mirror of
				https://github.com/gnss-sdr/gnss-sdr
				synced 2025-10-31 15:23:04 +00:00 
			
		
		
		
	coherent 2or3 ms adding noncoherently I+Q acquisition,
dll+pll tracking still diverges
This commit is contained in:
		| @@ -31,7 +31,10 @@ SignalSource.implementation=File_Signal_Source | ||||
| ;#filename: path to file with the captured GNSS signal samples to be processed | ||||
| ;SignalSource.filename=/home/marc/E5a_acquisitions/signal_source_5X_primary.dat | ||||
| ;SignalSource.filename=/home/marc/E5a_acquisitions/galileo_E5_8M_r2_upsampled_12.dat | ||||
| SignalSource.filename=/home/marc/E5a_acquisitions/Tiered_sim_4sat_stup4_2s_up.dat | ||||
| ;SignalSource.filename=/home/marc/E5a_acquisitions/Tiered_sim_4sat_stup4_2s_up.dat | ||||
| SignalSource.filename=/home/marc/E5a_acquisitions/signal_source_sec21M_long.dat | ||||
|  | ||||
|  | ||||
|  | ||||
| ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. | ||||
| SignalSource.item_type=gr_complex | ||||
| @@ -288,7 +291,7 @@ Acquisition.if=0 | ||||
| ;#sampled_ms: Signal block duration for the acquisition signal detection [ms] | ||||
| Acquisition.coherent_integration_time_ms=2 | ||||
| ;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition] | ||||
| Acquisition.implementation=Galileo_E5ax_2ms_Pcps_Acquisition | ||||
| Acquisition.implementation=Galileo_E5a_3ms_Noncoherent_IQ_Acquisition | ||||
| ;#threshold: Acquisition threshold. It will be ignored if pfa is defined. | ||||
| Acquisition.threshold=0.0005 | ||||
| ;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition] | ||||
|   | ||||
| @@ -31,6 +31,7 @@ if(OPENCL_FOUND) | ||||
|          galileo_e5a_pcps_acquisition.cc | ||||
|          galileo_e5a_pilot_3ms_acquisition.cc | ||||
|          galileo_e5ax_2ms_pcps_acquisition.cc | ||||
|          galileo_e5a_3ms_noncoherent_iq_acquisition.cc | ||||
|     ) | ||||
| else(OPENCL_FOUND) | ||||
|     set(ACQ_ADAPTER_SOURCES | ||||
| @@ -46,6 +47,7 @@ else(OPENCL_FOUND) | ||||
|          galileo_e5a_pcps_acquisition.cc | ||||
|          galileo_e5a_pilot_3ms_acquisition.cc | ||||
|          galileo_e5ax_2ms_pcps_acquisition.cc | ||||
|          galileo_e5a_3ms_noncoherent_iq_acquisition.cc | ||||
|     ) | ||||
| endif(OPENCL_FOUND) | ||||
|  | ||||
|   | ||||
| @@ -0,0 +1,316 @@ | ||||
| /*! | ||||
|  * \file galileo_e5a_3ms_noncoherent_iq_acquisition.cc | ||||
|  * \brief Adapts a PCPS acquisition block to an AcquisitionInterface for | ||||
|  *  Galileo E5a data and pilot Signals | ||||
|  * \author Marc Sales, 2014. marcsales92(at)gmail.com | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2014  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
|  * | ||||
|  * This file is part of GNSS-SDR. | ||||
|  * | ||||
|  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
|  * it under the terms of the GNU General Public License as published by | ||||
|  * the Free Software Foundation, either version 3 of the License, or | ||||
|  * at your option) any later version. | ||||
|  * | ||||
|  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  * GNU General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU General Public License | ||||
|  * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>. | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #include "galileo_e5a_3ms_noncoherent_iq_acquisition.h" | ||||
| #include <iostream> | ||||
| #include <boost/lexical_cast.hpp> | ||||
| #include <stdexcept> | ||||
| #include <boost/math/distributions/exponential.hpp> | ||||
| #include <glog/logging.h> | ||||
| #include <gnuradio/msg_queue.h> | ||||
| #include "galileo_e5_signal_processing.h" | ||||
| #include "Galileo_E5a.h" | ||||
| #include "configuration_interface.h" | ||||
| //#include  <tgmath.h> | ||||
|  | ||||
| using google::LogMessage; | ||||
|  | ||||
| GalileoE5a3msNoncoherentIQAcquisition::GalileoE5a3msNoncoherentIQAcquisition( | ||||
|         ConfigurationInterface* configuration, std::string role, | ||||
|         unsigned int in_streams, unsigned int out_streams, | ||||
|         boost::shared_ptr<gr::msg_queue> queue) : | ||||
|     role_(role), in_streams_(in_streams), out_streams_(out_streams), queue_(queue) | ||||
| { | ||||
|     configuration_ = configuration; | ||||
|     std::string default_item_type = "gr_complex"; | ||||
|     std::string default_dump_filename = "../data/acquisition.dat"; | ||||
|  | ||||
|     DLOG(INFO) << "role " << role; | ||||
|  | ||||
|     item_type_ = configuration_->property(role + ".item_type", | ||||
| 	        default_item_type); | ||||
|  | ||||
|     fs_in_ = configuration_->property("GNSS-SDR.internal_fs_hz", 21000000); | ||||
|     if_ = configuration_->property(role + ".ifreq", 0); | ||||
|     dump_ = configuration_->property(role + ".dump", false); | ||||
|     shift_resolution_ = configuration_->property(role + ".doppler_max", 15); | ||||
|     sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 3); | ||||
|     if (sampled_ms_ < 2) | ||||
| 	{ | ||||
| 	    sampled_ms_=2; | ||||
| 	    DLOG(INFO) << "Coherent integration time should be 2 or 3 ms. Changing to 2ms "; | ||||
| 	    std::cout<<"Too low coherent integration time. Changing to 2ms" << std::endl; | ||||
| 	} | ||||
|     else if (sampled_ms_ > 3) | ||||
| 	{ | ||||
| 	    sampled_ms_=3; | ||||
| 	    DLOG(INFO) << "Coherent integration time should be 2 or 3 ms. Changing to 3ms "; | ||||
| 	    std::cout<<"Too low coherent integration time. Changing to 3ms" << std::endl; | ||||
| 	} | ||||
|     //bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); | ||||
|     max_dwells_ = configuration_->property(role + ".max_dwells", 1); | ||||
|  | ||||
|     dump_filename_ = configuration_->property(role + ".dump_filename", | ||||
|             default_dump_filename); | ||||
|  | ||||
|     //--- Find number of samples per spreading code (1ms)------------------------- | ||||
|     code_length_ = round(fs_in_/ Galileo_E5a_CODE_CHIP_RATE_HZ*Galileo_E5a_CODE_LENGTH_CHIPS); | ||||
|  | ||||
|     // WARNING: In presence of secondary codes, 2ms must be correlated with 1ms | ||||
|     // of primary code and 1ms of padded zeros. | ||||
|     vector_length_=code_length_ * sampled_ms_; | ||||
| //    vector_length_=15*code_length_; | ||||
|  | ||||
|     //std::cout << sampled_ms_ << " sampledms" << code_length_ << " cdelength" << std::endl; | ||||
|  | ||||
|     //if (posix_memalign((void**)&(code_), 16,vector_length_ * sizeof(gr_complex)) == 0){}; | ||||
|  | ||||
|     codeI_= new gr_complex[vector_length_]; | ||||
|     codeQ_= new gr_complex[vector_length_]; | ||||
|  | ||||
|     if (item_type_.compare("gr_complex") == 0) | ||||
|         { | ||||
|             item_size_ = sizeof(gr_complex); | ||||
|             acquisition_cc_ = galileo_e5a_3ms_noncoherentIQ_make_acquisition_cc(sampled_ms_, max_dwells_, | ||||
|                     shift_resolution_, if_, fs_in_, code_length_, code_length_, | ||||
|                     bit_transition_flag_, queue_, dump_, dump_filename_); | ||||
|  | ||||
| //            stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); | ||||
| // | ||||
| //            DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() | ||||
| //                    << ")"; | ||||
| //            DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() | ||||
| //                    << ")"; | ||||
|         } | ||||
|         else | ||||
|         { | ||||
|             LOG(WARNING) << item_type_ | ||||
|                     << " unknown acquisition item type"; | ||||
|         } | ||||
|  | ||||
| } | ||||
|  | ||||
| GalileoE5a3msNoncoherentIQAcquisition::~GalileoE5a3msNoncoherentIQAcquisition() | ||||
| { | ||||
| 	delete[] codeI_; | ||||
| 	delete[] codeQ_; | ||||
| } | ||||
|  | ||||
| void GalileoE5a3msNoncoherentIQAcquisition::set_channel(unsigned int channel) | ||||
| { | ||||
|     channel_ = channel; | ||||
|     if (item_type_.compare("gr_complex") == 0) | ||||
|         { | ||||
|             acquisition_cc_->set_channel(channel_); | ||||
|         } | ||||
| } | ||||
|  | ||||
| void GalileoE5a3msNoncoherentIQAcquisition::set_threshold(float threshold) | ||||
| { | ||||
|  | ||||
| 	float pfa = configuration_->property(role_+ boost::lexical_cast<std::string>(channel_) + ".pfa", 0.0); | ||||
|  | ||||
| 	if(pfa==0.0) pfa = configuration_->property(role_+".pfa", 0.0); | ||||
|  | ||||
| 	if(pfa==0.0) | ||||
|         { | ||||
|             threshold_ = threshold; | ||||
|         } | ||||
| 	else | ||||
|         { | ||||
|             threshold_ = calculate_threshold(pfa); | ||||
|         } | ||||
|  | ||||
| 	DLOG(INFO) <<"Channel "<<channel_<<" Threshold = " << threshold_; | ||||
|  | ||||
| 	if (item_type_.compare("gr_complex") == 0) | ||||
|         { | ||||
|             acquisition_cc_->set_threshold(threshold_); | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| void GalileoE5a3msNoncoherentIQAcquisition::set_doppler_max(unsigned int doppler_max) | ||||
| { | ||||
|     doppler_max_ = doppler_max; | ||||
|  | ||||
|     if (item_type_.compare("gr_complex") == 0) | ||||
|         { | ||||
|             acquisition_cc_->set_doppler_max(doppler_max_); | ||||
|         } | ||||
| } | ||||
|  | ||||
| void GalileoE5a3msNoncoherentIQAcquisition::set_doppler_step(unsigned int doppler_step) | ||||
| { | ||||
|     doppler_step_ = doppler_step; | ||||
|     if (item_type_.compare("gr_complex") == 0) | ||||
|         { | ||||
|             acquisition_cc_->set_doppler_step(doppler_step_); | ||||
|         } | ||||
| } | ||||
|  | ||||
| void GalileoE5a3msNoncoherentIQAcquisition::set_channel_queue( | ||||
|         concurrent_queue<int> *channel_internal_queue) | ||||
| { | ||||
|     channel_internal_queue_ = channel_internal_queue; | ||||
|     if (item_type_.compare("gr_complex") == 0) | ||||
|         { | ||||
|             acquisition_cc_->set_channel_queue(channel_internal_queue_); | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| void GalileoE5a3msNoncoherentIQAcquisition::set_gnss_synchro( | ||||
|         Gnss_Synchro* gnss_synchro) | ||||
| { | ||||
|     gnss_synchro_ = gnss_synchro; | ||||
|     if (item_type_.compare("gr_complex") == 0) | ||||
|         { | ||||
|             acquisition_cc_->set_gnss_synchro(gnss_synchro_); | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| signed int GalileoE5a3msNoncoherentIQAcquisition::mag() | ||||
| { | ||||
|     if (item_type_.compare("gr_complex") == 0) | ||||
|         { | ||||
|             return acquisition_cc_->mag(); | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             return 0; | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| void GalileoE5a3msNoncoherentIQAcquisition::init() | ||||
| { | ||||
|     acquisition_cc_->init(); | ||||
|     set_local_code(); | ||||
| } | ||||
|  | ||||
| void GalileoE5a3msNoncoherentIQAcquisition::set_local_code() | ||||
| { | ||||
| 	if (item_type_.compare("gr_complex")==0) | ||||
| 	{ | ||||
|  | ||||
| 		std::complex<float>* codeI = new std::complex<float>[code_length_]; | ||||
