1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-09-29 15:30:52 +00:00

Clean code

This commit is contained in:
Antonio Ramos 2018-02-20 11:17:41 +01:00
parent 3508218307
commit 832f828d52

View File

@ -95,19 +95,19 @@ hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels_in, unsigned
hybrid_observables_cc::~hybrid_observables_cc()
{
if (d_dump_file.is_open())
{
try { d_dump_file.close(); }
catch(const std::exception & ex)
{
try { d_dump_file.close(); }
catch(const std::exception & ex)
{
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
}
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
}
}
if(d_dump)
{
std::cout << "Writing observables .mat files ...";
save_matfile();
std::cout << " done." << std::endl;
}
{
std::cout << "Writing observables .mat files ...";
save_matfile();
std::cout << " done." << std::endl;
}
}
@ -535,317 +535,35 @@ int hybrid_observables_cc::general_work(int noutput_items __attribute__((unused)
out[i][0].Flag_valid_pseudorange = false;
}
}
return 1;
/* ANTONIO
it = d_gnss_synchro_history.begin();
double TOW_ref = std::numeric_limits<double>::max();
for(i = 0; i < d_nchannels; i++)
if(d_dump)
{
if(!valid_channels[i]) { out[i][0] = Gnss_Synchro(); }
else
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
out[i][0] = it->first;
out[i][0].Flag_valid_pseudorange = true;
out[i][0].Carrier_Doppler_hz = Hybrid_Interpolate_data(*it, T_rx_s, 0);
out[i][0].Carrier_phase_rads = Hybrid_Interpolate_data(*it, T_rx_s, 1);
out[i][0].RX_time = Hybrid_Interpolate_data(*it, T_rx_s, 2);
out[i][0].Code_phase_samples = Hybrid_Interpolate_data(*it, T_rx_s, 3);
//std::cout<<"T2: "<< it->first.RX_time<<". T1: "<< it->second.RX_time <<" T i: " << T_rx_s <<std::endl;
//std::cout<<"Doppler origin: "<< it->first.Carrier_Doppler_hz<<","<< it->second.Carrier_Doppler_hz<<" Doppler interp: " << out[i][0].Carrier_Doppler_hz <<std::endl;
if(out[i][0].RX_time < TOW_ref) { TOW_ref = out[i][0].RX_time; }
double tmp_double;
for (i = 0; i < d_nchannels; i++)
{
tmp_double = out[i][0].RX_time;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = out[i][0].TOW_at_current_symbol_s;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = out[i][0].Carrier_Doppler_hz;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = out[i][0].Carrier_phase_rads / GPS_TWO_PI;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = out[i][0].Pseudorange_m;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(out[i][0].PRN);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(out[i][0].Flag_valid_pseudorange);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
}
}
it++;
}
for(i = 0; i < d_nchannels; i++)
{
if(valid_channels[i])
catch (const std::ifstream::failure& e)
{
double traveltime_ms = (out[i][0].RX_time - TOW_ref) * 1000.0 + GPS_STARTOFFSET_ms;
out[i][0].Pseudorange_m = traveltime_ms * GPS_C_m_ms;
out[i][0].RX_time = TOW_ref + GPS_STARTOFFSET_ms / 1000.0;
//std::cout << "Sat " << out[i][0].PRN << ". Prang = " << out[i][0].Pseudorange_m << ". TOW = " << out[i][0].RX_time << std::endl;
LOG(WARNING) << "Exception writing observables dump file " << e.what();
d_dump = false;
}
}
return 1;
*/
/******************************* OLD ALGORITHM ********************************/
// const Gnss_Synchro** in = reinterpret_cast<const Gnss_Synchro**>(&input_items[0]); // Get the input buffer pointer
// Gnss_Synchro** out = reinterpret_cast<Gnss_Synchro**>(&output_items[0]); // Get the output buffer pointer
// int n_outputs = 0;
// int n_consume[d_nchannels];
// double past_history_s = 100e-3;
//
// Gnss_Synchro current_gnss_synchro[d_nchannels];
// Gnss_Synchro aux = Gnss_Synchro();
// for(unsigned int i = 0; i < d_nchannels; i++)
// {
// current_gnss_synchro[i] = aux;
// }
// /*
// * 1. Read the GNSS SYNCHRO objects from available channels.
