mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-11-17 15:47:15 +00:00
Remove build and data folders, move tests and utils to the base of the source tree
This commit is contained in:
60
utils/matlab/libs/geoFunctions/cart2geo.m
Normal file
60
utils/matlab/libs/geoFunctions/cart2geo.m
Normal file
@@ -0,0 +1,60 @@
|
||||
function [phi, lambda, h] = cart2geo(X, Y, Z, i)
|
||||
% CART2GEO Conversion of Cartesian coordinates (X,Y,Z) to geographical
|
||||
% coordinates (phi, lambda, h) on a selected reference ellipsoid.
|
||||
%
|
||||
% [phi, lambda, h] = cart2geo(X, Y, Z, i);
|
||||
%
|
||||
% Choices i of Reference Ellipsoid for Geographical Coordinates
|
||||
% 1. International Ellipsoid 1924
|
||||
% 2. International Ellipsoid 1967
|
||||
% 3. World Geodetic System 1972
|
||||
% 4. Geodetic Reference System 1980
|
||||
% 5. World Geodetic System 1984
|
||||
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: Kai Borre
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
%==========================================================================
|
||||
|
||||
a = [6378388 6378160 6378135 6378137 6378137];
|
||||
f = [1/297 1/298.247 1/298.26 1/298.257222101 1/298.257223563];
|
||||
|
||||
lambda = atan2(Y,X);
|
||||
ex2 = (2-f(i))*f(i)/((1-f(i))^2);
|
||||
c = a(i)*sqrt(1+ex2);
|
||||
phi = atan(Z/((sqrt(X^2+Y^2)*(1-(2-f(i)))*f(i))));
|
||||
|
||||
h = 0.1; oldh = 0;
|
||||
iterations = 0;
|
||||
while abs(h-oldh) > 1.e-12
|
||||
oldh = h;
|
||||
N = c/sqrt(1+ex2*cos(phi)^2);
|
||||
phi = atan(Z/((sqrt(X^2+Y^2)*(1-(2-f(i))*f(i)*N/(N+h)))));
|
||||
h = sqrt(X^2+Y^2)/cos(phi)-N;
|
||||
|
||||
iterations = iterations + 1;
|
||||
if iterations > 100
|
||||
fprintf('Failed to approximate h with desired precision. h-oldh: %e.\n', h-oldh);
|
||||
break;
|
||||
end
|
||||
end
|
||||
|
||||
phi = phi*180/pi;
|
||||
% b = zeros(1,3);
|
||||
% b(1,1) = fix(phi);
|
||||
% b(2,1) = fix(rem(phi,b(1,1))*60);
|
||||
% b(3,1) = (phi-b(1,1)-b(1,2)/60)*3600;
|
||||
|
||||
lambda = lambda*180/pi;
|
||||
% l = zeros(1,3);
|
||||
% l(1,1) = fix(lambda);
|
||||
% l(2,1) = fix(rem(lambda,l(1,1))*60);
|
||||
% l(3,1) = (lambda-l(1,1)-l(1,2)/60)*3600;
|
||||
|
||||
%fprintf('\n phi =%3.0f %3.0f %8.5f',b(1),b(2),b(3))
|
||||
%fprintf('\n lambda =%3.0f %3.0f %8.5f',l(1),l(2),l(3))
|
||||
%fprintf('\n h =%14.3f\n',h)
|
||||
|
||||
%%%%%%%%%%%%%% end cart2geo.m %%%%%%%%%%%%%%%%%%%
|
||||
176
utils/matlab/libs/geoFunctions/cart2utm.m
Normal file
176
utils/matlab/libs/geoFunctions/cart2utm.m
Normal file
@@ -0,0 +1,176 @@
|
||||
function [E, N, U] = cart2utm(X, Y, Z, zone)
|
||||
% CART2UTM Transformation of (X,Y,Z) to (N,E,U) in UTM, zone 'zone'.
|
||||
%
|
||||
% [E, N, U] = cart2utm(X, Y, Z, zone);
|
||||
%
|
||||
% Inputs:
|
||||
% X,Y,Z - Cartesian coordinates. Coordinates are referenced
|
||||
% with respect to the International Terrestrial Reference
|
||||
% Frame 1996 (ITRF96)
|
||||
% zone - UTM zone of the given position
|
||||
%
|
||||
% Outputs:
|
||||
% E, N, U - UTM coordinates (Easting, Northing, Uping)
|
||||
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: Kai Borre
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
% This implementation is based upon
|
||||
% O. Andersson & K. Poder (1981) Koordinattransformationer
|
||||
% ved Geod\ae{}tisk Institut. Landinspekt\oe{}ren
|
||||
% Vol. 30: 552--571 and Vol. 31: 76
|
||||
%
|
||||
% An excellent, general reference (KW) is
|
||||
% R. Koenig & K.H. Weise (1951) Mathematische Grundlagen der
|
||||
% h\"oheren Geod\"asie und Kartographie.
|
||||
% Erster Band, Springer Verlag
|
||||
|
||||
% Explanation of variables used:
|
||||
% f flattening of ellipsoid
|
||||
% a semi major axis in m
|
||||
% m0 1 - scale at central meridian; for UTM 0.0004
|
||||
% Q_n normalized meridian quadrant
|
||||
% E0 Easting of central meridian
|
||||
% L0 Longitude of central meridian
|
||||
% bg constants for ellipsoidal geogr. to spherical geogr.
|
||||
% gb constants for spherical geogr. to ellipsoidal geogr.
|
||||
% gtu constants for ellipsoidal N, E to spherical N, E
|
||||
% utg constants for spherical N, E to ellipoidal N, E
|
||||
% tolutm tolerance for utm, 1.2E-10*meridian quadrant
|
||||
% tolgeo tolerance for geographical, 0.00040 second of arc
|
||||
|
||||
% B, L refer to latitude and longitude. Southern latitude is negative
|
||||
% International ellipsoid of 1924, valid for ED50
|
||||
|
||||
a = 6378388;
|
||||
f = 1/297;
|
||||
ex2 = (2-f)*f / ((1-f)^2);
|
||||
c = a * sqrt(1+ex2);
|
||||
vec = [X; Y; Z-4.5];
|
||||
alpha = .756e-6;
|
||||
R = [ 1 -alpha 0;
|
||||
alpha 1 0;
|
||||
0 0 1];
|
||||
trans = [89.5; 93.8; 127.6];
|
||||
scale = 0.9999988;
|
||||
v = scale*R*vec + trans; % coordinate vector in ED50
|
||||
L = atan2(v(2), v(1));
|
||||
N1 = 6395000; % preliminary value
|
||||
B = atan2(v(3)/((1-f)^2*N1), norm(v(1:2))/N1); % preliminary value
|
||||
U = 0.1; oldU = 0;
|
||||
|
||||
iterations = 0;
|
||||
while abs(U-oldU) > 1.e-4
|
||||
oldU = U;
|
||||
N1 = c/sqrt(1+ex2*(cos(B))^2);
|
||||
B = atan2(v(3)/((1-f)^2*N1+U), norm(v(1:2))/(N1+U) );
|
||||
U = norm(v(1:2))/cos(B)-N1;
|
||||
|
||||
iterations = iterations + 1;
|
||||
if iterations > 100
|
||||
fprintf('Failed to approximate U with desired precision. U-oldU: %e.\n', U-oldU);
|
||||