| 		std::complex<float>* codeQ = new std::complex<float>[code_length_]; | ||||
|  | ||||
| 		std::cout << "ADAPTER E5a 3ms noncoherentIQ. SIGNAL = " << gnss_synchro_->Signal << " PRN = " << gnss_synchro_->PRN << std::endl; | ||||
|  | ||||
| 		char a[3]; | ||||
| 		strcpy(a,"5I"); | ||||
| 		galileo_e5_a_code_gen_complex_sampled(codeI, a, | ||||
| 		    gnss_synchro_->PRN, fs_in_, 0, false); | ||||
|  | ||||
| 		strcpy(a,"5Q"); | ||||
| 		galileo_e5_a_code_gen_complex_sampled(codeQ, a, | ||||
| 		    gnss_synchro_->PRN, fs_in_, 0, false); | ||||
|  | ||||
| 		// WARNING: 3ms are coherently integrated. Secondary sequence (1,1,1) | ||||
| 		// is generated, and modulated in the 'block'. | ||||
| 		for (unsigned int i = 0; i < sampled_ms_; i++) | ||||
| 		    { | ||||
| 		        memcpy(&(codeI_[i*code_length_]), codeI, | ||||
| 		             sizeof(gr_complex)*code_length_); | ||||
|  | ||||
| 		        memcpy(&(codeQ_[i*code_length_]), codeQ, | ||||
| 		             sizeof(gr_complex)*code_length_); | ||||
| 		    } | ||||
|  | ||||
|  | ||||
| 		acquisition_cc_->set_local_code(codeI_,codeQ_); | ||||
| 		delete[] codeI; | ||||
| 		delete[] codeQ; | ||||
|  | ||||
| 	} | ||||
|  | ||||
| } | ||||
|  | ||||
| void GalileoE5a3msNoncoherentIQAcquisition::reset() | ||||
| { | ||||
|     if (item_type_.compare("gr_complex") == 0) | ||||
|         { | ||||
|             acquisition_cc_->set_active(true); | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| float GalileoE5a3msNoncoherentIQAcquisition::calculate_threshold(float pfa) | ||||
| { | ||||
|     //Calculate the threshold | ||||
|     unsigned int frequency_bins = 0; | ||||
|     for (int doppler = (int)(-doppler_max_); doppler <= (int)doppler_max_; doppler += doppler_step_) | ||||
|         { | ||||
|             frequency_bins++; | ||||
|         } | ||||
|     DLOG(INFO) << "Channel " << channel_<< "  Pfa = " << pfa; | ||||
|     unsigned int ncells = vector_length_*frequency_bins; | ||||
|     double exponent = 1/(double)ncells; | ||||
|     double val = pow(1.0 - pfa, exponent); | ||||
|     double lambda = double(vector_length_); | ||||
|     boost::math::exponential_distribution<double> mydist (lambda); | ||||
|     float threshold = (float)quantile(mydist,val); | ||||
|  | ||||
|     return threshold; | ||||
| } | ||||
|  | ||||
|  | ||||
| void GalileoE5a3msNoncoherentIQAcquisition::connect(gr::top_block_sptr top_block) | ||||
| { | ||||
| //    if (item_type_.compare("gr_complex") == 0) | ||||
| //        { | ||||
| //            top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0); | ||||
| //        } | ||||
| } | ||||
|  | ||||
|  | ||||
| void GalileoE5a3msNoncoherentIQAcquisition::disconnect(gr::top_block_sptr top_block) | ||||
| { | ||||
| //    if (item_type_.compare("gr_complex") == 0) | ||||
| //        { | ||||
| //            top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0); | ||||
| //        } | ||||
| } | ||||
|  | ||||
| gr::basic_block_sptr GalileoE5a3msNoncoherentIQAcquisition::get_left_block() | ||||
| { | ||||
|     return acquisition_cc_; | ||||
|     //return stream_to_vector_; | ||||
| } | ||||
|  | ||||
|  | ||||
| gr::basic_block_sptr GalileoE5a3msNoncoherentIQAcquisition::get_right_block() | ||||
| { | ||||
|     return acquisition_cc_; | ||||
| } | ||||
| @@ -0,0 +1,157 @@ | ||||
| /*! | ||||
|  * \file galileo_e5a_3ms_noncoherent_iq_acquisition.h | ||||
|  * \brief Adapts a PCPS acquisition block to an AcquisitionInterface for | ||||
|  *  Galileo E5a data and pilot Signals | ||||
|  * \author Marc Sales, 2014. marcsales92(at)gmail.com | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2014  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
|  * | ||||
|  * This file is part of GNSS-SDR. | ||||
|  * | ||||
|  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
|  * it under the terms of the GNU General Public License as published by | ||||
|  * the Free Software Foundation, either version 3 of the License, or | ||||
|  * at your option) any later version. | ||||
|  * | ||||
|  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  * GNU General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU General Public License | ||||
|  * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>. | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #ifndef GALILEO_E5A_3MS_NONCOHERENT_IQ_ACQUISITION_H_ | ||||
| #define GALILEO_E5A_3MS_NONCOHERENT_IQ_ACQUISITION_H_ | ||||
|  | ||||
| #include <string> | ||||
| #include <gnuradio/msg_queue.h> | ||||
| #include <gnuradio/blocks/stream_to_vector.h> | ||||
| #include "gnss_synchro.h" | ||||
| #include "acquisition_interface.h" | ||||
| #include "galileo_e5a_3ms_noncoherent_iq_acquisition_cc.h" | ||||
|  | ||||
| class ConfigurationInterface; | ||||
|  | ||||
| class GalileoE5a3msNoncoherentIQAcquisition: public AcquisitionInterface | ||||
| { | ||||
| public: | ||||
|     GalileoE5a3msNoncoherentIQAcquisition(ConfigurationInterface* configuration, | ||||
|             std::string role, unsigned int in_streams, | ||||
|             unsigned int out_streams, boost::shared_ptr<gr::msg_queue> queue); | ||||
|  | ||||
| 	virtual ~GalileoE5a3msNoncoherentIQAcquisition(); | ||||
|  | ||||
| 	std::string role() | ||||
| 	    { | ||||
| 	        return role_; | ||||
| 	    } | ||||
| 	/*! | ||||
| 	 * \brief Returns "Galileo_E5a_3ms_Noncoherent_IQ_Acquisition" | ||||
| 	 */ | ||||
| 	 std::string implementation() | ||||
| 	    { | ||||
| 	        return "Galileo_E5a_3ms_Noncoherent_IQ_Acquisition"; | ||||
| 	    } | ||||
| 	 size_t item_size() | ||||
| 	    { | ||||
| 	        return item_size_; | ||||
| 	    } | ||||
|  | ||||
| 	 void connect(gr::top_block_sptr top_block); | ||||
| 	 void disconnect(gr::top_block_sptr top_block); | ||||
| 	 gr::basic_block_sptr get_left_block(); | ||||
| 	 gr::basic_block_sptr get_right_block(); | ||||
|  | ||||
|  | ||||
| 	 /*! | ||||
| 	  * \brief Set acquisition/tracking common Gnss_Synchro object pointer | ||||
| 	  * to efficiently exchange synchronization data between acquisition and | ||||
| 	  *  tracking blocks | ||||
| 	  */ | ||||
| 	 void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro); | ||||
|  | ||||
| 	 /*! | ||||
| 	  * \brief Set acquisition channel unique ID | ||||
| 	  */ | ||||
| 	 void set_channel(unsigned int channel); | ||||
|  | ||||
| 	 /*! | ||||
| 	  * \brief Set statistics threshold of PCPS algorithm | ||||
| 	  */ | ||||
| 	 void set_threshold(float threshold); | ||||
|  | ||||
| 	 /*! | ||||
| 	  * \brief Set maximum Doppler off grid search | ||||
| 	  */ | ||||
| 	 void set_doppler_max(unsigned int doppler_max); | ||||
|  | ||||
| 	 /*! | ||||
| 	  * \brief Set Doppler steps for the grid search | ||||
| 	  */ | ||||
| 	 void set_doppler_step(unsigned int doppler_step); | ||||
|  | ||||
| 	 /*! | ||||
| 	  * \brief Set tracking channel internal queue | ||||
| 	  */ | ||||
| 	 void set_channel_queue(concurrent_queue<int> *channel_internal_queue); | ||||
|  | ||||
| 	 /*! | ||||
| 	  * \brief Initializes acquisition algorithm. | ||||
| 	  */ | ||||
| 	 void init(); | ||||
|  | ||||
| 	 /*! | ||||
| 	  * \brief Sets local Galileo E5a code for PCPS acquisition algorithm. | ||||
| 	  */ | ||||
| 	 void set_local_code(); | ||||
|  | ||||
| 	 /*! | ||||
| 	  * \brief Returns the maximum peak of grid search | ||||
| 	  */ | ||||
| 	 signed int mag(); | ||||
|  | ||||
| 	 /*! | ||||
| 	  * \brief Restart acquisition algorithm | ||||
| 	  */ | ||||
| 	 void reset(); | ||||
|  | ||||
| private: | ||||
| 	 ConfigurationInterface* configuration_; | ||||
| 	 galileo_e5a_3ms_noncoherentIQ_acquisition_cc_sptr acquisition_cc_; | ||||
| 	 gr::blocks::stream_to_vector::sptr stream_to_vector_; | ||||
| 	 size_t item_size_; | ||||
| 	 std::string item_type_; | ||||
| 	 unsigned int vector_length_; | ||||
| 	 unsigned int code_length_; | ||||
| 	 bool bit_transition_flag_; | ||||
| 	 unsigned int channel_; | ||||
| 	 float threshold_; | ||||
| 	 unsigned int doppler_max_; | ||||
| 	 unsigned int doppler_step_; | ||||
| 	 unsigned int shift_resolution_; | ||||
| 	 unsigned int sampled_ms_; | ||||
| 	 unsigned int max_dwells_; | ||||
| 	 long fs_in_; | ||||
| 	 long if_; | ||||
| 	 bool dump_; | ||||
| 	 std::string dump_filename_; | ||||
| 	 std::complex<float> * codeI_; | ||||
| 	 std::complex<float> * codeQ_; | ||||
| 	 Gnss_Synchro * gnss_synchro_; | ||||
| 	 std::string role_; | ||||
| 	 unsigned int in_streams_; | ||||
| 	 unsigned int out_streams_; | ||||
| 	 boost::shared_ptr<gr::msg_queue> queue_; | ||||
| 	 concurrent_queue<int> *channel_internal_queue_; | ||||
| 	 float calculate_threshold(float pfa); | ||||
| }; | ||||
| #endif /* GALILEO_E5A_3MS_NONCOHERENT_IQ_ACQUISITION_H_ */ | ||||
| @@ -27,6 +27,7 @@ if(OPENCL_FOUND) | ||||
|             galileo_pcps_8ms_acquisition_cc.cc | ||||
|             galileo_e5a_pilot_3ms_acquisition_cc.cc | ||||
|             galileo_e5ax_2ms_pcps_acquisition_cc.cc | ||||
|             galileo_e5a_3ms_noncoherent_iq_acquisition_cc.cc | ||||
|             pcps_opencl_acquisition_cc.cc # Needs OpenCL | ||||
|     ) | ||||
| else(OPENCL_FOUND) | ||||
| @@ -40,6 +41,7 @@ else(OPENCL_FOUND) | ||||
|             galileo_pcps_8ms_acquisition_cc.cc | ||||
|             galileo_e5a_pilot_3ms_acquisition_cc.cc | ||||
|             galileo_e5ax_2ms_pcps_acquisition_cc.cc | ||||
|             galileo_e5a_3ms_noncoherent_iq_acquisition_cc.cc | ||||
|     ) | ||||
| endif(OPENCL_FOUND) | ||||
|  | ||||
|   | ||||
| @@ -0,0 +1,592 @@ | ||||
| /*! | ||||
|  * \file galileo_e5a_3ms_noncoherent_iq_acquisition_cc.cc | ||||
|  * \brief Adapts a PCPS acquisition block to an AcquisitionInterface for | ||||
|  *  Galileo E5a data and pilot Signals | ||||
|  * \author Marc Sales, 2014. marcsales92(at)gmail.com | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2014  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
|  * | ||||
|  * This file is part of GNSS-SDR. | ||||
|  * | ||||
|  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
|  * it under the terms of the GNU General Public License as published by | ||||
|  * the Free Software Foundation, either version 3 of the License, or | ||||
|  * at your option) any later version. | ||||
|  * | ||||
|  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  * GNU General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU General Public License | ||||
|  * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>. | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #include "galileo_e5a_3ms_noncoherent_iq_acquisition_cc.h" | ||||
| #include <sys/time.h> | ||||
| #include <sstream> | ||||
| #include <gnuradio/io_signature.h> | ||||
| #include <glog/logging.h> | ||||
| #include <volk/volk.h> | ||||
| #include "gnss_signal_processing.h" | ||||
| #include "control_message_factory.h" | ||||
|  | ||||
| using google::LogMessage; | ||||
|  | ||||
| galileo_e5a_3ms_noncoherentIQ_acquisition_cc_sptr galileo_e5a_3ms_noncoherentIQ_make_acquisition_cc( | ||||