// * Multi-rate GNURADIO Block. Read how many input items are avaliable in each channel
// * Record all synchronization data into queues
// */
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// n_consume[i] = ninput_items[i]; // full throttle
// for(int j = 0; j < n_consume[i]; j++)
// {
// d_gnss_synchro_history_queue[i].push_back(in[i][j]);
// }
// }
//
// bool channel_history_ok;
//
// do
// {
//
// try
// {
//
// channel_history_ok = true;
// for(unsigned int i = 0; i < d_nchannels; i++)
// {
// if (d_gnss_synchro_history_queue.at(i).size() < history_deep && !d_gnss_synchro_history_queue.at(i).empty())
// {
// channel_history_ok = false;
// }
// }
// if (channel_history_ok == true)
// {
// std::map<int,Gnss_Synchro>::const_iterator gnss_synchro_map_iter;
// std::deque<Gnss_Synchro>::const_iterator gnss_synchro_deque_iter;
//
// // 1. If the RX time is not set, set the Rx time
// if (T_rx_s == 0)
// {
// // 0. Read a gnss_synchro snapshot from the queue and store it in a map
// std::map<int,Gnss_Synchro> gnss_synchro_map;
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// if (!d_gnss_synchro_history_queue.at(i).empty())
// {
// gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).front().Channel_ID,
// d_gnss_synchro_history_queue.at(i).front()));
// }
// }
// if(gnss_synchro_map.empty()) { break; } // Breaks the do-while loop
//
// gnss_synchro_map_iter = std::min_element(gnss_synchro_map.cbegin(),
// gnss_synchro_map.cend(),
// Hybrid_pairCompare_gnss_synchro_sample_counter);
// T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / static_cast<double>(gnss_synchro_map_iter->second.fs);
// T_rx_s = floor(T_rx_s * 1000.0) / 1000.0; // truncate to ms
// T_rx_s += past_history_s; // increase T_rx to have a minimum past history to interpolate
// }
//
// // 2. Realign RX time in all valid channels
// std::map<int,Gnss_Synchro> realigned_gnss_synchro_map; // container for the aligned set of observables for the selected T_rx
// std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; // container for the previous observable values to interpolate
// // shift channels history to match the reference TOW
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// if (!d_gnss_synchro_history_queue.at(i).empty())
// {
// gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue.at(i).cbegin(),
// d_gnss_synchro_history_queue.at(i).cend(),
// T_rx_s,
// Hybrid_valueCompare_gnss_synchro_receiver_time);
// if (gnss_synchro_deque_iter != d_gnss_synchro_history_queue.at(i).cend())
// {
// if (gnss_synchro_deque_iter->Flag_valid_word == true)
// {
// double T_rx_channel = static_cast<double>(gnss_synchro_deque_iter->Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
// double delta_T_rx_s = T_rx_channel - T_rx_s;
//
// // check that T_rx difference is less than a threshold (the correlation interval)
// if (delta_T_rx_s * 1000.0 < static_cast<double>(gnss_synchro_deque_iter->correlation_length_ms))
// {
// // record the word structure in a map for pseudorange computation
// // save the previous observable
// int distance = std::distance(d_gnss_synchro_history_queue.at(i).cbegin(), gnss_synchro_deque_iter);
// if (distance > 0)
// {
// if (d_gnss_synchro_history_queue.at(i).at(distance - 1).Flag_valid_word)
// {
// double T_rx_channel_prev = static_cast<double>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
// double delta_T_rx_s_prev = T_rx_channel_prev - T_rx_s;
// if (fabs(delta_T_rx_s_prev) < fabs(delta_T_rx_s))
// {
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Channel_ID,
// d_gnss_synchro_history_queue.at(i).at(distance - 1)));
// adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
// }
// else
// {
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
// adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Channel_ID,
// d_gnss_synchro_history_queue.at(i).at(distance - 1)));
// }
// }
//
// }
// else
// {
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
// }
//
// }
// }
// }
// }
// }
//
// if(!realigned_gnss_synchro_map.empty())
// {
// /*
// * 2.1 Use CURRENT set of measurements and find the nearest satellite
// * common RX time algorithm
// */
// // what is the most recent symbol TOW in the current set? -> this will be the reference symbol
// gnss_synchro_map_iter = std::max_element(realigned_gnss_synchro_map.cbegin(),
// realigned_gnss_synchro_map.cend(),
// Hybrid_pairCompare_gnss_synchro_d_TOW);
// double ref_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
//
// // compute interpolated TOW value at T_rx_s
// int ref_channel_key = gnss_synchro_map_iter->second.Channel_ID;
// Gnss_Synchro adj_obs;
// adj_obs = adjacent_gnss_synchro_map.at(ref_channel_key);
// double ref_adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / ref_fs_hz + adj_obs.Code_phase_samples / ref_fs_hz;
//
// double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
// double d_ref_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / ref_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / ref_fs_hz;