break;
|
||||
end
|
||||
end
|
||||
|
||||
% Normalized meridian quadrant, KW p. 50 (96), p. 19 (38b), p. 5 (21)
|
||||
m0 = 0.0004;
|
||||
n = f / (2-f);
|
||||
m = n^2 * (1/4 + n*n/64);
|
||||
w = (a*(-n-m0+m*(1-m0))) / (1+n);
|
||||
Q_n = a + w;
|
||||
|
||||
% Easting and longitude of central meridian
|
||||
E0 = 500000;
|
||||
L0 = (zone-30)*6 - 3;
|
||||
|
||||
% Check tolerance for reverse transformation
|
||||
tolutm = pi/2 * 1.2e-10 * Q_n;
|
||||
tolgeo = 0.000040;
|
||||
|
||||
% Coefficients of trigonometric series
|
||||
|
||||
% ellipsoidal to spherical geographical, KW p. 186--187, (51)-(52)
|
||||
% bg[1] = n*(-2 + n*(2/3 + n*(4/3 + n*(-82/45))));
|
||||
% bg[2] = n^2*(5/3 + n*(-16/15 + n*(-13/9)));
|
||||
% bg[3] = n^3*(-26/15 + n*34/21);
|
||||
% bg[4] = n^4*1237/630;
|
||||
|
||||
% spherical to ellipsoidal geographical, KW p. 190--191, (61)-(62)
|
||||
% gb[1] = n*(2 + n*(-2/3 + n*(-2 + n*116/45)));
|
||||
% gb[2] = n^2*(7/3 + n*(-8/5 + n*(-227/45)));
|
||||
% gb[3] = n^3*(56/15 + n*(-136/35));
|
||||
% gb[4] = n^4*4279/630;
|
||||
|
||||
% spherical to ellipsoidal N, E, KW p. 196, (69)
|
||||
% gtu[1] = n*(1/2 + n*(-2/3 + n*(5/16 + n*41/180)));
|
||||
% gtu[2] = n^2*(13/48 + n*(-3/5 + n*557/1440));
|
||||
% gtu[3] = n^3*(61/240 + n*(-103/140));
|
||||
% gtu[4] = n^4*49561/161280;
|
||||
|
||||
% ellipsoidal to spherical N, E, KW p. 194, (65)
|
||||
% utg[1] = n*(-1/2 + n*(2/3 + n*(-37/96 + n*1/360)));
|
||||
% utg[2] = n^2*(-1/48 + n*(-1/15 + n*437/1440));
|
||||
% utg[3] = n^3*(-17/480 + n*37/840);
|
||||
% utg[4] = n^4*(-4397/161280);
|
||||
|
||||
% With f = 1/297 we get
|
||||
|
||||
bg = [-3.37077907e-3;
|
||||
4.73444769e-6;
|
||||
-8.29914570e-9;
|
||||
1.58785330e-11];
|
||||
|
||||
gb = [ 3.37077588e-3;
|
||||
6.62769080e-6;
|
||||
1.78718601e-8;
|
||||
5.49266312e-11];
|
||||
|
||||
gtu = [ 8.41275991e-4;
|
||||
7.67306686e-7;
|
||||
1.21291230e-9;
|
||||
2.48508228e-12];
|
||||
|
||||
utg = [-8.41276339e-4;
|
||||
-5.95619298e-8;
|
||||
-1.69485209e-10;
|
||||
-2.20473896e-13];
|
||||
|
||||
% Ellipsoidal latitude, longitude to spherical latitude, longitude
|
||||
neg_geo = 'FALSE';
|
||||
|
||||
if B < 0
|
||||
neg_geo = 'TRUE ';
|
||||
end
|
||||
|
||||
Bg_r = abs(B);
|
||||
[res_clensin] = clsin(bg, 4, 2*Bg_r);
|
||||
Bg_r = Bg_r + res_clensin;
|
||||
L0 = L0*pi / 180;
|
||||
Lg_r = L - L0;
|
||||
|
||||
% Spherical latitude, longitude to complementary spherical latitude
|
||||
% i.e. spherical N, E
|
||||
cos_BN = cos(Bg_r);
|
||||
Np = atan2(sin(Bg_r), cos(Lg_r)*cos_BN);
|
||||
Ep = atanh(sin(Lg_r) * cos_BN);
|
||||
|
||||
%Spherical normalized N, E to ellipsoidal N, E
|
||||
Np = 2 * Np;
|
||||
Ep = 2 * Ep;
|
||||
[dN, dE] = clksin(gtu, 4, Np, Ep);
|
||||
Np = Np/2;
|
||||
Ep = Ep/2;
|
||||
Np = Np + dN;
|
||||
Ep = Ep + dE;
|
||||
N = Q_n * Np;
|
||||
E = Q_n*Ep + E0;
|
||||
|
||||
if neg_geo == 'TRUE '
|
||||
N = -N + 20000000;
|
||||
end;
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%% end cart2utm.m %%%%%%%%%%%%%%%%%%%%
|
||||
29
utils/matlab/libs/geoFunctions/check_t.m
Normal file
29
utils/matlab/libs/geoFunctions/check_t.m
Normal file
@@ -0,0 +1,29 @@
|
||||
function corrTime = check_t(time)
|
||||
% CHECK_T accounting for beginning or end of week crossover.
|
||||
%
|
||||
% corrTime = check_t(time);
|
||||
%
|
||||
% Inputs:
|
||||
% time - time in seconds
|
||||
%
|
||||
% Outputs:
|
||||
% corrTime - corrected time (seconds)
|
||||
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: Kai Borre
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
%==========================================================================
|
||||
|
||||
half_week = 302400; % seconds
|
||||
|
||||
corrTime = time;
|
||||
|
||||
if time > half_week
|
||||
corrTime = time - 2*half_week;
|
||||
elseif time < -half_week
|
||||
corrTime = time + 2*half_week;
|
||||
end
|
||||
|
||||
%%%%%%% end check_t.m %%%%%%%%%%%%%%%%%
|
||||
36
utils/matlab/libs/geoFunctions/clksin.m
Normal file
36
utils/matlab/libs/geoFunctions/clksin.m
Normal file
@@ -0,0 +1,36 @@
|
||||
function [re, im] = clksin(ar, degree, arg_real, arg_imag)
|
||||
% Clenshaw summation of sinus with complex argument
|
||||
% [re, im] = clksin(ar, degree, arg_real, arg_imag);
|
||||
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: Kai Borre
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
%==========================================================================
|
||||
|
||||
sin_arg_r = sin(arg_real);
|
||||
cos_arg_r = cos(arg_real);
|
||||
sinh_arg_i = sinh(arg_imag);
|
||||
cosh_arg_i = cosh(arg_imag);
|
||||
|
||||
r = 2 * cos_arg_r * cosh_arg_i;
|
||||
i =-2 * sin_arg_r * sinh_arg_i;
|
||||
|
||||
hr1 = 0; hr = 0; hi1 = 0; hi = 0;
|
||||
|
||||
for t = degree : -1 : 1
|
||||
hr2 = hr1;
|
||||
hr1 = hr;
|
||||
hi2 = hi1;
|
||||
hi1 = hi;
|
||||
z = ar(t) + r*hr1 - i*hi - hr2;
|
||||
hi = i*hr1 + r*hi1 - hi2;
|
||||
hr = z;
|
||||
end
|
||||
|
||||
r = sin_arg_r * cosh_arg_i;
|
||||
i = cos_arg_r * sinh_arg_i;
|
||||
|
||||
re = r*hr - i*hi;
|
||||
im = r*hi + i*hr;
|
||||
25
utils/matlab/libs/geoFunctions/clsin.m
Normal file
25
utils/matlab/libs/geoFunctions/clsin.m
Normal file
@@ -0,0 +1,25 @@
|
||||
function result = clsin(ar, degree, argument)
|
||||
% Clenshaw summation of sinus of argument.