| 				 unsigned int sampled_ms, | ||||
|                                  unsigned int max_dwells, | ||||
|                                  unsigned int doppler_max, long freq, long fs_in, | ||||
|                                  int samples_per_ms, int samples_per_code, | ||||
|                                  bool bit_transition_flag, | ||||
|                                  gr::msg_queue::sptr queue, bool dump, | ||||
|                                  std::string dump_filename) | ||||
| { | ||||
|  | ||||
|     return galileo_e5a_3ms_noncoherentIQ_acquisition_cc_sptr( | ||||
|             new galileo_e5a_3ms_noncoherentIQ_acquisition_cc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms, | ||||
|                                      samples_per_code, bit_transition_flag, queue, dump, dump_filename)); | ||||
| } | ||||
|  | ||||
| galileo_e5a_3ms_noncoherentIQ_acquisition_cc::galileo_e5a_3ms_noncoherentIQ_acquisition_cc( | ||||
| 			 unsigned int sampled_ms, | ||||
| 			 unsigned int max_dwells, | ||||
|                          unsigned int doppler_max, long freq, long fs_in, | ||||
|                          int samples_per_ms, int samples_per_code, | ||||
|                          bool bit_transition_flag, | ||||
|                          gr::msg_queue::sptr queue, bool dump, | ||||
|                          std::string dump_filename) : | ||||
|     gr::block("galileo_e5a_3ms_noncoherentIQ_acquisition_cc", | ||||
| 		gr::io_signature::make(1, 1, sizeof(gr_complex)), | ||||
| 		gr::io_signature::make(0, 0, sizeof(gr_complex))) | ||||
|     //gr::io_signature::make(1, 1, sizeof(gr_complex) * 3 * samples_per_ms), | ||||
|     //gr::io_signature::make(0, 0, sizeof(gr_complex) * 3 * samples_per_ms)) | ||||
| { | ||||
|     //this->set_relative_rate(1.0/1*samples_per_ms); | ||||
|     d_sample_counter = 0;    // SAMPLE COUNTER | ||||
|     d_active = false; | ||||
|     d_state = 0; | ||||
|     d_queue = queue; | ||||
|     d_freq = freq; | ||||
|     d_fs_in = fs_in; | ||||
|     d_samples_per_ms = samples_per_ms; | ||||
|     d_samples_per_code = samples_per_code; | ||||
|     d_max_dwells = max_dwells; | ||||
|     d_well_count = 0; | ||||
|     d_doppler_max = doppler_max; | ||||
|     d_fft_size = sampled_ms * d_samples_per_ms; | ||||
|     d_mag = 0; | ||||
|     d_input_power = 0.0; | ||||
|     d_num_doppler_bins = 0; | ||||
|     d_bit_transition_flag = bit_transition_flag; | ||||
|     d_buffer_count=0; | ||||
|     d_gr_stream_buffer = 7000; // number of samples entering each general work, arbitrary number. Works with all numbers below gnu radio maximum buffer | ||||
|  | ||||
|     //todo: do something if posix_memalign fails | ||||
|     if (posix_memalign((void**)&d_inbuffer, 16, ceil((double)d_fft_size/(double)d_gr_stream_buffer)*d_gr_stream_buffer * sizeof(gr_complex)) == 0){}; | ||||
|     if (posix_memalign((void**)&d_fft_code_I_A, 16, d_fft_size * sizeof(gr_complex)) == 0){}; | ||||
|     if (posix_memalign((void**)&d_fft_code_I_B, 16, d_fft_size * sizeof(gr_complex)) == 0){}; | ||||
|     if (posix_memalign((void**)&d_fft_code_Q_A, 16, d_fft_size * sizeof(gr_complex)) == 0){}; | ||||
|     if (posix_memalign((void**)&d_fft_code_Q_B, 16, d_fft_size * sizeof(gr_complex)) == 0){}; | ||||
|     if (posix_memalign((void**)&d_magnitudeIA, 16, d_fft_size * sizeof(float)) == 0){}; | ||||
|     if (posix_memalign((void**)&d_magnitudeIB, 16, d_fft_size * sizeof(float)) == 0){}; | ||||
|     if (posix_memalign((void**)&d_magnitudeQA, 16, d_fft_size * sizeof(float)) == 0){}; | ||||
|     if (posix_memalign((void**)&d_magnitudeQB, 16, d_fft_size * sizeof(float)) == 0){}; | ||||
|  | ||||
|     // Direct FFT | ||||
|     d_fft_if = new gr::fft::fft_complex(d_fft_size, true); | ||||
|  | ||||
|     // Inverse FFT | ||||
|     d_ifft = new gr::fft::fft_complex(d_fft_size, false); | ||||
| //    d_ifft = new gr::fft::fft_complex(d_fft_size, true); | ||||
|  | ||||
|     // For dumping samples into a file | ||||
|     d_dump = dump; | ||||
|     d_dump_filename = dump_filename; | ||||
| } | ||||
|  | ||||
| galileo_e5a_3ms_noncoherentIQ_acquisition_cc::~galileo_e5a_3ms_noncoherentIQ_acquisition_cc() | ||||
| { | ||||
|     if (d_num_doppler_bins > 0) | ||||
|         { | ||||
|             for (unsigned int i = 0; i < d_num_doppler_bins; i++) | ||||
|                 { | ||||
|                     free(d_grid_doppler_wipeoffs[i]); | ||||
|                 } | ||||
|             delete[] d_grid_doppler_wipeoffs; | ||||
|         } | ||||
|  | ||||
|     free(d_fft_code_I_A); | ||||
|     free(d_fft_code_I_B); | ||||
|     free(d_fft_code_Q_A); | ||||
|     free(d_fft_code_Q_B); | ||||
|     free(d_magnitudeIA); | ||||
|     free(d_magnitudeIB); | ||||
|     free(d_magnitudeQA); | ||||
|     free(d_magnitudeQB); | ||||
|  | ||||
|  | ||||
|     delete d_fft_if; | ||||
|     delete d_ifft; | ||||
|  | ||||
|  | ||||
|     if (d_dump) | ||||
|         { | ||||
|             d_dump_file.close(); | ||||
|         } | ||||
| } | ||||
|  | ||||
| void galileo_e5a_3ms_noncoherentIQ_acquisition_cc::forecast (int noutput_items, | ||||
| 		gr_vector_int &ninput_items_required) | ||||
| { | ||||
|     ninput_items_required[0] = d_gr_stream_buffer ; //set the required available samples in each call | ||||
| } | ||||
|  | ||||
| void galileo_e5a_3ms_noncoherentIQ_acquisition_cc::set_local_code(std::complex<float> * codeI, std::complex<float> * codeQ ) | ||||
| { | ||||
|     // DATA SIGNAL | ||||
|     // Three replicas of data primary code. CODE A: (1,1,1) | ||||
|     memcpy(d_fft_if->get_inbuf(), codeI, sizeof(gr_complex)*d_fft_size); | ||||
|  | ||||
|     d_fft_if->execute(); // We need the FFT of local code | ||||
|  | ||||
|     //Conjugate the local code | ||||
|     if (is_unaligned()) | ||||
|         { | ||||
|             volk_32fc_conjugate_32fc_u(d_fft_code_I_A,d_fft_if->get_outbuf(),d_fft_size); | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             volk_32fc_conjugate_32fc_a(d_fft_code_I_A,d_fft_if->get_outbuf(),d_fft_size); | ||||
|         } | ||||
|  | ||||
|     // CODE B: First replica is inverted (0,1,1) | ||||
|     volk_32fc_s32fc_multiply_32fc_a(&(d_fft_if->get_inbuf())[0], | ||||
|                                     &codeI[0], gr_complex(-1,0), | ||||
|                                     d_samples_per_code); | ||||
|     d_fft_if->execute(); // We need the FFT of local code | ||||
|  | ||||
|     //Conjugate the local code | ||||
|     if (is_unaligned()) | ||||
|         { | ||||
|             volk_32fc_conjugate_32fc_u(d_fft_code_I_B,d_fft_if->get_outbuf(),d_fft_size); | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             volk_32fc_conjugate_32fc_a(d_fft_code_I_B,d_fft_if->get_outbuf(),d_fft_size); | ||||
|         } | ||||
|  | ||||
|     // SAME FOR PILOT SIGNAL | ||||
|     // Three replicas of pilot primary code. CODE A: (1,1,1) | ||||
|     memcpy(d_fft_if->get_inbuf(), codeQ, sizeof(gr_complex)*d_fft_size); | ||||
|  | ||||
|     d_fft_if->execute(); // We need the FFT of local code | ||||
|  | ||||
|     //Conjugate the local code | ||||
|     if (is_unaligned()) | ||||
|         { | ||||
|             volk_32fc_conjugate_32fc_u(d_fft_code_Q_A,d_fft_if->get_outbuf(),d_fft_size); | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             volk_32fc_conjugate_32fc_a(d_fft_code_Q_A,d_fft_if->get_outbuf(),d_fft_size); | ||||
|         } | ||||
|  | ||||
|     // CODE B: First replica is inverted (0,1,1) | ||||
|     volk_32fc_s32fc_multiply_32fc_a(&(d_fft_if->get_inbuf())[0], | ||||
|                                     &codeQ[0], gr_complex(-1,0), | ||||
|                                     d_samples_per_code); | ||||
|     d_fft_if->execute(); // We need the FFT of local code | ||||
|  | ||||
|     //Conjugate the local code | ||||
|     if (is_unaligned()) | ||||
|         { | ||||
|             volk_32fc_conjugate_32fc_u(d_fft_code_Q_B,d_fft_if->get_outbuf(),d_fft_size); | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             volk_32fc_conjugate_32fc_a(d_fft_code_Q_B,d_fft_if->get_outbuf(),d_fft_size); | ||||
|         } | ||||
|  | ||||
|  | ||||
| } | ||||
|  | ||||
| void galileo_e5a_3ms_noncoherentIQ_acquisition_cc::init() | ||||
| { | ||||
|     d_gnss_synchro->Acq_delay_samples = 0.0; | ||||
|     d_gnss_synchro->Acq_doppler_hz = 0.0; | ||||
|     d_gnss_synchro->Acq_samplestamp_samples = 0; | ||||
|     d_mag = 0.0; | ||||
|     d_input_power = 0.0; | ||||
|  | ||||
|     // Count the number of bins | ||||
|     d_num_doppler_bins = 0; | ||||
|     for (int doppler = (int)(-d_doppler_max); | ||||
|          doppler <= (int)d_doppler_max; | ||||
|          doppler += d_doppler_step) | ||||
|     { | ||||
|         d_num_doppler_bins++; | ||||
|     } | ||||
|  | ||||
|     // Create the carrier Doppler wipeoff signals | ||||
|     d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins]; | ||||
|     for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) | ||||
|         { | ||||
|             if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16, | ||||
|                                d_fft_size * sizeof(gr_complex)) == 0){}; | ||||
|  | ||||
|             int doppler = -(int)d_doppler_max + d_doppler_step*doppler_index; | ||||
|             complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index], | ||||
|                                  d_freq + doppler, d_fs_in, d_fft_size); | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| int galileo_e5a_3ms_noncoherentIQ_acquisition_cc::general_work(int noutput_items, | ||||
|         gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, | ||||
|         gr_vector_void_star &output_items) | ||||
| { | ||||
|     /* | ||||
|      * By J.Arribas, L.Esteve, M.Molina and M.Sales | ||||
|      * Acquisition strategy (Kay Borre book + CFAR threshold): | ||||
|      * 1. Compute the input signal power estimation | ||||
|      * 2. Doppler serial search loop | ||||
|      * 3. Perform the FFT-based circular convolution (parallel time search) | ||||
|      * 4. Record the maximum peak and the associated synchronization parameters | ||||
|      * 5. Compute the test statistics and compare to the threshold | ||||
|      * 6. Declare positive or negative acquisition using a message queue | ||||
|      */ | ||||
|  | ||||
|     int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL | ||||
|     /* States: 	0 Reset and load first stream | ||||
|      * 		1 Load the buffer until it reaches fft_size | ||||
|      * 		2 Acquisition algorithm | ||||
|      * 		3 Positive acquisition | ||||
|      * 		4 Negative acquisition | ||||
|      */ | ||||
|  | ||||
|     d_sample_counter += d_gr_stream_buffer; | ||||
|     std::cout << d_state <<" "<< d_sample_counter << std::endl; | ||||
|     switch (d_state) | ||||
|     { | ||||
| 	case 0: | ||||
| 	    { | ||||
| 		if (d_active) | ||||
| 		    { | ||||
| 			//restart acquisition variables | ||||
| 			d_gnss_synchro->Acq_delay_samples = 0.0; | ||||