//
// double selected_T_rx_s = T_rx_s;
// // two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
// double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s +
// (selected_T_rx_s - ref_adj_T_rx_s) * (d_TOW_reference - adj_obs.TOW_at_current_symbol_s) / (d_ref_T_rx_s - ref_adj_T_rx_s);
//
// // Now compute RX time differences due to the PRN alignment in the correlators
// double traveltime_ms;
// double pseudorange_m;
// double channel_T_rx_s;
// double channel_fs_hz;
// double channel_TOW_s;
// for(gnss_synchro_map_iter = realigned_gnss_synchro_map.cbegin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.cend(); gnss_synchro_map_iter++)
// {
// channel_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
// channel_TOW_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
// channel_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / channel_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / channel_fs_hz;
// // compute interpolated observation values
// // two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
// // TOW at the selected receiver time T_rx_s
// int element_key = gnss_synchro_map_iter->second.Channel_ID;
// adj_obs = adjacent_gnss_synchro_map.at(element_key);
//
// double adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / channel_fs_hz + adj_obs.Code_phase_samples / channel_fs_hz;
//
// double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - adj_T_rx_s) * (channel_TOW_s - adj_obs.TOW_at_current_symbol_s) / (channel_T_rx_s - adj_T_rx_s);
//
// // Doppler and Accumulated carrier phase
// double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_phase_rads - adj_obs.Carrier_phase_rads) / (channel_T_rx_s - adj_T_rx_s);
// double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_Doppler_hz - adj_obs.Carrier_Doppler_hz) / (channel_T_rx_s - adj_T_rx_s);
//
// // compute the pseudorange (no rx time offset correction)
// traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0 + GPS_STARTOFFSET_ms;
// // convert to meters
// pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
// // update the pseudorange object
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
// // Save the estimated RX time (no RX clock offset correction yet!)
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = ref_TOW_at_T_rx_s + GPS_STARTOFFSET_ms / 1000.0;
//
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_phase_rads = Carrier_phase_lin_rads;
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_Doppler_hz = Carrier_Doppler_lin_hz;
// }
//
// if(d_dump == true)
// {
// // MULTIPLEXED FILE RECORDING - Record results to file
// try
// {
// double tmp_double;
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// tmp_double = current_gnss_synchro[i].RX_time;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = current_gnss_synchro[i].Carrier_phase_rads / GPS_TWO_PI;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = current_gnss_synchro[i].Pseudorange_m;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = current_gnss_synchro[i].PRN;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = static_cast<double>(current_gnss_synchro[i].Flag_valid_pseudorange);
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// }
// }
// catch (const std::ifstream::failure& e)
// {
// LOG(WARNING) << "Exception writing observables dump file " << e.what();
// d_dump = false;
// }
// }
//
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// out[i][n_outputs] = current_gnss_synchro[i];
// }
//
// n_outputs++;
// }
//
// // Move RX time
// T_rx_s += T_rx_step_s;
// // pop old elements from queue
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// if (!d_gnss_synchro_history_queue.at(i).empty())
// {
// while (static_cast<double>(d_gnss_synchro_history_queue.at(i).front().Tracking_sample_counter) / static_cast<double>(d_gnss_synchro_history_queue.at(i).front().fs) < (T_rx_s - past_history_s))
// {
// d_gnss_synchro_history_queue.at(i).pop_front();
// }
// }
// }
// }
//
// }// End of try{...}
// catch(const std::out_of_range& e)
// {
// LOG(WARNING) << "Out of range exception thrown by Hybrid Observables block. Exception message: " << e.what();
// std::cout << "Out of range exception thrown by Hybrid Observables block. Exception message: " << e.what() << std::endl;
// return gr::block::WORK_DONE;
// }
// catch(const std::exception& e)
// {
// LOG(WARNING) << "Exception thrown by Hybrid Observables block. Exception message: " << e.what();
// std::cout << "Exception thrown by Hybrid Observables block. Exception message: " << e.what() << std::endl;
// return gr::block::WORK_DONE;
// }
//
// }while(channel_history_ok == true && noutput_items > n_outputs);
//
// // Multi-rate consume!
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// consume(i, n_consume[i]); // which input, how many items
// }
//
// //consume monitor channel always
// consume(d_nchannels, 1);
// return n_outputs;
//
//
}