|
||||
%
|
||||
% result = clsin(ar, degree, argument);
|
||||
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: Kai Borre
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
%==========================================================================
|
||||
|
||||
cos_arg = 2 * cos(argument);
|
||||
hr1 = 0;
|
||||
hr = 0;
|
||||
|
||||
for t = degree : -1 : 1
|
||||
hr2 = hr1;
|
||||
hr1 = hr;
|
||||
hr = ar(t) + cos_arg*hr1 - hr2;
|
||||
end
|
||||
|
||||
result = hr * sin(argument);
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%% end clsin.m %%%%%%%%%%%%%%%%%%%%%
|
||||
48
utils/matlab/libs/geoFunctions/deg2dms.m
Normal file
48
utils/matlab/libs/geoFunctions/deg2dms.m
Normal file
@@ -0,0 +1,48 @@
|
||||
function dmsOutput = deg2dms(deg)
|
||||
% DEG2DMS Conversion of degrees to degrees, minutes, and seconds.
|
||||
% The output format (dms format) is: (degrees*100 + minutes + seconds/100)
|
||||
|
||||
% February 7, 2001
|
||||
% Updated by Darius Plausinaitis
|
||||
%
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: Kai Borre
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
%%% Save the sign for later processing
|
||||
neg_arg = false;
|
||||
if deg < 0
|
||||
% Only positive numbers should be used while splitting into deg/min/sec
|
||||
deg = -deg;
|
||||
neg_arg = true;
|
||||
end
|
||||
|
||||
%%% Split degrees minutes and seconds
|
||||
int_deg = floor(deg);
|
||||
decimal = deg - int_deg;
|
||||
min_part = decimal*60;
|
||||
min = floor(min_part);
|
||||
sec_part = min_part - floor(min_part);
|
||||
sec = sec_part*60;
|
||||
|
||||
%%% Check for overflow
|
||||
if sec == 60
|
||||
min = min + 1;
|
||||
sec = 0;
|
||||
end
|
||||
if min == 60
|
||||
int_deg = int_deg + 1;
|
||||
min = 0;
|
||||
end
|
||||
|
||||
%%% Construct the output
|
||||
dmsOutput = int_deg * 100 + min + sec/100;
|
||||
|
||||
%%% Correct the sign
|
||||
if neg_arg == true
|
||||
dmsOutput = -dmsOutput;
|
||||
end
|
||||
|
||||
%%%%%%%%%%%%%%%%%%% end deg2dms.m %%%%%%%%%%%%%%%%
|
||||
15
utils/matlab/libs/geoFunctions/dms2deg.m
Normal file
15
utils/matlab/libs/geoFunctions/dms2deg.m
Normal file
@@ -0,0 +1,15 @@
|
||||
function deg = dms2deg(dms)
|
||||
% DMS2DEG Conversion of degrees, minutes, and seconds to degrees.
|
||||
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: Javier Arribas 2011
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
|
||||
%if (dms(1)>=0)
|
||||
deg=dms(1)+dms(2)/60+dms(3)/3600;
|
||||
%else
|
||||
%deg=dms(1)-dms(2)/60-dms(3)/3600;
|
||||
%end
|
||||
109
utils/matlab/libs/geoFunctions/dms2mat.m
Normal file
109
utils/matlab/libs/geoFunctions/dms2mat.m
Normal file
@@ -0,0 +1,109 @@
|
||||
function [dout,mout,sout] = dms2mat(dms,n)
|
||||
|
||||
% DMS2MAT Converts a dms vector format to a [deg min sec] matrix
|
||||
%
|
||||
% [d,m,s] = DMS2MAT(dms) converts a dms vector format to a
|
||||
% deg:min:sec matrix. The vector format is dms = 100*deg + min + sec/100.
|
||||
% This allows compressed dms data to be expanded to a d,m,s triple,
|
||||
% for easier reporting and viewing of the data.
|
||||
%
|
||||
% [d,m,s] = DMS2MAT(dms,n) uses n digits in the accuracy of the
|
||||
% seconds calculation. n = -2 uses accuracy in the hundredths position,
|
||||
% n = 0 uses accuracy in the units position. Default is n = -5.
|
||||
% For further discussion of the input n, see ROUNDN.
|
||||
%
|
||||
% mat = DMS2MAT(...) returns a single output argument of mat = [d m s].
|
||||
% This is useful only if the input dms is a single column vector.
|
||||
%
|
||||
% See also MAT2DMS
|
||||
|
||||
% Written by: E. Byrns, E. Brown
|
||||
% Revision: 1.10 $Date: 2002/03/20 21:25:06
|
||||
%
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: 1996-2002 Systems Planning and Analysis, Inc. and The MathWorks, Inc.
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
|
||||
|
||||
if nargin == 0
|
||||
error('Incorrect number of arguments')
|
||||
elseif nargin == 1
|
||||
n = -5;
|
||||
end
|
||||
|
||||
% Test for empty arguments
|
||||
|
||||
if isempty(dms); dout = []; mout = []; sout = []; return; end
|
||||
|
||||
% Test for complex arguments
|
||||
|
||||
if ~isreal(dms)
|
||||
warning('Imaginary parts of complex ANGLE argument ignored')
|
||||
dms = real(dms);
|
||||
end
|
||||
|
||||
% Don't let seconds be rounded beyond the tens place.
|
||||
% If you did, then 55 seconds rounds to 100, which is not good.
|
||||
|
||||
if n == 2; n = 1; end
|
||||
|
||||
% Construct a sign vector which has +1 when dms >= 0 and -1 when dms < 0.
|
||||
|
||||
signvec = sign(dms);
|
||||
signvec = signvec + (signvec == 0); % Ensure +1 when dms = 0
|
||||
|
||||
% Decompress the dms data vector
|
||||
|
||||
dms = abs(dms);
|
||||
d = fix(dms/100); % Degrees
|
||||
m = fix(dms) - abs(100*d); % Minutes
|
||||
[s,msg] = roundn(100*rem(dms,1),n); % Seconds: Truncate to roundoff error
|
||||
if ~isempty(msg); error(msg); end
|
||||
|
||||
% Adjust for 60 seconds or 60 minutes.
|
||||
% Test for seconds > 60 to allow for round-off from roundn,
|
||||
% Test for minutes > 60 as a ripple effect from seconds > 60
|
||||
|
||||
|
||||
indx = find(s >= 60);
|
||||
if ~isempty(indx); m(indx) = m(indx) + 1; s(indx) = s(indx) - 60; end
|
||||
indx = find(m >= 60);
|
||||
if ~isempty(indx); d(indx) = d(indx) + 1; m(indx) = m(indx) - 60; end
|
||||
|
||||
% Data consistency checks
|
||||
|
||||
if any(m > 59) | any (m < 0)
|
||||
error('Minutes must be >= 0 and <= 59')
|
||||
|
||||
elseif any(s >= 60) | any( s < 0)
|
||||
error('Seconds must be >= 0 and < 60')
|
||||
end
|
||||
|
||||
% Determine where to store the sign of the angle. It should be
|
||||
% associated with the largest nonzero component of d:m:s.
|
||||
|
||||
dsign = signvec .* (d~=0);
|
||||
msign = signvec .* (d==0 & m~=0);
|
||||
ssign = signvec .* (d==0 & m==0 & s~=0);
|
||||
|
||||
% In the application of signs below, the comparison with 0 is used so that
|
||||
% the sign vector contains only +1 and -1. Any zero occurrences causes
|
||||
% data to be lost when the sign has been applied to a higher component
|
||||
% of d:m:s. Use fix function to eliminate potential round-off errors.