| 			d_gnss_synchro->Acq_doppler_hz = 0.0; | ||||
| 			d_gnss_synchro->Acq_samplestamp_samples = 0; | ||||
| 			d_well_count = 0; | ||||
| 			d_mag = 0.0; | ||||
| 			d_input_power = 0.0; | ||||
| 			d_test_statistics = 0.0; | ||||
| 			d_state = 1; | ||||
| 		    } | ||||
| 		const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer | ||||
| 		memcpy(&d_inbuffer[d_buffer_count*d_gr_stream_buffer], in, sizeof(gr_complex)*d_gr_stream_buffer); | ||||
| 		d_buffer_count++; | ||||
| 	        //d_sample_counter += ninput_items[0]; // sample counter | ||||
| 	        //consume_each(ninput_items[0]); | ||||
| 		break; | ||||
| 	    } | ||||
| 	case 1: | ||||
| 	    { | ||||
| 		const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer | ||||
| 		memcpy(&d_inbuffer[d_buffer_count*d_gr_stream_buffer], in, sizeof(gr_complex)*d_gr_stream_buffer); | ||||
| 		d_buffer_count++; | ||||
| 		if (d_buffer_count*d_gr_stream_buffer >= d_fft_size-d_gr_stream_buffer) | ||||
| 		    { | ||||
| 			d_state=2; | ||||
| 		    } | ||||
| //		volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), in, | ||||
| //                            d_grid_doppler_wipeoffs[0], d_fft_size); | ||||
| 		//consume_each(7000); | ||||
| 		break; | ||||
| 	    } | ||||
| 	case 2: | ||||
| 	    { | ||||
| 		// Fill last part of the buffer and reset counter | ||||
| 		const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer | ||||
| 		memcpy(&d_inbuffer[d_buffer_count*d_gr_stream_buffer], in, sizeof(gr_complex)*d_gr_stream_buffer); | ||||
| 		d_buffer_count = 0; | ||||
| 		// initialize acquisition algorithm | ||||
| 		int doppler; | ||||
| 		unsigned int indext = 0; | ||||
| 		unsigned int indext_IA = 0; | ||||
| 		unsigned int indext_IB = 0; | ||||
| 		unsigned int indext_QA = 0; | ||||
| 		unsigned int indext_QB = 0; | ||||
| 		float magt = 0.0; | ||||
| 		float magt_IA = 0.0; | ||||
| 		float magt_IB = 0.0; | ||||
| 		float magt_QA = 0.0; | ||||
| 		float magt_QB = 0.0; | ||||
| 		//const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer | ||||
| 		float fft_normalization_factor = (float)d_fft_size * (float)d_fft_size; | ||||
| 		d_input_power = 0.0; | ||||
| 		d_mag = 0.0; | ||||
| 		int comb = 0; | ||||
|  | ||||
| 		//d_sample_counter += d_fft_size; // sample counter | ||||
|  | ||||
| 		d_well_count++; | ||||
|  | ||||
| 		DLOG(INFO) << "Channel: " << d_channel | ||||
| 			<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN | ||||
| 			<< " ,sample stamp: " << d_sample_counter << ", threshold: " | ||||
| 			<< d_threshold << ", doppler_max: " << d_doppler_max | ||||
| 			<< ", doppler_step: " << d_doppler_step; | ||||
|  | ||||
| 		// 1- Compute the input signal power estimation | ||||
| 		volk_32fc_magnitude_squared_32f_a(d_magnitudeIA, d_inbuffer, d_fft_size); | ||||
| 		volk_32f_accumulator_s32f_a(&d_input_power, d_magnitudeIA, d_fft_size); | ||||
| 		d_input_power /= (float)d_fft_size; | ||||
|  | ||||
| 		// 2- Doppler frequency search loop | ||||
| 		for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++) | ||||
| 		    { | ||||
| 			// doppler search steps | ||||
|  | ||||
| 			doppler=-(int)d_doppler_max+d_doppler_step*doppler_index; | ||||
|  | ||||
| 			volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), d_inbuffer, | ||||
| 			                             d_grid_doppler_wipeoffs[doppler_index], d_fft_size); | ||||
|  | ||||
| 			// 3- Perform the FFT-based convolution  (parallel time search) | ||||
| 			// Compute the FFT of the carrier wiped--off incoming signal | ||||
| 			d_fft_if->execute(); | ||||
|  | ||||
| 			// CODE IA | ||||
| 			// Multiply carrier wiped--off, Fourier transformed incoming signal | ||||
| 			// with the local FFT'd code reference using SIMD operations with VOLK library | ||||
| 			volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(), | ||||
| 			                             d_fft_if->get_outbuf(), d_fft_code_I_A, d_fft_size); | ||||
|  | ||||
| 			// compute the inverse FFT | ||||
| 			d_ifft->execute(); | ||||
|  | ||||
| 			// Search maximum | ||||
| 			volk_32fc_magnitude_squared_32f_a(d_magnitudeIA, d_ifft->get_outbuf(), d_fft_size); | ||||
| 			volk_32f_index_max_16u_a(&indext_IA, d_magnitudeIA, d_fft_size); | ||||
|  | ||||
| 			// Normalize the maximum value to correct the scale factor introduced by FFTW | ||||
| 			magt_IA = d_magnitudeIA[indext_IA] / (fft_normalization_factor * fft_normalization_factor); | ||||
|  | ||||
| 			// only 1 ms | ||||
| 			//magt=magt_A; | ||||
| 			//indext=indext_A; | ||||
|  | ||||
|  | ||||
| 			// REPEAT FOR ALL CODES. CODE_IB | ||||
| 			volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(), | ||||
| 			                             d_fft_if->get_outbuf(), d_fft_code_I_B, d_fft_size); | ||||
| 			d_ifft->execute(); | ||||
| 			volk_32fc_magnitude_squared_32f_a(d_magnitudeIB, d_ifft->get_outbuf(), d_fft_size); | ||||
| 			volk_32f_index_max_16u_a(&indext_IB, d_magnitudeIB, d_fft_size); | ||||
| 			magt_IB = d_magnitudeIB[indext_IB] / (fft_normalization_factor * fft_normalization_factor); | ||||
|  | ||||
| 			// REPEAT FOR ALL CODES. CODE_QA | ||||
| 			volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(), | ||||
| 			                             d_fft_if->get_outbuf(), d_fft_code_Q_A, d_fft_size); | ||||
| 			d_ifft->execute(); | ||||
| 			volk_32fc_magnitude_squared_32f_a(d_magnitudeQA, d_ifft->get_outbuf(), d_fft_size); | ||||
| 			volk_32f_index_max_16u_a(&indext_QA, d_magnitudeQA, d_fft_size); | ||||
| 			magt_QA = d_magnitudeQA[indext_QA] / (fft_normalization_factor * fft_normalization_factor); | ||||
|  | ||||
| 			// REPEAT FOR ALL CODES. CODE_QB | ||||
| 			volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(), | ||||
| 			                             d_fft_if->get_outbuf(), d_fft_code_Q_B, d_fft_size); | ||||
| 			d_ifft->execute(); | ||||
| 			volk_32fc_magnitude_squared_32f_a(d_magnitudeQB, d_ifft->get_outbuf(), d_fft_size); | ||||
| 			volk_32f_index_max_16u_a(&indext_QB, d_magnitudeQB, d_fft_size); | ||||
| 			magt_QB = d_magnitudeIB[indext_QB] / (fft_normalization_factor * fft_normalization_factor); | ||||
|  | ||||
| 			// Integrate noncoherently the two best combinations (I² + Q²) | ||||
| 			// and store the result in the I channel. | ||||
| 			if (magt_IA >= magt_IB) | ||||
| 			    { | ||||
| 				if (magt_QA >= magt_QB) | ||||
| 				    { | ||||
| 					for (unsigned int i=0; i<d_fft_size; i++) | ||||
| 					    { | ||||
| 						d_magnitudeIA[i] += d_magnitudeQA[i]; | ||||
| 					    } | ||||
| 				    } | ||||
| 				else | ||||
| 				    { | ||||
| 					for (unsigned int i=0; i<d_fft_size; i++) | ||||
| 					    { | ||||
| 						d_magnitudeIA[i] += d_magnitudeQB[i]; | ||||
| 					    } | ||||
| 				    } | ||||
| 				volk_32f_index_max_16u_a(&indext, d_magnitudeIA, d_fft_size); | ||||
| 				magt = d_magnitudeIA[indext] / (fft_normalization_factor * fft_normalization_factor); | ||||
| 			    } | ||||
| 			else | ||||
| 			    { | ||||
| 				if (magt_QA >= magt_QB) | ||||
| 				    { | ||||
| 					for (unsigned int i=0; i<d_fft_size; i++) | ||||
| 					    { | ||||
| 						d_magnitudeIB[i] += d_magnitudeQA[i]; | ||||
| 					    } | ||||
| 				    } | ||||
| 				else | ||||
| 				    { | ||||
| 					for (unsigned int i=0; i<d_fft_size; i++) | ||||
| 					    { | ||||
| 						d_magnitudeIB[i] += d_magnitudeQB[i]; | ||||
| 					    } | ||||
| 				    } | ||||
| 				volk_32f_index_max_16u_a(&indext, d_magnitudeIB, d_fft_size); | ||||
| 				magt = d_magnitudeIB[indext] / (fft_normalization_factor * fft_normalization_factor); | ||||
| 			    } | ||||
|  | ||||
| 			// 4- record the maximum peak and the associated synchronization parameters | ||||
| 			if (d_mag < magt) | ||||
| 			    { | ||||
| 				d_mag = magt; | ||||
| 				//std::cout << "ACQ_block_e5a_3ms secondary combination " << sec_comb << std::endl; | ||||
|  | ||||
| 				// In case that d_bit_transition_flag = true, we compare the potentially | ||||
| 				// new maximum test statistics (d_mag/d_input_power) with the value in | ||||
| 				// d_test_statistics. When the second dwell is being processed, the value | ||||
| 				// of d_mag/d_input_power could be lower than d_test_statistics (i.e, | ||||
| 				// the maximum test statistics in the previous dwell is greater than | ||||
| 				// current d_mag/d_input_power). Note that d_test_statistics is not | ||||
| 				// restarted between consecutive dwells in multidwell operation. | ||||
| 				if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag) | ||||
| 				    { | ||||
| 					d_gnss_synchro->Acq_delay_samples = (double)(indext % d_samples_per_code); | ||||
| 					d_gnss_synchro->Acq_doppler_hz = (double)doppler; | ||||
| 					d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; | ||||
|  | ||||
| 					// 5- Compute the test statistics and compare to the threshold | ||||
| 					//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power; | ||||
| 					d_test_statistics = d_mag / d_input_power; | ||||
| 				    } | ||||
| 			    } | ||||
|  | ||||
| 			// Record results to file if required | ||||
| 			if (d_dump) | ||||
| 			    { | ||||
| 				std::stringstream filename; | ||||
| 				std::streamsize n = sizeof(float) * (d_fft_size); // noncomplex file write | ||||
| 				filename.str(""); | ||||
| 				filename << "../data/test_statistics_" << d_gnss_synchro->System | ||||
| 					<<"_" << d_gnss_synchro->Signal << "_sat_" | ||||
| 					<< d_gnss_synchro->PRN << "_doppler_" <<  doppler << ".dat"; | ||||
| 				d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary); | ||||
| 				if (magt_IA >= magt_IB) | ||||
| 				    { | ||||
| 					d_dump_file.write((char*)d_magnitudeIA, n); | ||||
| 				    } | ||||
| 				else | ||||
| 				    { | ||||
| 					d_dump_file.write((char*)d_magnitudeIB, n); | ||||
| 				    } | ||||
| 				//d_dump_file.write((char*)d_magnitudeIA, n); | ||||
| 				d_dump_file.close(); | ||||
| 			    } | ||||
| 		    } | ||||
|  | ||||
| 		if (!d_bit_transition_flag) | ||||
| 		    { | ||||
| 			if (d_test_statistics > d_threshold) | ||||
| 			    { | ||||
| 				d_state = 3; // Positive acquisition | ||||
| 			    } | ||||
| 			else if (d_well_count == d_max_dwells) | ||||
| 			    { | ||||
| 				d_state = 4; // Negative acquisition | ||||
| 			    } | ||||
| 			else | ||||
| 			    { | ||||
| 				d_state = 2; | ||||
| 			    } | ||||
| 		    } | ||||
| 		else | ||||
| 		    { | ||||
| 			if (d_well_count == d_max_dwells) // d_max_dwells = 2 | ||||
| 			    { | ||||
| 				if (d_test_statistics > d_threshold) | ||||
| 				    { | ||||
| 					d_state = 3; // Positive acquisition | ||||
| 				    } | ||||
| 				else | ||||
| 				    { | ||||
| 					d_state = 4; // Negative acquisition | ||||
| 				    } | ||||
| 			    } | ||||
| 			else | ||||
| 			    { | ||||
| 				d_state = 2; | ||||
| 			    } | ||||
| 		    } | ||||
|  | ||||
| 		//consume_each(1); | ||||
| 		//consume_each(d_fft_size); | ||||
| 		break; | ||||
| 	    } | ||||
| 	case 3: | ||||
| 	    { | ||||
