.what() << std::endl;
|
|
||||||
// return gr::block::WORK_DONE;
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// }while(channel_history_ok == true && noutput_items > n_outputs);
|
|
||||||
//
|
|
||||||
// // Multi-rate consume!
|
|
||||||
// for (unsigned int i = 0; i < d_nchannels; i++)
|
|
||||||
// {
|
|
||||||
// consume(i, n_consume[i]); // which input, how many items
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// //consume monitor channel always
|
|
||||||
// consume(d_nchannels, 1);
|
|
||||||
// return n_outputs;
|
|
||||||
//
|
|
||||||
//
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user