|
||||
|
||||
d = ((dsign==0) + dsign).*fix(d); % Apply signs to the degrees
|
||||
m = ((msign==0) + msign).*fix(m); % Apply signs to minutes
|
||||
s = ((ssign==0) + ssign).*s; % Apply signs to seconds
|
||||
|
||||
% Set the output arguments
|
||||
|
||||
if nargout <= 1
|
||||
dout = [d m s];
|
||||
elseif nargout == 3
|
||||
dout = d; mout = m; sout = s;
|
||||
else
|
||||
error('Invalid number of output arguments')
|
||||
end
|
||||
34
utils/matlab/libs/geoFunctions/e_r_corr.m
Normal file
34
utils/matlab/libs/geoFunctions/e_r_corr.m
Normal file
@@ -0,0 +1,34 @@
|
||||
function X_sat_rot = e_r_corr(traveltime, X_sat)
|
||||
% E_R_CORR Returns rotated satellite ECEF coordinates due to Earth
|
||||
% rotation during signal travel time
|
||||
%
|
||||
% X_sat_rot = e_r_corr(traveltime, X_sat);
|
||||
%
|
||||
% Inputs:
|
||||
% travelTime - signal travel time
|
||||
% X_sat - satellite's ECEF coordinates
|
||||
%
|
||||
% Outputs:
|
||||
% X_sat_rot - rotated satellite's coordinates (ECEF)
|
||||
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: Kai Borre
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
%==========================================================================
|
||||
|
||||
Omegae_dot = 7.292115147e-5; % rad/sec
|
||||
|
||||
%--- Find rotation angle --------------------------------------------------
|
||||
omegatau = Omegae_dot * traveltime;
|
||||
|
||||
%--- Make a rotation matrix -----------------------------------------------
|
||||
R3 = [ cos(omegatau) sin(omegatau) 0;
|
||||
-sin(omegatau) cos(omegatau) 0;
|
||||
0 0 1];
|
||||
|
||||
%--- Do the rotation ------------------------------------------------------
|
||||
X_sat_rot = R3 * X_sat;
|
||||
|
||||
%%%%%%%% end e_r_corr.m %%%%%%%%%%%%%%%%%%%%
|
||||
59
utils/matlab/libs/geoFunctions/findUtmZone.m
Normal file
59
utils/matlab/libs/geoFunctions/findUtmZone.m
Normal file
@@ -0,0 +1,59 @@
|
||||
function utmZone = findUtmZone(latitude, longitude)
|
||||
% Function finds the UTM zone number for given longitude and latitude.
|
||||
% The longitude value must be between -180 (180 degree West) and 180 (180
|
||||
% degree East) degree. The latitude must be within -80 (80 degree South) and
|
||||
% 84 (84 degree North).
|
||||
%
|
||||
% utmZone = findUtmZone(latitude, longitude);
|
||||
%
|
||||
% Latitude and longitude must be in decimal degrees (e.g. 15.5 degrees not
|
||||
% 15 deg 30 min).
|
||||
|
||||
%--------------------------------------------------------------------------
|
||||
% SoftGNSS v3.0
|
||||
%
|
||||
% Written by Darius Plausinaitis
|
||||
%--------------------------------------------------------------------------
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: Darius Plausinaitis
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
%==========================================================================
|
||||
|
||||
%% Check value bounds =====================================================
|
||||
|
||||
if ((longitude > 180) || (longitude < -180))
|
||||
error('Longitude value exceeds limits (-180:180).');
|
||||
end
|
||||
|
||||
if ((latitude > 84) || (latitude < -80))
|
||||
error('Latitude value exceeds limits (-80:84).');
|
||||
end
|
||||
|
||||
%% Find zone ==============================================================
|
||||
|
||||
% Start at 180 deg west = -180 deg
|
||||
|
||||
utmZone = fix((180 + longitude)/ 6) + 1;
|
||||
|
||||
%% Correct zone numbers for particular areas ==============================
|
||||
|
||||
if (latitude > 72)
|
||||
% Corrections for zones 31 33 35 37
|
||||
if ((longitude >= 0) && (longitude < 9))
|
||||
utmZone = 31;
|
||||
elseif ((longitude >= 9) && (longitude < 21))
|
||||
utmZone = 33;
|
||||
elseif ((longitude >= 21) && (longitude < 33))
|
||||
utmZone = 35;
|
||||
elseif ((longitude >= 33) && (longitude < 42))
|
||||
utmZone = 37;
|
||||
end
|
||||
|
||||
elseif ((latitude >= 56) && (latitude < 64))
|
||||
% Correction for zone 32
|
||||
if ((longitude >= 3) && (longitude < 12))
|
||||
utmZone = 32;
|
||||
end
|
||||
end
|
||||
50
utils/matlab/libs/geoFunctions/geo2cart.m
Normal file
50
utils/matlab/libs/geoFunctions/geo2cart.m
Normal file
@@ -0,0 +1,50 @@
|
||||
function [X, Y, Z] = geo2cart(phi, lambda, h, i)
|
||||
% GEO2CART Conversion of geographical coordinates (phi, lambda, h) to
|
||||
% Cartesian coordinates (X, Y, Z).
|
||||
%
|
||||
% [X, Y, Z] = geo2cart(phi, lambda, h, i);
|
||||
%
|
||||
% Format for phi and lambda: [degrees minutes seconds].
|
||||
% h, X, Y, and Z are in meters.
|
||||
%
|
||||
% Choices i of Reference Ellipsoid
|
||||
% 1. International Ellipsoid 1924
|
||||
% 2. International Ellipsoid 1967
|
||||
% 3. World Geodetic System 1972
|
||||
% 4. Geodetic Reference System 1980
|
||||
% 5. World Geodetic System 1984
|
||||
%
|
||||
% Inputs:
|
||||
% phi - geocentric latitude (format [degrees minutes seconds])
|
||||
% lambda - geocentric longitude (format [degrees minutes seconds])
|
||||
% h - height
|
||||
% i - reference ellipsoid type
|
||||
%
|
||||
% Outputs:
|
||||
% X, Y, Z - Cartesian coordinates (meters)
|
||||
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: Kai Borre, 1998
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
%==========================================================================
|
||||
|
||||
b = phi(1) + phi(2)/60 + phi(3)/3600;
|
||||
b = b*pi / 180;
|
||||
l = lambda(1) + lambda(2)/60 + lambda(3)/3600;
|
||||
l = l*pi / 180;
|
||||
|
||||
a = [6378388 6378160 6378135 6378137 6378137];
|
||||
f = [1/297 1/298.247 1/298.26 1/298.257222101 1/298.257223563];
|
||||
|
||||
ex2 = (2-f(i))*f(i) / ((1-f(i))^2);
|
||||
c = a(i) * sqrt(1+ex2);
|
||||
N = c / sqrt(1 + ex2*cos(b)^2);
|
||||
|
||||
X = (N+h) * cos(b) * cos(l);
|
||||
Y = (N+h) * cos(b) * sin(l);
|
||||
Z = ((1-f(i))^2*N + h) * sin(b);
|
||||
|
||||
%%%%%%%%%%%%%% end geo2cart.m %%%%%%%%%%%%%%%%%%%%%%%%
|
||||
116
utils/matlab/libs/geoFunctions/leastSquarePos.m
Normal file
116
utils/matlab/libs/geoFunctions/leastSquarePos.m
Normal file
@@ -0,0 +1,116 @@
|
||||
function [pos, el, az, dop] = leastSquarePos(satpos, obs, settings)
|
||||
% Function calculates the Least Square Solution.
|
||||
%
|
||||
% [pos, el, az, dop] = leastSquarePos(satpos, obs, settings);
|
||||
%
|
||||
% Inputs:
|
||||
% satpos - Satellites positions (in ECEF system: [X; Y; Z;] -
|
||||
% one column per satellite)
|
||||
% obs - Observations - the pseudorange measurements to each
|
||||
% satellite:
|
||||
% (e.g. [20000000 21000000 .... .... .... .... ....])