| 		// 6.1- Declare positive acquisition using a message queue | ||||
| 		DLOG(INFO) << "positive acquisition"; | ||||
| 		DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; | ||||
| 		DLOG(INFO) << "sample_stamp " << d_sample_counter; | ||||
| 		DLOG(INFO) << "test statistics value " << d_test_statistics; | ||||
| 		DLOG(INFO) << "test statistics threshold " << d_threshold; | ||||
| 		DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; | ||||
| 		DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; | ||||
| 		DLOG(INFO) << "magnitude " << d_mag; | ||||
| 		DLOG(INFO) << "input signal power " << d_input_power; | ||||
|  | ||||
| 		d_active = false; | ||||
| 		d_state = 0; | ||||
|  | ||||
| 		//d_sample_counter += 7000; | ||||
| 		//d_sample_counter += d_fft_size * ninput_items[0]; // sample counter | ||||
| 		//consume_each(ninput_items[0]); | ||||
| 		//consume_each(d_fft_size); | ||||
| 		acquisition_message = 1; | ||||
| 		d_channel_internal_queue->push(acquisition_message); | ||||
| 		break; | ||||
| 	    } | ||||
| 	case 4: | ||||
| 	    { | ||||
| 		// 6.2- Declare negative acquisition using a message queue | ||||
| 		DLOG(INFO) << "negative acquisition"; | ||||
| 		DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; | ||||
| 		DLOG(INFO) << "sample_stamp " << d_sample_counter; | ||||
| 		DLOG(INFO) << "test statistics value " << d_test_statistics; | ||||
| 		DLOG(INFO) << "test statistics threshold " << d_threshold; | ||||
| 		DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; | ||||
| 		DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; | ||||
| 		DLOG(INFO) << "magnitude " << d_mag; | ||||
| 		DLOG(INFO) << "input signal power " << d_input_power; | ||||
|  | ||||
| 		d_active = false; | ||||
| 		d_state = 0; | ||||
|  | ||||
| 		//d_sample_counter += 7000; | ||||
| 		//d_sample_counter += d_fft_size * ninput_items[0]; // sample counter | ||||
| 		//consume_each(ninput_items[0]); | ||||
| 		//consume_each(d_fft_size); | ||||
| 		acquisition_message = 2; | ||||
| 		d_channel_internal_queue->push(acquisition_message); | ||||
| 		break; | ||||
| 	    } | ||||
|     } | ||||
|  | ||||
|     consume_each(d_gr_stream_buffer); | ||||
|     return 0; | ||||
| } | ||||
|  | ||||
| @@ -0,0 +1,237 @@ | ||||
| /*! | ||||
|  * \file galileo_e5a_3ms_noncoherent_iq_acquisition_cc.h | ||||
|  * \brief Adapts a PCPS acquisition block to an AcquisitionInterface for | ||||
|  *  Galileo E5a data and pilot Signals | ||||
|  * \author Marc Sales, 2014. marcsales92(at)gmail.com | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2014  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
|  * | ||||
|  * This file is part of GNSS-SDR. | ||||
|  * | ||||
|  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
|  * it under the terms of the GNU General Public License as published by | ||||
|  * the Free Software Foundation, either version 3 of the License, or | ||||
|  * at your option) any later version. | ||||
|  * | ||||
|  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  * GNU General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU General Public License | ||||
|  * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>. | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #ifndef GALILEO_E5A_3MS_NONCOHERENT_IQ_ACQUISITION_CC_H_ | ||||
| #define GALILEO_E5A_3MS_NONCOHERENT_IQ_ACQUISITION_CC_H_ | ||||
|  | ||||
| #include <fstream> | ||||
| #include <queue> | ||||
| #include <string> | ||||
| #include <boost/thread/mutex.hpp> | ||||
| #include <boost/thread/thread.hpp> | ||||
| #include <gnuradio/block.h> | ||||
| #include <gnuradio/msg_queue.h> | ||||
| #include <gnuradio/gr_complex.h> | ||||
| #include <gnuradio/fft/fft.h> | ||||
| #include "concurrent_queue.h" | ||||
| #include "gnss_synchro.h" | ||||
|  | ||||
| class galileo_e5a_3ms_noncoherentIQ_acquisition_cc; | ||||
|  | ||||
| typedef boost::shared_ptr<galileo_e5a_3ms_noncoherentIQ_acquisition_cc> galileo_e5a_3ms_noncoherentIQ_acquisition_cc_sptr; | ||||
|  | ||||
| galileo_e5a_3ms_noncoherentIQ_acquisition_cc_sptr | ||||
| galileo_e5a_3ms_noncoherentIQ_make_acquisition_cc(unsigned int sampled_ms, | ||||
| 			 unsigned int max_dwells, | ||||
|                          unsigned int doppler_max, long freq, long fs_in, | ||||
|                          int samples_per_ms, int samples_per_code, | ||||
|                          bool bit_transition_flag, | ||||
|                          gr::msg_queue::sptr queue, bool dump, | ||||
|                          std::string dump_filename); | ||||
|  | ||||
| /*! | ||||
|  * \brief This class implements a Parallel Code Phase Search Acquisition. | ||||
|  * | ||||
|  * Check \ref Navitec2012 "An Open Source Galileo E1 Software Receiver", | ||||
|  * Algorithm 1, for a pseudocode description of this implementation. | ||||
|  */ | ||||
| class galileo_e5a_3ms_noncoherentIQ_acquisition_cc: public gr::block | ||||
| { | ||||
| private: | ||||
|     friend galileo_e5a_3ms_noncoherentIQ_acquisition_cc_sptr | ||||
|     galileo_e5a_3ms_noncoherentIQ_make_acquisition_cc( | ||||
| 	    unsigned int sampled_ms, | ||||
| 	    unsigned int max_dwells, | ||||
|             unsigned int doppler_max, long freq, long fs_in, | ||||
|             int samples_per_ms, int samples_per_code, | ||||
|             bool bit_transition_flag, | ||||
|             gr::msg_queue::sptr queue, bool dump, | ||||
|             std::string dump_filename); | ||||
|  | ||||
|     galileo_e5a_3ms_noncoherentIQ_acquisition_cc( | ||||
| 	    unsigned int sampled_ms, | ||||
| 	    unsigned int max_dwells, | ||||
|             unsigned int doppler_max, long freq, long fs_in, | ||||
|             int samples_per_ms, int samples_per_code, | ||||
|             bool bit_transition_flag, | ||||
|             gr::msg_queue::sptr queue, bool dump, | ||||
|             std::string dump_filename); | ||||
|  | ||||
|     void calculate_magnitudes(gr_complex* fft_begin, int doppler_shift, | ||||
|             int doppler_offset); | ||||
|     float estimate_input_power(gr_complex *in ); | ||||
|  | ||||
|     long d_fs_in; | ||||
|     long d_freq; | ||||
|     int d_samples_per_ms; | ||||
|     int d_samples_per_code; | ||||
|     unsigned int d_doppler_resolution; | ||||
|     float d_threshold; | ||||
|     std::string d_satellite_str; | ||||
|     unsigned int d_doppler_max; | ||||
|     unsigned int d_doppler_step; | ||||
|     unsigned int d_max_dwells; | ||||
|     unsigned int d_well_count; | ||||
|     unsigned int d_fft_size; | ||||
|     unsigned long int d_sample_counter; | ||||
|     gr_complex** d_grid_doppler_wipeoffs; | ||||
|     unsigned int d_num_doppler_bins; | ||||
|     gr_complex* d_fft_code_I_A; | ||||
|     gr_complex* d_fft_code_I_B; | ||||
|     gr_complex* d_fft_code_Q_A; | ||||
|     gr_complex* d_fft_code_Q_B; | ||||
|     gr_complex* d_inbuffer; | ||||
|     gr::fft::fft_complex* d_fft_if; | ||||
|     gr::fft::fft_complex* d_ifft; | ||||
|     Gnss_Synchro *d_gnss_synchro; | ||||
|     unsigned int d_code_phase; | ||||
|     float d_doppler_freq; | ||||
|     float d_mag; | ||||
|     float* d_magnitudeIA; | ||||
|     float* d_magnitudeIB; | ||||
|     float* d_magnitudeQA; | ||||
|     float* d_magnitudeQB; | ||||
|     float d_input_power; | ||||
|     float d_test_statistics; | ||||
|     bool d_bit_transition_flag; | ||||
|     gr::msg_queue::sptr d_queue; | ||||
|     concurrent_queue<int> *d_channel_internal_queue; | ||||
|     std::ofstream d_dump_file; | ||||
|     bool d_active; | ||||
|     int d_state; | ||||
|     bool d_dump; | ||||
|     unsigned int d_channel; | ||||
|     std::string d_dump_filename; | ||||
|     unsigned int d_buffer_count; | ||||
|     unsigned int d_gr_stream_buffer; | ||||
|  | ||||
| public: | ||||
|     /*! | ||||
|      * \brief Default destructor. | ||||
|      */ | ||||
|      ~galileo_e5a_3ms_noncoherentIQ_acquisition_cc(); | ||||
|  | ||||
|      /*! | ||||
|       * \brief Set acquisition/tracking common Gnss_Synchro object pointer | ||||
|       * to exchange synchronization data between acquisition and tracking blocks. | ||||
|       * \param p_gnss_synchro Satellite information shared by the processing blocks. | ||||
|       */ | ||||
|      void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) | ||||
|      { | ||||
|          d_gnss_synchro = p_gnss_synchro; | ||||
|      } | ||||
|  | ||||
|      /*! | ||||
|       * \brief Returns the maximum peak of grid search. | ||||
|       */ | ||||
|      unsigned int mag() | ||||
|      { | ||||
|          return d_mag; | ||||
|      } | ||||
|  | ||||
|      /*! | ||||
|       * \brief Initializes acquisition algorithm. | ||||
|       */ | ||||
|      void init(); | ||||
|  | ||||
|      /*! | ||||
|       * \brief Sets local code for PCPS acquisition algorithm. | ||||
|       * \param code - Pointer to the PRN code. | ||||
|       */ | ||||
|      void set_local_code(std::complex<float> * code, std::complex<float> * codeQ); | ||||
|  | ||||
|      /*! | ||||
|       * \brief Starts acquisition algorithm, turning from standby mode to | ||||
|       * active mode | ||||
|       * \param active - bool that activates/deactivates the block. | ||||
|       */ | ||||
|      void set_active(bool active) | ||||
|      { | ||||
|          d_active = active; | ||||
|      } | ||||
|  | ||||
|      /*! | ||||
|       * \brief Set acquisition channel unique ID | ||||
|       * \param channel - receiver channel. | ||||
|       */ | ||||
|      void set_channel(unsigned int channel) | ||||
|      { | ||||
|          d_channel = channel; | ||||
|      } | ||||
|  | ||||
|      /*! | ||||
|       * \brief Set statistics threshold of PCPS algorithm. | ||||
|       * \param threshold - Threshold for signal detection (check \ref Navitec2012, | ||||
|       * Algorithm 1, for a definition of this threshold). | ||||
|       */ | ||||
|      void set_threshold(float threshold) | ||||
|      { | ||||
|          d_threshold = threshold; | ||||
|      } | ||||
|  | ||||
|      /*! | ||||
|       * \brief Set maximum Doppler grid search | ||||
|       * \param doppler_max - Maximum Doppler shift considered in the grid search [Hz]. | ||||
|       */ | ||||
|      void set_doppler_max(unsigned int doppler_max) | ||||
|      { | ||||
|          d_doppler_max = doppler_max; | ||||
|      } | ||||
|  | ||||
|      /*! | ||||
|       * \brief Set Doppler steps for the grid search | ||||
|       * \param doppler_step - Frequency bin of the search grid [Hz]. | ||||
|       */ | ||||
|      void set_doppler_step(unsigned int doppler_step) | ||||
|      { | ||||
|          d_doppler_step = doppler_step; | ||||
|      } | ||||
|  | ||||
|  | ||||
|      /*! | ||||
|       * \brief Set tracking channel internal queue. | ||||
|       * \param channel_internal_queue - Channel's internal blocks information queue. | ||||
|       */ | ||||
|      void set_channel_queue(concurrent_queue<int> *channel_internal_queue) | ||||
|      { | ||||
|          d_channel_internal_queue = channel_internal_queue; | ||||
