1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-10-30 14:46:23 +00:00
gnss-sdr/utils/matlab/libs/geoFunctions/tropo.m

101 lines
2.8 KiB
Matlab

function ddr = tropo(sinel, hsta, p, tkel, hum, hp, htkel, hhum)
% TROPO Calculation of tropospheric correction.
% The range correction ddr in m is to be subtracted from
% pseudo-ranges and carrier phases
%
% ddr = tropo(sinel, hsta, p, tkel, hum, hp, htkel, hhum);
%
% Inputs:
% sinel - sin of elevation angle of satellite
% hsta - height of station in km
% p - atmospheric pressure in mb at height hp
% tkel - surface temperature in degrees Kelvin at height htkel
% hum - humidity in % at height hhum
% hp - height of pressure measurement in km
% htkel - height of temperature measurement in km
% hhum - height of humidity measurement in km
%
% Outputs:
% ddr - range correction (meters)
%
% Reference
% Goad, C.C. & Goodman, L. (1974) A Modified Tropospheric
% Refraction Correction Model. Paper presented at the
% American Geophysical Union Annual Fall Meeting, San
% Francisco, December 12-17
% A Matlab reimplementation of a C code from driver.
%
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
% This file is part of GNSS-SDR.
%
% SPDX-FileCopyrightText: Kai Borre 06-28-95
% SPDX-License-Identifier: GPL-3.0-or-later
%==========================================================================
a_e = 6378.137; % semi-major axis of earth ellipsoid
b0 = 7.839257e-5;
tlapse = -6.5;
tkhum = tkel + tlapse*(hhum-htkel);
atkel = 7.5*(tkhum-273.15) / (237.3+tkhum-273.15);
e0 = 0.0611 * hum * 10^atkel;
tksea = tkel - tlapse*htkel;
em = -978.77 / (2.8704e6*tlapse*1.0e-5);
tkelh = tksea + tlapse*hhum;
e0sea = e0 * (tksea/tkelh)^(4*em);
tkelp = tksea + tlapse*hp;
psea = p * (tksea/tkelp)^em;
if sinel < 0
sinel = 0;
end
tropo = 0;
done = 'FALSE';
refsea = 77.624e-6 / tksea;
htop = 1.1385e-5 / refsea;
refsea = refsea * psea;
ref = refsea * ((htop-hsta)/htop)^4;
while 1
rtop = (a_e+htop)^2 - (a_e+hsta)^2*(1-sinel^2);
% check to see if geometry is crazy
if rtop < 0
rtop = 0;
end
rtop = sqrt(rtop) - (a_e+hsta)*sinel;
a = -sinel/(htop-hsta);
b = -b0*(1-sinel^2) / (htop-hsta);
rn = zeros(8,1);
for i = 1:8
rn(i) = rtop^(i+1);
end
alpha = [2*a, 2*a^2+4*b/3, a*(a^2+3*b),...
a^4/5+2.4*a^2*b+1.2*b^2, 2*a*b*(a^2+3*b)/3,...
b^2*(6*a^2+4*b)*1.428571e-1, 0, 0];
if b^2 > 1.0e-35
alpha(7) = a*b^3/2;
alpha(8) = b^4/9;
end
dr = rtop;
dr = dr + alpha*rn;
tropo = tropo + dr*ref*1000;
if done == 'TRUE '
ddr = tropo;
break;
end
done = 'TRUE ';
refsea = (371900.0e-6/tksea-12.92e-6)/tksea;
htop = 1.1385e-5 * (1255/tksea+0.05)/refsea;
ref = refsea * e0sea * ((htop-hsta)/htop)^4;
end;
%%%%%%%%% end tropo.m %%%%%%%%%%%%%%%%%%%