|
||||
% settings - receiver settings
|
||||
%
|
||||
% Outputs:
|
||||
% pos - receiver position and receiver clock error
|
||||
% (in ECEF system: [X, Y, Z, dt])
|
||||
% el - Satellites elevation angles (degrees)
|
||||
% az - Satellites azimuth angles (degrees)
|
||||
% dop - Dilutions Of Precision ([GDOP PDOP HDOP VDOP TDOP])
|
||||
|
||||
%--------------------------------------------------------------------------
|
||||
% SoftGNSS v3.0
|
||||
%--------------------------------------------------------------------------
|
||||
% Based on Kai Borre
|
||||
%
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: Kai Borre
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
%==========================================================================
|
||||
|
||||
%=== Initialization =======================================================
|
||||
nmbOfIterations = 7;
|
||||
|
||||
dtr = pi/180;
|
||||
pos = zeros(4, 1);
|
||||
X = satpos;
|
||||
nmbOfSatellites = size(satpos, 2);
|
||||
|
||||
A = zeros(nmbOfSatellites, 4);
|
||||
omc = zeros(nmbOfSatellites, 1);
|
||||
az = zeros(1, nmbOfSatellites);
|
||||
el = az;
|
||||
|
||||
%=== Iteratively find receiver position ===================================
|
||||
for iter = 1:nmbOfIterations
|
||||
|
||||
for i = 1:nmbOfSatellites
|
||||
if iter == 1
|
||||
%--- Initialize variables at the first iteration --------------
|
||||
Rot_X = X(:, i);
|
||||
trop = 2;
|
||||
else
|
||||
%--- Update equations -----------------------------------------
|
||||
rho2 = (X(1, i) - pos(1))^2 + (X(2, i) - pos(2))^2 + ...
|
||||
(X(3, i) - pos(3))^2;
|
||||
traveltime = sqrt(rho2) / settings.c ;
|
||||
|
||||
%--- Correct satellite position (do to earth rotation) --------
|
||||
Rot_X = e_r_corr(traveltime, X(:, i));
|
||||
|
||||
%--- Find the elevation angel of the satellite ----------------
|
||||
[az(i), el(i), dist] = topocent(pos(1:3, :), Rot_X - pos(1:3, :));
|
||||
|
||||
if (settings.useTropCorr == 1)
|
||||
%--- Calculate tropospheric correction --------------------
|
||||
trop = tropo(sin(el(i) * dtr), ...
|
||||
0.0, 1013.0, 293.0, 50.0, 0.0, 0.0, 0.0);
|
||||
else
|
||||
% Do not calculate or apply the tropospheric corrections
|
||||
trop = 0;
|
||||
end
|
||||
end % if iter == 1 ... ... else
|
||||
|
||||
%--- Apply the corrections ----------------------------------------
|
||||
omc(i) = (obs(i) - norm(Rot_X - pos(1:3), 'fro') - pos(4) - trop);
|
||||
|
||||
%--- Construct the A matrix ---------------------------------------
|
||||
A(i, :) = [ (-(Rot_X(1) - pos(1))) / obs(i) ...
|
||||
(-(Rot_X(2) - pos(2))) / obs(i) ...
|
||||
(-(Rot_X(3) - pos(3))) / obs(i) ...
|
||||
1 ];
|
||||
end % for i = 1:nmbOfSatellites
|
||||
|
||||
% These lines allow the code to exit gracefully in case of any errors
|
||||
if rank(A) ~= 4
|
||||
pos = zeros(1, 4);
|
||||
return
|
||||
end
|
||||
|
||||
%--- Find position update ---------------------------------------------
|
||||
x = A \ omc;
|
||||
|
||||
%--- Apply position update --------------------------------------------
|
||||
pos = pos + x;
|
||||
|
||||
end % for iter = 1:nmbOfIterations
|
||||
|
||||
pos = pos';
|
||||
|
||||
%=== Calculate Dilution Of Precision ======================================
|
||||
if nargout == 4
|
||||
%--- Initialize output ------------------------------------------------
|
||||
dop = zeros(1, 5);
|
||||
|
||||
%--- Calculate DOP ----------------------------------------------------
|
||||
Q = inv(A'*A);
|
||||
|
||||
dop(1) = sqrt(trace(Q)); % GDOP
|
||||
dop(2) = sqrt(Q(1,1) + Q(2,2) + Q(3,3)); % PDOP
|
||||
dop(3) = sqrt(Q(1,1) + Q(2,2)); % HDOP
|
||||
dop(4) = sqrt(Q(3,3)); % VDOP
|
||||
dop(5) = sqrt(Q(4,4)); % TDOP
|
||||
end
|
||||
129
utils/matlab/libs/geoFunctions/mat2dms.m
Normal file
129
utils/matlab/libs/geoFunctions/mat2dms.m
Normal file
@@ -0,0 +1,129 @@
|
||||
function dmsvec = mat2dms(d,m,s,n)
|
||||
% MAT2DMS Converts a [deg min sec] matrix to vector format
|
||||
%
|
||||
% dms = MAT2DMS(d,m,s) converts a deg:min:sec matrix into a vector
|
||||
% format. The vector format is dms = 100*deg + min + sec/100.
|
||||
% This allows d,m,s triple to be compressed into a single value,
|
||||
% which can then be employed similar to a degree or radian vector.
|
||||
% The inputs d, m and s must be of equal size. Minutes and
|
||||
% second must be between 0 and 60.
|
||||
%
|
||||
% dms = MAT2DMS(mat) assumes and input matrix of [d m s]. This is
|
||||
% useful only for single column vectors for d, m and s.
|
||||
%
|
||||
% dms = MAT2DMS(d,m) and dms = MAT2DMS([d m]) assume that seconds
|
||||
% are zero, s = 0.
|
||||
%
|
||||
% dms = MAT2DMS(d,m,s,n) uses n as the accuracy of the seconds
|
||||
% calculation. n = -2 uses accuracy in the hundredths position,
|
||||
% n = 0 uses accuracy in the units position. Default is n = -5.
|
||||
% For further discussion of the input n, see ROUNDN.
|
||||
%
|
||||
% See also DMS2MAT
|
||||
|
||||
% Written by: E. Byrns, E. Brown
|
||||
% Revision: 1.10 Date: 2002/03/20 21:25:51
|
||||
%
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: 1996-2002 Systems Planning and Analysis, Inc. and The MathWorks, Inc.
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
|
||||
if nargin == 0
|
||||
error('Incorrect number of arguments')
|
||||
|
||||
elseif nargin==1
|
||||
if size(d,2)== 3
|
||||
s = d(:,3); m = d(:,2); d = d(:,1);
|
||||
elseif size(d,2)== 2
|
||||
m = d(:,2); d = d(:,1); s = zeros(size(d));
|
||||
elseif size(d,2) == 0
|
||||
d = []; m = []; s = [];
|
||||
else
|
||||
error('Single input matrices must be n-by-2 or n-by-3.');
|
||||
end
|
||||
n = -5;
|
||||
|
||||
elseif nargin == 2
|
||||
s = zeros(size(d));
|
||||
n = -5;
|
||||
|
||||
elseif nargin == 3
|
||||
n = -5;
|
||||
end
|
||||
|
||||
% Test for empty arguments
|
||||
|
||||
if isempty(d) & isempty(m) & isempty(s); dmsvec = []; return; end
|
||||
|
||||
% Don't let seconds be rounded beyond the tens place.
|
||||
% If you did, then 55 seconds rounds to 100, which is not good.