|      } | ||||
|  | ||||
|      /*! | ||||
|       * \brief Parallel Code Phase Search Acquisition signal processing. | ||||
|       */ | ||||
|      int general_work(int noutput_items, gr_vector_int &ninput_items, | ||||
|              gr_vector_const_void_star &input_items, | ||||
|              gr_vector_void_star &output_items); | ||||
|  | ||||
|      void forecast (int noutput_items, gr_vector_int &ninput_items_required); | ||||
| }; | ||||
| #endif /* GALILEO_E5A_3MS_NONCOHERENT_IQ_ACQUISITION_CC_H_ */ | ||||
| @@ -97,7 +97,7 @@ void galileo_e5_a_code_gen_complex_primary(std::complex<float>* _dest, signed in | ||||
| 	    // last 2 bits are filled up zeros | ||||
| 	    hex_to_binary_converter(a, | ||||
| 	    		 Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length()-1)); | ||||
| 	    hex_to_binary_converter(a, | ||||
| 	    hex_to_binary_converter(b, | ||||
| 	    		 Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length()-1)); | ||||
| 	    _dest[index]=std::complex<float>(float(a[0]),float(b[0])); | ||||
| 	    _dest[index+1]=std::complex<float>(float(a[1]),float(b[1])); | ||||
|   | ||||
| @@ -209,10 +209,22 @@ void signal_generator_c::generate_codes() | ||||
| //        		                                          (int)Galileo_E5a_Q_SECONDARY_CODE_LENGTH - delay_chips_[sat], true); | ||||
|  | ||||
|         		    galileo_e5_a_code_gen_complex_sampled(sampled_code_data_[sat] , signal, PRN_[sat], fs_in_, | ||||
|         		                                          (int)Galileo_E5a_CODE_LENGTH_CHIPS - delay_chips_[sat],false); | ||||
|         		                                          (int)Galileo_E5a_CODE_LENGTH_CHIPS-delay_chips_[sat],false); | ||||
|  | ||||
|         		    std::cout << "PRN "<< PRN_[sat] << " first two bytes "<< sampled_code_data_[sat][0] << sampled_code_data_[sat][1] << sampled_code_data_[sat][2] << sampled_code_data_[sat][3] << sampled_code_data_[sat][4] << sampled_code_data_[sat][5] << sampled_code_data_[sat][6] << sampled_code_data_[sat][7] << std::endl; | ||||
| ////        		    std::ofstream myfile; | ||||
|         		    /////////// | ||||
|         		    /* | ||||
|         		    std::ofstream d_dump_file; | ||||
|                             std::stringstream filename; | ||||
|                             std::streamsize n = 2 * sizeof(float) * (Galileo_E5a_CODE_LENGTH_CHIPS); // complex file write | ||||
|                             filename.str(""); | ||||
|                             filename << "../data/PRN11_Xcode_noiseless" << ".dat"; | ||||
|                             d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary); | ||||
|                             d_dump_file.write((char*)&sampled_code_data_[sat][0], n); | ||||
|                             d_dump_file.close(); | ||||
|                             */ | ||||
|                             ///////////////////// | ||||
|         		    ////        		    std::ofstream myfile; | ||||
| //        		    //myfile.open ("example_sink_gencode.dat"); | ||||
| //        		    std::ofstream myfile("example_sink_gencode.bin",std::ios_base::binary); | ||||
| ////        		    for (int k=0; k< vector_length_; k++) | ||||
| @@ -399,8 +411,8 @@ gr_vector_void_star &output_items) | ||||
|  | ||||
| //        		    if (work_counter_==1) | ||||
| //        			{ | ||||
|         			    std::cout << "ms " << ms_counter_[sat] << " sat " << sat << " PRN" << PRN_[sat]; | ||||
|         			    std::cout << " delay_secI " << (ms_counter_[sat]+delay_sec_[sat])%20 << " delay_secQ " << (ms_counter_[sat]+delay_sec_[sat])%100 << std::endl;//" pilot mod " << pilot_modulation_[sat] << " data bit " << current_data_bit_int_[sat] << " data mod " << data_modulation_[sat] << std::endl; | ||||
|         			    //std::cout << "ms " << ms_counter_[sat] << " sat " << sat << " PRN" << PRN_[sat]; | ||||
|         			    //std::cout << " delay_secI " << (ms_counter_[sat]+delay_sec_[sat])%20 << " delay_secQ " << (ms_counter_[sat]+delay_sec_[sat])%100 << std::endl;//" pilot mod " << pilot_modulation_[sat] << " data bit " << current_data_bit_int_[sat] << " data mod " << data_modulation_[sat] << std::endl; | ||||
|         			    //std::cout << "code 1st 2 byte " << out[0] << out[1] << out[2] << out[3] << out[4] << out[5] << out[6] << out[7] << std::endl; | ||||
| //        			} | ||||
|         		    ms_counter_[sat] = ms_counter_[sat] + (int)round(1e3*GALILEO_E5a_CODE_PERIOD); | ||||
| @@ -461,7 +473,19 @@ gr_vector_void_star &output_items) | ||||
|                     out[out_idx] += gr_complex(random_->gasdev(),random_->gasdev()); | ||||
|                 } | ||||
|         } | ||||
|  | ||||
| /* | ||||
| if (work_counter_==1) | ||||
| 	{ | ||||
| 	    std::ofstream d_dump_file; | ||||
| 	    std::stringstream filename; | ||||
| 	    std::streamsize n = 2 * sizeof(float) * (samples_per_code_[0]); // complex file write | ||||
| 	    filename.str(""); | ||||
| 	    filename << "../data/PRN11_Xcode_genwork" << ".dat"; | ||||
| 	    d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary); | ||||
| 	    d_dump_file.write((char*)out, n); | ||||
| 	    d_dump_file.close(); | ||||
| 	} | ||||
| */ | ||||
|     // Tell runtime system how many output items we produced. | ||||
|     return 1; | ||||
| } | ||||
|   | ||||
| @@ -1,8 +1,32 @@ | ||||
| /* | ||||
|  * galileo_e5a_dll_pll_tracking_cc.cc | ||||
| /*! | ||||
|  * \file galileo_e5a_dll_fll_pll_tracking_cc.h | ||||
|  * \brief Implementation of a code DLL + carrier PLL | ||||
|  *  tracking block for Galileo E5a signals | ||||
|  * \author Marc Sales, 2014. marcsales92(at)gmail.com | ||||
|  * | ||||
|  *  Created on: Jun 19, 2014 | ||||
|  *      Author: marc | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2014  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
|  * | ||||
|  * This file is part of GNSS-SDR. | ||||
|  * | ||||
|  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
|  * it under the terms of the GNU General Public License as published by | ||||
|  * the Free Software Foundation, either version 3 of the License, or | ||||
|  * at your option) any later version. | ||||
|  * | ||||
|  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  * GNU General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU General Public License | ||||
|  * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>. | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #include "galileo_e5a_dll_pll_tracking_cc.h" | ||||
| @@ -24,7 +48,8 @@ | ||||
| /*! | ||||
|  * \todo Include in definition header file | ||||
|  */ | ||||
| #define CN0_ESTIMATION_SAMPLES 20 | ||||
| //#define CN0_ESTIMATION_SAMPLES 20 | ||||
| #define CN0_ESTIMATION_SAMPLES 80 | ||||
| #define MINIMUM_VALID_CN0 25 | ||||
| #define MAXIMUM_LOCK_FAIL_COUNTER 50 | ||||
| #define CARRIER_LOCK_THRESHOLD 0.85 | ||||
| @@ -77,8 +102,8 @@ Galileo_E5a_Dll_Pll_Tracking_cc::Galileo_E5a_Dll_Pll_Tracking_cc( | ||||
|     d_fs_in = fs_in; | ||||
|     d_vector_length = vector_length; | ||||
|     d_dump_filename = dump_filename; | ||||
|     d_code_loop_filter = Tracking_2nd_DLL_filter(Galileo_E1_CODE_PERIOD); | ||||
|     d_carrier_loop_filter = Tracking_2nd_PLL_filter(Galileo_E1_CODE_PERIOD); | ||||
|     d_code_loop_filter = Tracking_2nd_DLL_filter(GALILEO_E5a_CODE_PERIOD); | ||||
|     d_carrier_loop_filter = Tracking_2nd_PLL_filter(GALILEO_E5a_CODE_PERIOD); | ||||
|  | ||||
|     // Initialize tracking  ========================================== | ||||
|     d_code_loop_filter.set_DLL_BW(dll_bw_hz); | ||||
| @@ -124,6 +149,9 @@ Galileo_E5a_Dll_Pll_Tracking_cc::Galileo_E5a_Dll_Pll_Tracking_cc( | ||||
|     d_pull_in = false; | ||||
|     d_last_seg = 0; | ||||
|  | ||||
|     d_secondary_lock=false; | ||||
|     d_secondary_delay=0; | ||||
|  | ||||
|     d_current_prn_length_samples = (int)d_vector_length; | ||||
|  | ||||
|     // CN0 estimation and lock detector buffers | ||||
| @@ -210,7 +238,9 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::start_tracking() | ||||
|     d_code_loop_filter.initialize();    // initialize the code filter | ||||
|  | ||||
|     // generate local reference ALWAYS starting at chip 1 (1 sample per chip) | ||||
|     galileo_e5_a_code_gen_complex_primary(&d_code[1], d_acquisition_gnss_synchro->PRN, d_acquisition_gnss_synchro->Signal); | ||||
|     char sig_pilot[3]; | ||||
|     strcpy(sig_pilot,"5Q"); | ||||
|     galileo_e5_a_code_gen_complex_primary(&d_code[1], d_acquisition_gnss_synchro->PRN, sig_pilot); | ||||
|  | ||||
|     d_code[0] = d_code[(int)Galileo_E5a_CODE_LENGTH_CHIPS]; | ||||
|     d_code[(int)Galileo_E5a_CODE_LENGTH_CHIPS + 1] = d_code[1]; | ||||
| @@ -239,7 +269,71 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::start_tracking() | ||||
|             << " Code Phase correction [samples]=" << delay_correction_samples | ||||
|             << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples; | ||||
| } | ||||
|  | ||||
| void Galileo_E5a_Dll_Pll_Tracking_cc::acquire_secondary() | ||||
| { | ||||
|     //d_Prompt_buffer | ||||
|     //CN0_ESTIMATION_SAMPLES | ||||
|     //d_secondary_lock | ||||
|     //d_secondary_delay | ||||
|     // 1. Transform replica to 1 and -1 | ||||
|     int sec_code_signed[Galileo_E5a_Q_SECONDARY_CODE_LENGTH]; | ||||
|     for (unsigned int i=0; i<Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++) | ||||
| 	{ | ||||
| 	    if (Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN-1].at(i) == '0') | ||||
| 		{ | ||||
| 		    sec_code_signed[i]=1; | ||||
| 		} | ||||
| 	    else | ||||
| 		{ | ||||
| 		    sec_code_signed[i]=-1; | ||||
| 		} | ||||
| 	} | ||||
|     // 2. Transform buffer to 1 and -1 | ||||
|     int in_corr[CN0_ESTIMATION_SAMPLES]; | ||||
|     for (unsigned int i=0; i<CN0_ESTIMATION_SAMPLES; i++) | ||||
| 	{ | ||||
| 	    std::cout << d_Prompt_buffer[i] << std::endl; | ||||
| 	    if (d_Prompt_buffer[i].real() >0) | ||||
| 		{ | ||||
| 		    in_corr[i]=1; | ||||
| 		} | ||||
| 	    else | ||||
| 		{ | ||||
| 		    in_corr[i]=-1; | ||||
| 		} | ||||
| 	} | ||||
|     // 3. Serial search | ||||
|     int out_corr; | ||||
|     int current_best_=0; | ||||
|     for (unsigned int i=0; i<Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++) | ||||
| 	{ | ||||
| 	    out_corr=0; | ||||
| 	    for (unsigned int j=0; j<CN0_ESTIMATION_SAMPLES; j++) | ||||
| 		{ | ||||
| 		    //reverse replica sign since i*i=-1 (conjugated complex) | ||||
| 		    out_corr += in_corr[j] * -sec_code_signed[(j+i)%Galileo_E5a_Q_SECONDARY_CODE_LENGTH]; | ||||
| 		} | ||||
| 	    // VOLK function uses floats, possibly slower | ||||
| //	    if (is_unaligned()) | ||||
| //		{ | ||||
| //		    volk_32f_x2_dot_prod_32f_u(); | ||||
| //		} | ||||
| //	    else | ||||
| //		{ | ||||
| //		    volk_32f_x2_dot_prod_32f_a(); | ||||
| //		} | ||||
| 	    if (abs(out_corr) > current_best_) | ||||
| 		{ | ||||
| 		    current_best_ = abs(out_corr); | ||||
| 		    d_secondary_delay=i; | ||||
| 		} | ||||
| 	} | ||||
|     //if (current_best_ > SECONDARY_THRESHOLD) | ||||
|     if (current_best_ >= 0.8*CN0_ESTIMATION_SAMPLES) | ||||
| 	{ | ||||
| 	    d_secondary_lock = true; | ||||
| 	} | ||||
| } | ||||
| void Galileo_E5a_Dll_Pll_Tracking_cc::update_local_code() | ||||
| { | ||||
|     double tcode_chips; | ||||
| @@ -254,7 +348,10 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::update_local_code() | ||||
|     code_phase_step_chips = ((double)d_code_freq_chips) / ((double)d_fs_in); | ||||
|     rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in); | ||||
|     tcode_chips = -rem_code_phase_chips; | ||||
| // SPACING USING QUADRATURE COMPONENT as 0.5 CHIP | ||||
|     double corr_spc_samples = d_early_late_spc_chips / code_phase_step_chips; | ||||
|  | ||||
| // CONVENTIONAL | ||||
|     // Alternative EPL code generation (40% of speed improvement!) | ||||
|     early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips); | ||||
|     epl_loop_length_samples = d_current_prn_length_samples + early_late_spc_samples*2; | ||||
| @@ -267,6 +364,11 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::update_local_code() | ||||
|  | ||||
|     memcpy(d_prompt_code,&d_early_code[early_late_spc_samples],d_current_prn_length_samples* sizeof(gr_complex)); | ||||
|     memcpy(d_late_code,&d_early_code[early_late_spc_samples*2],d_current_prn_length_samples* sizeof(gr_complex)); | ||||
|  | ||||
| //EXPERIMENTAL | ||||
|  | ||||
|  | ||||
|  | ||||
| } | ||||
|  | ||||
|  | ||||
| @@ -296,159 +398,187 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_ | ||||
|  | ||||
|     if (d_enable_tracking == true) | ||||
|         { | ||||
|             // Receiver signal alignment | ||||
|             if (d_pull_in == true) | ||||
|                 { | ||||
|                     int samples_offset; | ||||
|                     float acq_trk_shif_correction_samples; | ||||
|                     int acq_to_trk_delay_samples; | ||||
|                     acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp; | ||||
|                     acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod((float)acq_to_trk_delay_samples, (float)d_current_prn_length_samples); | ||||
|                     samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples); | ||||
|                     // /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE | ||||
|                     //d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / (double)d_fs_in); | ||||
|                     d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples | ||||
|                     d_pull_in = false; | ||||
|                     //std::cout<<" samples_offset="<<samples_offset<<"\r\n"; | ||||
|                     consume_each(samples_offset); //shift input to perform alignment with local replica | ||||
|                     return 1; | ||||
|                 } | ||||
| 	    if (d_secondary_lock==false) | ||||
| 		{ | ||||
| 		    // Receiver signal alignment | ||||
| 		    if (d_pull_in == true) | ||||
| 			{ | ||||
| 			    int samples_offset; | ||||
| 			    float acq_trk_shif_correction_samples; | ||||
| 			    int acq_to_trk_delay_samples; | ||||
| 			    acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp; | ||||
| 			    acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod((float)acq_to_trk_delay_samples, (float)d_current_prn_length_samples); | ||||
| 			    samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples); | ||||
| 			    // /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE | ||||
| 			    //d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / (double)d_fs_in); | ||||
| 			    d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples | ||||
| 			    d_pull_in = false; | ||||
| 			    std::cout<<" samples_offset="<<samples_offset<<"\r\n"; | ||||
| 			    consume_each(samples_offset); //shift input to perform alignment with local replica | ||||
| 			    return 1; | ||||
| 			} | ||||
|  | ||||
|             // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder | ||||
|             Gnss_Synchro current_synchro_data; | ||||
|             // Fill the acquisition data | ||||
|             current_synchro_data = *d_acquisition_gnss_synchro; | ||||
| 		    // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder | ||||
| 		    Gnss_Synchro current_synchro_data; | ||||
| 		    // Fill the acquisition data | ||||
| 		    current_synchro_data = *d_acquisition_gnss_synchro; | ||||
|  | ||||
|             // Block input data and block output stream pointers | ||||
|             const gr_complex* in = (gr_complex*) input_items[0]; //PRN start block alignment | ||||
|             Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; | ||||
| 		    // Block input data and block output stream pointers | ||||
| 		    const gr_complex* in = (gr_complex*) input_items[0]; //PRN start block alignment | ||||
| 		    Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; | ||||
|  | ||||
|             // Generate local code and carrier replicas (using \hat{f}_d(k-1)) | ||||
|             update_local_code(); | ||||
|             update_local_carrier(); | ||||
| 		    // Generate local code and carrier replicas (using \hat{f}_d(k-1)) | ||||
| 		    update_local_code(); | ||||
| 		    update_local_carrier(); | ||||
|  | ||||
|             // perform carrier wipe-off and compute Early, Prompt and Late correlation | ||||
|             d_correlator.Carrier_wipeoff_and_EPL_volk(d_current_prn_length_samples, | ||||
|                     in, | ||||
|                     d_carr_sign, | ||||
|                     d_early_code, | ||||
|                     d_prompt_code, | ||||
|                     d_late_code, | ||||
|                     d_Early, | ||||
|                     d_Prompt, | ||||
|                     d_Late, | ||||
|                     is_unaligned()); | ||||
| 		    // perform carrier wipe-off and compute Early, Prompt and Late correlation | ||||
| 		    d_correlator.Carrier_wipeoff_and_EPL_volk(d_current_prn_length_samples, | ||||
| 		                                              in, | ||||
| 		                                              d_carr_sign, | ||||
| 		                                              d_early_code, | ||||
| 		                                              d_prompt_code, | ||||
| 		                                              d_late_code, | ||||
| 		                                              d_Early, | ||||
| 		                                              d_Prompt, | ||||
| 		                                              d_Late, | ||||
| 		                                              is_unaligned()); | ||||
|  | ||||
|             // check for samples consistency (this should be done before in the receiver / here only if the source is a file) | ||||
|             if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true ) // or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true) | ||||
|                 { | ||||
|                     const int samples_available = ninput_items[0]; | ||||
|                     d_sample_counter = d_sample_counter + samples_available; | ||||
|                     LOG(WARNING) << "Detected NaN samples at sample number " << d_sample_counter; | ||||
|                     consume_each(samples_available); | ||||
| 		    // check for samples consistency (this should be done before in the receiver / here only if the source is a file) | ||||
| 		    if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true ) // or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true) | ||||
| 			{ | ||||
| 			    const int samples_available = ninput_items[0]; | ||||
| 			    d_sample_counter = d_sample_counter + samples_available; | ||||
| 			    LOG(WARNING) << "Detected NaN samples at sample number " << d_sample_counter; | ||||
| 			    consume_each(samples_available); | ||||
|  | ||||
|                     // make an output to not stop the rest of the processing blocks | ||||
|                     current_synchro_data.Prompt_I = 0.0; | ||||
|                     current_synchro_data.Prompt_Q = 0.0; | ||||
|                     current_synchro_data.Tracking_timestamp_secs = (double)d_sample_counter/(double)d_fs_in; | ||||
|                     current_synchro_data.Carrier_phase_rads = 0.0; | ||||
|                     current_synchro_data.Code_phase_secs = 0.0; | ||||
|                     current_synchro_data.CN0_dB_hz = 0.0; | ||||
|                     current_synchro_data.Flag_valid_tracking = false; | ||||
| 			    // make an output to not stop the rest of the processing blocks | ||||
| 			    current_synchro_data.Prompt_I = 0.0; | ||||
| 			    current_synchro_data.Prompt_Q = 0.0; | ||||
| 			    current_synchro_data.Tracking_timestamp_secs = (double)d_sample_counter/(double)d_fs_in; | ||||
| 			    current_synchro_data.Carrier_phase_rads = 0.0; | ||||
| 			    current_synchro_data.Code_phase_secs = 0.0; | ||||
| 			    current_synchro_data.CN0_dB_hz = 0.0; | ||||
| 			    current_synchro_data.Flag_valid_tracking = false; | ||||
|  | ||||
|                     *out[0] = current_synchro_data; | ||||
| 			    *out[0] = current_synchro_data; | ||||
|  | ||||
|                     return 1; | ||||
|                 } | ||||
| 			    return 1; | ||||
| 			} | ||||
|  | ||||
|             // ################## PLL ########################################################## | ||||
|             // PLL discriminator | ||||
|             carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / (float)GALILEO_PI*2; | ||||
|             // Carrier discriminator filter | ||||
|             carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz); | ||||
|             // New carrier Doppler frequency estimation | ||||
|             d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz; | ||||
|             // New code Doppler frequency estimation | ||||
|             d_code_freq_chips = Galileo_E5a_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E5a_CODE_CHIP_RATE_HZ) / Galileo_E5a_FREQ_HZ); | ||||
|             //carrier phase accumulator for (K) doppler estimation | ||||
|             d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + 2*GALILEO_PI*d_carrier_doppler_hz*GPS_L1_CA_CODE_PERIOD; | ||||
|             //remanent carrier phase to prevent overflow in the code NCO | ||||
|             d_rem_carr_phase_rad = d_rem_carr_phase_rad+2*GALILEO_PI*d_carrier_doppler_hz*GALILEO_E5a_CODE_PERIOD; | ||||
|             d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, 2*GALILEO_PI); | ||||
| 		    // ################## PLL ########################################################## | ||||
| 		    // PLL discriminator | ||||
| 		    carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / (float)GALILEO_PI*2; | ||||
| 		    // Carrier discriminator filter | ||||
| 		    carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz); | ||||
| 		    // New carrier Doppler frequency estimation | ||||
| 		    d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz; | ||||
| 		    // New code Doppler frequency estimation | ||||