|
||||
|
||||
if n == 2; n = 1; end
|
||||
|
||||
% Complex argument tests
|
||||
|
||||
if any([~isreal(d) ~isreal(m) ~isreal(s)])
|
||||
warning('Imaginary parts of complex ANGLE argument ignored')
|
||||
d = real(d); m = real(m); s = real(s);
|
||||
end
|
||||
|
||||
% Dimension and value tests
|
||||
|
||||
if ~isequal(size(d),size(m),size(s))
|
||||
error('Inconsistent dimensions for input arguments')
|
||||
elseif any(rem(d(~isnan(d)),1) ~= 0 | rem(m(~isnan(m)),1) ~= 0)
|
||||
error('Degrees and minutes must be integers')
|
||||
end
|
||||
|
||||
if any(abs(m) > 60) | any (abs(m) < 0) % Actually algorithm allows for
|
||||
error('Minutes must be >= 0 and < 60') % up to exactly 60 seconds or
|
||||
% 60 minutes, but the error message
|
||||
elseif any(abs(s) > 60) | any(abs(s) < 0) % doesn't reflect this so that angst
|
||||
error('Seconds must be >= 0 and < 60') % is minimized in the user docs
|
||||
end
|
||||
|
||||
% Ensure that only one negative sign is present and at the correct location
|
||||
|
||||
if any((s<0 & m<0) | (s<0 & d<0) | (m<0 & d<0) )
|
||||
error('Multiple negative entries in a DMS specification')
|
||||
elseif any((s<0 & (m~=0 | d~= 0)) | (m<0 & d~=0))
|
||||
error('Incorrect negative DMS specification')
|
||||
end
|
||||
|
||||
% Construct a sign vector which has +1 when
|
||||
% angle >= 0 and -1 when angle < 0. Note that the sign of the
|
||||
% angle is associated with the largest nonzero component of d:m:s
|
||||
|
||||
negvec = (d<0) | (m<0) | (s<0);
|
||||
signvec = ~negvec - negvec;
|
||||
|
||||
% Convert to all positive numbers. Allows for easier
|
||||
% adjusting at 60 seconds and 60 minutes
|
||||
|
||||
d = abs(d); m = abs(m); s = abs(s);
|
||||
|
||||
% Truncate seconds to a specified accuracy to eliminate round-off errors
|
||||
|
||||
[s,msg] = roundn(s,n);
|
||||
if ~isempty(msg); error(msg); end
|
||||
|
||||
% Adjust for 60 seconds or 60 minutes. If s > 60, this can only be
|
||||
% from round-off during roundn since s > 60 is already tested above.
|
||||
% This round-off effect has happened though.
|
||||
|
||||
indx = find(s >= 60);
|
||||
if ~isempty(indx); m(indx) = m(indx) + 1; s(indx) = 0; end
|
||||
|
||||
% The user can not put minutes > 60 as input. However, the line
|
||||
% above may create minutes > 60 (since the user can put in m == 60),
|
||||
% thus, the test below includes the greater than condition.
|
||||
|
||||
indx = find(m >= 60);
|
||||
if ~isempty(indx); d(indx) = d(indx) + 1; m(indx) = m(indx)-60; end
|
||||
|
||||
% Construct the dms vector format
|
||||
|
||||
dmsvec = signvec .* (100*d + m + s/100);
|
||||
51
utils/matlab/libs/geoFunctions/roundn.m
Normal file
51
utils/matlab/libs/geoFunctions/roundn.m
Normal file
@@ -0,0 +1,51 @@
|
||||
function [x,msg] = roundn(x,n)
|
||||
|
||||
% ROUNDN Rounds input data at specified power of 10
|
||||
%
|
||||
% y = ROUNDN(x) rounds the input data x to the nearest hundredth.
|
||||
%
|
||||
% y = ROUNDN(x,n) rounds the input data x at the specified power
|
||||
% of tens position. For example, n = -2 rounds the input data to
|
||||
% the 10E-2 (hundredths) position.
|
||||
%
|
||||
% [y,msg] = ROUNDN(...) returns the text of any error condition
|
||||
% encountered in the output variable msg.
|
||||
%
|
||||
% See also ROUND
|
||||
|
||||
% Written by: E. Byrns, E. Brown
|
||||
% Revision: 1.9 Date: 2002/03/20 21:26:19
|
||||
%
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: 1996-2002 Systems Planning and Analysis, Inc. and The MathWorks, Inc.
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
msg = []; % Initialize output
|
||||
|
||||
if nargin == 0
|
||||
error('Incorrect number of arguments')
|
||||
elseif nargin == 1
|
||||
n = -2;
|
||||
end
|
||||
|
||||
% Test for scalar n
|
||||
|
||||
if max(size(n)) ~= 1
|
||||
msg = 'Scalar accuracy required';
|
||||
if nargout < 2; error(msg); end
|
||||
return
|
||||
elseif ~isreal(n)
|
||||
warning('Imaginary part of complex N argument ignored')
|
||||
n = real(n);
|
||||
end
|
||||
|
||||
% Compute the exponential factors for rounding at specified
|
||||
% power of 10. Ensure that n is an integer.
|
||||
|
||||
factors = 10 ^ (fix(-n));
|
||||
|
||||
% Set the significant digits for the input data
|
||||
|
||||
x = round(x * factors) / factors;
|
||||
143
utils/matlab/libs/geoFunctions/satpos.m
Normal file
143
utils/matlab/libs/geoFunctions/satpos.m
Normal file
@@ -0,0 +1,143 @@
|
||||
function [satPositions, satClkCorr] = satpos(transmitTime, prnList, ...
|
||||
eph, settings)
|
||||
% SATPOS Computation of satellite coordinates X,Y,Z at TRANSMITTIME for
|
||||
% given ephemeris EPH. Coordinates are computed for each satellite in the
|
||||
% list PRNLIST.
|
||||
%[ satPositions, satClkCorr] = satpos(transmitTime, prnList, eph, settings);
|
||||
%
|
||||
% Inputs:
|
||||
% transmitTime - transmission time
|
||||
% prnList - list of PRN-s to be processed
|
||||
% eph - ephemerides of satellites
|
||||
% settings - receiver settings
|
||||
%
|
||||
% Outputs:
|
||||
% satPositions - position of satellites (in ECEF system [X; Y; Z;])
|
||||
% satClkCorr - correction of satellite clocks
|
||||
|
||||
%--------------------------------------------------------------------------
|
||||
% SoftGNSS v3.0
|
||||
%--------------------------------------------------------------------------
|
||||
% Based on Kai Borre 04-09-96
|
||||
% Updated by Darius Plausinaitis, Peter Rinder and Nicolaj Bertelsen
|
||||
%
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: Kai Borre
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
%% Initialize constants ===================================================
|
||||
numOfSatellites = size(prnList, 2);
|
||||
|
||||
% GPS constatns
|
||||
|
||||
gpsPi = 3.1415926535898; % Pi used in the GPS coordinate
|
||||
% system
|
||||
|
||||
%--- Constants for satellite position calculation -------------------------
|
||||
Omegae_dot = 7.2921151467e-5; % Earth rotation rate, [rad/s]
|
||||
GM = 3.986005e14; % Universal gravitational constant times
|
||||
% the mass of the Earth, [m^3/s^2]
|
||||
F = -4.442807633e-10; % Constant, [sec/(meter)^(1/2)]
|
||||
|
||||
%% Initialize results =====================================================
|
||||
satClkCorr = zeros(1, numOfSatellites);
|
||||
satPositions = zeros(3, numOfSatellites);
|
||||
|
||||
%% Process each satellite =================================================
|
||||
|
||||
for satNr = 1 : numOfSatellites
|
||||
|
||||
prn = prnList(satNr);
|
||||
|
||||
%% Find initial satellite clock correction --------------------------------
|
||||
|
||||
%--- Find time difference ---------------------------------------------
|
||||
dt = check_t(transmitTime - eph(prn).t_oc);
|
||||
|
||||
%--- Calculate clock correction ---------------------------------------
|
||||
satClkCorr(satNr) = (eph(prn).a_f2 * dt + eph(prn).a_f1) * dt + ...
|
||||
eph(prn).a_f0 - ...
|
||||
eph(prn).T_GD;
|
||||
|
||||
time = transmitTime - satClkCorr(satNr);
|
||||
|
||||
%% Find satellite's position ----------------------------------------------
|
||||
|
||||
%Restore semi-major axis
|
||||
a = eph(prn).sqrtA * eph(prn).sqrtA;
|
||||
|
||||
%Time correction
|
||||
tk = check_t(time - eph(prn).t_oe);
|
||||
|
||||
%Initial mean motion
|
||||
n0 = sqrt(GM / a^3);
|
||||
%Mean motion
|
||||
n = n0 + eph(prn).deltan;
|
||||
|
||||
%Mean anomaly
|
||||
M = eph(prn).M_0 + n * tk;
|
||||
%Reduce mean anomaly to between 0 and 360 deg
|
||||
M = rem(M + 2*gpsPi, 2*gpsPi);
|
||||
|
||||
%Initial guess of eccentric anomaly
|
||||
E = M;
|
||||
|
||||
%--- Iteratively compute eccentric anomaly ----------------------------
|
||||
for ii = 1:10
|
||||
E_old = E;
|
||||
E = M + eph(prn).e * sin(E);
|
||||
dE = rem(E - E_old, 2*gpsPi);
|
||||
|
||||
if abs(dE) < 1.e-12
|
||||
% Necessary precision is reached, exit from the loop
|
||||
break;
|
||||
end
|
||||
end
|
||||
|
||||
%Reduce eccentric anomaly to between 0 and 360 deg
|
||||
E = rem(E + 2*gpsPi, 2*gpsPi);
|
||||
|
||||
%Compute relativistic correction term
|
||||
dtr = F * eph(prn).e * eph(prn).sqrtA * sin(E);
|
||||
|
||||
%Calculate the true anomaly
|
||||
nu = atan2(sqrt(1 - eph(prn).e^2) * sin(E), cos(E)-eph(prn).e);
|
||||
|
||||
%Compute angle phi
|
||||
phi = nu + eph(prn).omega;
|
||||
%Reduce phi to between 0 and 360 deg
|
||||
phi = rem(phi, 2*gpsPi);
|
||||
|
||||
%Correct argument of latitude
|
||||
u = phi + ...
|
||||
eph(prn).C_uc * cos(2*phi) + ...
|
||||
eph(prn).C_us * sin(2*phi);
|
||||
%Correct radius
|
||||
r = a * (1 - eph(prn).e*cos(E)) + ...
|
||||
eph(prn).C_rc * cos(2*phi) + ...
|
||||
eph(prn).C_rs * sin(2*phi);
|
||||
%Correct inclination
|
||||
i = eph(prn).i_0 + eph(prn).iDot * tk + ...
|
||||
eph(prn).C_ic * cos(2*phi) + ...
|
||||
eph(prn).C_is * sin(2*phi);
|
||||
|
||||
%Compute the angle between the ascending node and the Greenwich meridian
|
||||
Omega = eph(prn).omega_0 + (eph(prn).omegaDot - Omegae_dot)*tk - ...
|
||||
Omegae_dot * eph(prn).t_oe;
|
||||
%Reduce to between 0 and 360 deg
|
||||
Omega = rem(Omega + 2*gpsPi, 2*gpsPi);
|
||||
|
||||
%--- Compute satellite coordinates ------------------------------------
|
||||
satPositions(1, satNr) = cos(u)*r * cos(Omega) - sin(u)*r * cos(i)*sin(Omega);
|
||||
satPositions(2, satNr) = cos(u)*r * sin(Omega) + sin(u)*r * cos(i)*cos(Omega);
|
||||
satPositions(3, satNr) = sin(u)*r * sin(i);
|
||||
|
||||
|
||||
%% Include relativistic correction in clock correction --------------------
|
||||
satClkCorr(satNr) = (eph(prn).a_f2 * dt + eph(prn).a_f1) * dt + ...
|
||||
eph(prn).a_f0 - ...
|
||||
eph(prn).T_GD + dtr;
|
||||
|
||||
end % for satNr = 1 : numOfSatellites
|
||||
110
utils/matlab/libs/geoFunctions/togeod.m
Normal file
110
utils/matlab/libs/geoFunctions/togeod.m
Normal file
@@ -0,0 +1,110 @@
|
||||
function [dphi, dlambda, h] = togeod(a, finv, X, Y, Z)
|
||||
% TOGEOD Subroutine to calculate geodetic coordinates latitude, longitude,
|
||||
% height given Cartesian coordinates X,Y,Z, and reference ellipsoid
|
||||
% values semi-major axis (a) and the inverse of flattening (finv).
|
||||
%
|
||||
% [dphi, dlambda, h] = togeod(a, finv, X, Y, Z);
|
||||
%
|
||||
% The units of linear parameters X,Y,Z,a must all agree (m,km,mi,ft,..etc)
|
||||
% The output units of angular quantities will be in decimal degrees
|
||||
% (15.5 degrees not 15 deg 30 min). The output units of h will be the
|
||||
% same as the units of X,Y,Z,a.
|
||||
%
|
||||
% Inputs:
|
||||
% a - semi-major axis of the reference ellipsoid
|
||||
% finv - inverse of flattening of the reference ellipsoid
|
||||
% X,Y,Z - Cartesian coordinates
|
||||
%
|
||||
% Outputs:
|
||||
% dphi - latitude
|
||||
% dlambda - longitude
|
||||
% h - height above reference ellipsoid
|
||||
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: 1987 C. Goad, 1996 Kai Borre
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
%==========================================================================
|
||||
|
||||
h = 0;
|
||||
tolsq = 1.e-10;
|
||||
maxit = 10;
|
||||
|
||||
% compute radians-to-degree factor
|
||||
rtd = 180/pi;
|
||||
|
||||
% compute square of eccentricity
|
||||
if finv < 1.e-20
|
||||
esq = 0;
|
||||
else
|
||||
esq = (2 - 1/finv) / finv;
|
||||
end
|
||||
|
||||
oneesq = 1 - esq;
|
||||
|
||||
% first guess
|
||||
% P is distance from spin axis
|
||||
P = sqrt(X^2+Y^2);
|
||||
% direct calculation of longitude
|
||||
|
||||
if P > 1.e-20
|
||||
dlambda = atan2(Y,X) * rtd;
|
||||
else
|
||||
dlambda = 0;
|
||||
end
|
||||
|
||||
if (dlambda < 0)
|
||||
dlambda = dlambda + 360;
|
||||
end
|
||||
|
||||
% r is distance from origin (0,0,0)
|
||||
r = sqrt(P^2 + Z^2);
|
||||
|
||||
if r > 1.e-20
|
||||
sinphi = Z/r;
|
||||
else
|
||||
sinphi = 0;
|
||||
end
|
||||
|
||||
dphi = asin(sinphi);
|
||||
|
||||
% initial value of height = distance from origin minus
|
||||
% approximate distance from origin to surface of ellipsoid
|
||||
if r < 1.e-20
|
||||
h = 0;
|
||||
return
|
||||
end
|
||||
|
||||
h = r - a*(1-sinphi*sinphi/finv);
|
||||
|
||||
% iterate
|
||||
for i = 1:maxit
|
||||
sinphi = sin(dphi);
|
||||
cosphi = cos(dphi);
|
||||
|
||||
% compute radius of curvature in prime vertical direction
|
||||
N_phi = a/sqrt(1-esq*sinphi*sinphi);
|
||||
|
||||
% compute residuals in P and Z
|
||||
dP = P - (N_phi + h) * cosphi;
|
||||
dZ = Z - (N_phi*oneesq + h) * sinphi;
|
||||
|
||||
% update height and latitude
|
||||
h = h + (sinphi*dZ + cosphi*dP);
|
||||
dphi = dphi + (cosphi*dZ - sinphi*dP)/(N_phi + h);
|
||||
|
||||
% test for convergence
|
||||
if (dP*dP + dZ*dZ < tolsq)
|
||||
break;
|
||||
end
|
||||
|
||||
% Not Converged--Warn user
|
||||
if i == maxit
|
||||
fprintf([' Problem in TOGEOD, did not converge in %2.0f',...
|
||||
' iterations\n'], i);
|
||||
end
|
||||
end % for i = 1:maxit
|
||||
|
||||
dphi = dphi * rtd;
|
||||
%%%%%%%% end togeod.m %%%%%%%%%%%%%%%%%%%%%%
|
||||
58
utils/matlab/libs/geoFunctions/topocent.m
Normal file
58
utils/matlab/libs/geoFunctions/topocent.m
Normal file
@@ -0,0 +1,58 @@
|
||||
function [Az, El, D] = topocent(X, dx)
|
||||
% TOPOCENT Transformation of vector dx into topocentric coordinate
|
||||
% system with origin at X.
|
||||
% Both parameters are 3 by 1 vectors.
|
||||
%
|
||||
% [Az, El, D] = topocent(X, dx);
|
||||
%
|
||||
% Inputs:
|
||||
% X - vector origin coordinates (in ECEF system [X; Y; Z;])
|
||||
% dx - vector ([dX; dY; dZ;]).
|
||||
%
|
||||
% Outputs:
|
||||
% D - vector length. Units like units of the input
|
||||
% Az - azimuth from north positive clockwise, degrees
|
||||
% El - elevation angle, degrees
|
||||
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: Kai Borre 11-24-96
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
%==========================================================================
|
||||
|
||||
dtr = pi/180;
|
||||
|
||||
[phi, lambda, h] = togeod(6378137, 298.257223563, X(1), X(2), X(3));
|
||||
|
||||
cl = cos(lambda * dtr);
|
||||
sl = sin(lambda * dtr);
|
||||
cb = cos(phi * dtr);
|
||||
sb = sin(phi * dtr);
|
||||
|
||||
F = [-sl -sb*cl cb*cl;
|
||||
cl -sb*sl cb*sl;
|
||||
0 cb sb];
|
||||
|
||||
local_vector = F' * dx;
|
||||
E = local_vector(1);
|
||||
N = local_vector(2);
|
||||
U = local_vector(3);
|
||||
|
||||
hor_dis = sqrt(E^2 + N^2);
|
||||
|
||||
if hor_dis < 1.e-20
|
||||
Az = 0;
|
||||
El = 90;
|
||||
else
|
||||
Az = atan2(E, N)/dtr;
|
||||
El = atan2(U, hor_dis)/dtr;
|
||||
end
|
||||
|
||||
if Az < 0
|
||||
Az = Az + 360;
|
||||
end
|
||||
|
||||
D = sqrt(dx(1)^2 + dx(2)^2 + dx(3)^2);
|
||||
%%%%%%%%% end topocent.m %%%%%%%%%
|
||||
100
utils/matlab/libs/geoFunctions/tropo.m
Normal file
100
utils/matlab/libs/geoFunctions/tropo.m
Normal file
@@ -0,0 +1,100 @@
|
||||
function ddr = tropo(sinel, hsta, p, tkel, hum, hp, htkel, hhum)
|
||||
% TROPO Calculation of tropospheric correction.
|
||||
% The range correction ddr in m is to be subtracted from
|
||||
% pseudo-ranges and carrier phases
|
||||
%
|
||||
% ddr = tropo(sinel, hsta, p, tkel, hum, hp, htkel, hhum);
|
||||
%
|
||||
% Inputs:
|
||||
% sinel - sin of elevation angle of satellite
|
||||
% hsta - height of station in km
|
||||
% p - atmospheric pressure in mb at height hp
|
||||
% tkel - surface temperature in degrees Kelvin at height htkel
|
||||
% hum - humidity in % at height hhum
|
||||
% hp - height of pressure measurement in km
|
||||
% htkel - height of temperature measurement in km
|
||||
% hhum - height of humidity measurement in km
|
||||
%
|
||||
% Outputs:
|
||||
% ddr - range correction (meters)
|
||||
%
|
||||
% Reference
|
||||
% Goad, C.C. & Goodman, L. (1974) A Modified Tropospheric
|
||||
% Refraction Correction Model. Paper presented at the
|
||||
% American Geophysical Union Annual Fall Meeting, San
|
||||
% Francisco, December 12-17
|
||||
|
||||
% A Matlab reimplementation of a C code from driver.
|
||||
%
|
||||
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
||||
% This file is part of GNSS-SDR.
|
||||
%
|
||||
% SPDX-FileCopyrightText: Kai Borre 06-28-95
|
||||
% SPDX-License-Identifier: GPL-3.0-or-later
|
||||
%==========================================================================
|
||||
|
||||
a_e = 6378.137; % semi-major axis of earth ellipsoid
|
||||
b0 = 7.839257e-5;
|
||||
tlapse = -6.5;
|
||||
tkhum = tkel + tlapse*(hhum-htkel);
|
||||
atkel = 7.5*(tkhum-273.15) / (237.3+tkhum-273.15);
|
||||
e0 = 0.0611 * hum * 10^atkel;
|
||||
tksea = tkel - tlapse*htkel;
|
||||
em = -978.77 / (2.8704e6*tlapse*1.0e-5);
|
||||
tkelh = tksea + tlapse*hhum;
|
||||
e0sea = e0 * (tksea/tkelh)^(4*em);
|
||||
tkelp = tksea + tlapse*hp;
|
||||
psea = p * (tksea/tkelp)^em;
|
||||
|
||||
if sinel < 0
|
||||
sinel = 0;
|
||||
end
|
||||
|
||||
tropo = 0;
|
||||
done = 'FALSE';
|
||||
refsea = 77.624e-6 / tksea;
|
||||
htop = 1.1385e-5 / refsea;
|
||||
refsea = refsea * psea;
|
||||
ref = refsea * ((htop-hsta)/htop)^4;
|
||||
|
||||
while 1
|
||||
rtop = (a_e+htop)^2 - (a_e+hsta)^2*(1-sinel^2);
|
||||
|
||||
% check to see if geometry is crazy
|
||||
if rtop < 0
|
||||
rtop = 0;
|
||||
end
|
||||
|
||||
rtop = sqrt(rtop) - (a_e+hsta)*sinel;
|
||||
a = -sinel/(htop-hsta);
|
||||
b = -b0*(1-sinel^2) / (htop-hsta);
|
||||
rn = zeros(8,1);
|
||||
|
||||
for i = 1:8
|
||||
rn(i) = rtop^(i+1);
|
||||
end
|
||||
|
||||
alpha = [2*a, 2*a^2+4*b/3, a*(a^2+3*b),...
|
||||
a^4/5+2.4*a^2*b+1.2*b^2, 2*a*b*(a^2+3*b)/3,...
|
||||
b^2*(6*a^2+4*b)*1.428571e-1, 0, 0];
|
||||
|
||||
if b^2 > 1.0e-35
|
||||
alpha(7) = a*b^3/2;
|
||||
alpha(8) = b^4/9;
|
||||
end
|
||||
|
||||
dr = rtop;
|
||||
dr = dr + alpha*rn;
|
||||
tropo = tropo + dr*ref*1000;
|
||||
|
||||
if done == 'TRUE '
|
||||
ddr = tropo;
|
||||
break;
|
||||
end
|
||||
|
||||
done = 'TRUE ';
|
||||
refsea = (371900.0e-6/tksea-12.92e-6)/tksea;
|
||||
htop = 1.1385e-5 * (1255/tksea+0.05)/refsea;
|
||||
ref = refsea * e0sea * ((htop-hsta)/htop)^4;
|
||||
end;
|
||||
%%%%%%%%% end tropo.m %%%%%%%%%%%%%%%%%%%
|
||||
Reference in New Issue
Block a user