| 		    d_code_freq_chips = Galileo_E5a_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E5a_CODE_CHIP_RATE_HZ) / Galileo_E5a_FREQ_HZ); | ||||
| 		    //carrier phase accumulator for (K) doppler estimation | ||||
| 		    d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + 2*GALILEO_PI*d_carrier_doppler_hz*GALILEO_E5a_CODE_PERIOD; | ||||
| 		    //remanent carrier phase to prevent overflow in the code NCO | ||||
| 		    d_rem_carr_phase_rad = d_rem_carr_phase_rad+2*GALILEO_PI*d_carrier_doppler_hz*GALILEO_E5a_CODE_PERIOD; | ||||
| 		    d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, 2*GALILEO_PI); | ||||
|  | ||||
|             // ################## DLL ########################################################## | ||||
|             // DLL discriminator | ||||
|             code_error_chips = dll_nc_e_minus_l_normalized(*d_Early, *d_Late); //[chips/Ti] | ||||
|             // Code discriminator filter | ||||
|             code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second] | ||||
|             //Code phase accumulator | ||||
|             float code_error_filt_secs; | ||||
|             code_error_filt_secs = (GALILEO_E5a_CODE_PERIOD*code_error_filt_chips)/Galileo_E5a_CODE_CHIP_RATE_HZ; //[seconds] | ||||
|             d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs; | ||||
| 		    // ################## DLL ########################################################## | ||||
| 		    // DLL discriminator | ||||
| 		    code_error_chips = dll_nc_e_minus_l_normalized(*d_Early, *d_Late); //[chips/Ti] | ||||
| 		    // Code discriminator filter | ||||
| 		    code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second] | ||||
| 		    //Code phase accumulator | ||||
| 		    float code_error_filt_secs; | ||||
| 		    code_error_filt_secs = (GALILEO_E5a_CODE_PERIOD*code_error_filt_chips)/Galileo_E5a_CODE_CHIP_RATE_HZ; //[seconds] | ||||
| 		    d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs; | ||||
|  | ||||
|             // ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### | ||||
|             // keep alignment parameters for the next input buffer | ||||
|             float T_chip_seconds; | ||||
|             float T_prn_seconds; | ||||
|             float T_prn_samples; | ||||
|             float K_blk_samples; | ||||
|             // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation | ||||
|             T_chip_seconds = 1 / d_code_freq_chips; | ||||
|             T_prn_seconds = T_chip_seconds * Galileo_E5a_CODE_LENGTH_CHIPS; | ||||
|             T_prn_samples = T_prn_seconds * (float)d_fs_in; | ||||
|             K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs*(float)d_fs_in; | ||||
|             d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples | ||||
|             d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample | ||||
| 		    std::cout<< "Early " << *d_Early << std::endl; | ||||
| 		    std::cout<< "Prompt " << *d_Prompt << std::endl; | ||||
| 		    std::cout<< "Late " << *d_Late << std::endl; | ||||
| 		    // ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### | ||||
| 		    // keep alignment parameters for the next input buffer | ||||
| 		    float T_chip_seconds; | ||||
| 		    float T_prn_seconds; | ||||
| 		    float T_prn_samples; | ||||
| 		    float K_blk_samples; | ||||
| 		    // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation | ||||
| 		    T_chip_seconds = 1 / d_code_freq_chips; | ||||
| 		    T_prn_seconds = T_chip_seconds * Galileo_E5a_CODE_LENGTH_CHIPS; | ||||
| 		    T_prn_samples = T_prn_seconds * (float)d_fs_in; | ||||
| 		    K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs*(float)d_fs_in; | ||||
| 		    d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples | ||||
| 		    d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample | ||||
|  | ||||
|             // ####### CN0 ESTIMATION AND LOCK DETECTORS ###### | ||||
|             if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES) | ||||
|                 { | ||||
|                     // fill buffer with prompt correlator output values | ||||
|                     d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt; | ||||
|                     d_cn0_estimation_counter++; | ||||
|                 } | ||||
|             else | ||||
|                 { | ||||
|                     d_cn0_estimation_counter = 0; | ||||
|                     // Code lock indicator | ||||
|                     d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, Galileo_E5a_CODE_LENGTH_CHIPS); | ||||
|                     // Carrier lock indicator | ||||
|                     d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES); | ||||
|                     // Loss of lock detection | ||||
|                     if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0) | ||||
|                         { | ||||
|                             d_carrier_lock_fail_counter++; | ||||
|                         } | ||||
|                     else | ||||
|                         { | ||||
|                             if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--; | ||||
|                         } | ||||
|                     if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER) | ||||
|                         { | ||||
|                             std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; | ||||
|                             LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; | ||||
|                             ControlMessageFactory* cmf = new ControlMessageFactory(); | ||||
|                             if (d_queue != gr::msg_queue::sptr()) | ||||
|                                 { | ||||
|                                     d_queue->handle(cmf->GetQueueMessage(d_channel, 2)); | ||||
|                                 } | ||||
|                             delete cmf; | ||||
|                             d_carrier_lock_fail_counter = 0; | ||||
|                             d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine | ||||
|                         } | ||||
|                 } | ||||
|             // ########### Output the tracking data to navigation and PVT ########## | ||||
|             current_synchro_data.Prompt_I = (double)(*d_Prompt).real(); | ||||
|             current_synchro_data.Prompt_Q = (double)(*d_Prompt).imag(); | ||||
|             // Tracking_timestamp_secs is aligned with the PRN start sample | ||||
|             current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples)/(double)d_fs_in; | ||||
|             // This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0 | ||||
|             current_synchro_data.Code_phase_secs = 0; | ||||
|             current_synchro_data.Carrier_phase_rads = (double)d_acc_carrier_phase_rad; | ||||
|             current_synchro_data.Carrier_Doppler_hz = (double)d_carrier_doppler_hz; | ||||
|             current_synchro_data.CN0_dB_hz = (double)d_CN0_SNV_dB_Hz; | ||||
|             *out[0] = current_synchro_data; | ||||
| 		    // ####### CN0 ESTIMATION AND LOCK DETECTORS ###### | ||||
| 		    if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES) | ||||
| 			{ | ||||
| 			    // fill buffer with prompt correlator output values | ||||
| 			    d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt; | ||||
| 			    d_cn0_estimation_counter++; | ||||
| 			} | ||||
| 		    else | ||||
| 			{ | ||||
| 			    // ATTEMPT SECONDARY CODE ACQUISITION | ||||
| 			    acquire_secondary(); // changes d_secondary_lock and d_secondary_delay | ||||
| 			    // | ||||
| 			    d_cn0_estimation_counter = 0; | ||||
| 			    // Code lock indicator | ||||
| 			    d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, Galileo_E5a_CODE_LENGTH_CHIPS); | ||||
| 			    // Carrier lock indicator | ||||
| 			    d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES); | ||||
| 			    // Loss of lock detection | ||||
| 			    if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0) | ||||
| 				{ | ||||
| 				    d_carrier_lock_fail_counter++; | ||||
| 				} | ||||
| 			    else | ||||
| 				{ | ||||
| 				    if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--; | ||||
| 				} | ||||
| 			    if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER) | ||||
| 				{ | ||||
| 				    std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; | ||||
| 				    LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; | ||||
| 				    ControlMessageFactory* cmf = new ControlMessageFactory(); | ||||
| 				    if (d_queue != gr::msg_queue::sptr()) | ||||
| 					{ | ||||
| 					    d_queue->handle(cmf->GetQueueMessage(d_channel, 2)); | ||||
| 					} | ||||
| 				    delete cmf; | ||||
| 				    d_carrier_lock_fail_counter = 0; | ||||
| 				    d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine | ||||
| 				} | ||||
| 			} | ||||
|  | ||||
| 		    // make an output to not stop the rest of the processing blocks | ||||
| 		    current_synchro_data.Prompt_I = 0.0; | ||||
| 		    current_synchro_data.Prompt_Q = 0.0; | ||||
| 		    current_synchro_data.Tracking_timestamp_secs = (double)d_sample_counter/(double)d_fs_in; | ||||
| 		    current_synchro_data.Carrier_phase_rads = 0.0; | ||||
| 		    current_synchro_data.Code_phase_secs = 0.0; | ||||
| 		    current_synchro_data.CN0_dB_hz = 0.0; | ||||
| 		    current_synchro_data.Flag_valid_tracking = false; | ||||
|  | ||||
| 		    *out[0] = current_synchro_data; | ||||
|  | ||||
|  | ||||
|  | ||||
| 		} | ||||
| 	    else | ||||
| 		{ | ||||
| 		    // code with known secondary chip delay | ||||
| 		    // ########### Output the tracking data to navigation and PVT ########## | ||||
| 		    /* | ||||
| 		    current_synchro_data.Prompt_I = (double)(*d_Prompt).real(); | ||||
| 		    current_synchro_data.Prompt_Q = (double)(*d_Prompt).imag(); | ||||
| 		    // Tracking_timestamp_secs is aligned with the PRN start sample | ||||
| 		    current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples)/(double)d_fs_in; | ||||
| 		    // This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0 | ||||
| 		    current_synchro_data.Code_phase_secs = 0; | ||||
| 		    current_synchro_data.Carrier_phase_rads = (double)d_acc_carrier_phase_rad; | ||||
| 		    current_synchro_data.Carrier_Doppler_hz = (double)d_carrier_doppler_hz; | ||||
| 		    current_synchro_data.CN0_dB_hz = (double)d_CN0_SNV_dB_Hz; | ||||
| 		    *out[0] = current_synchro_data; | ||||
| 		    */ | ||||
| 		} | ||||
|             // ########## DEBUG OUTPUT | ||||
|             /*! | ||||
|              *  \todo The stop timer has to be moved to the signal source! | ||||
|   | ||||
| @@ -1,8 +1,32 @@ | ||||
| /* | ||||
|  * galileo_e5a_dll_pll_tracking_cc.h | ||||
| /*! | ||||
|  * \file galileo_e5a_dll_fll_pll_tracking_cc.h | ||||
|  * \brief Implementation of a code DLL + carrier PLL | ||||
|  *  tracking block for Galileo E5a signals | ||||
|  * \author Marc Sales, 2014. marcsales92(at)gmail.com | ||||
|  * | ||||
|  *  Created on: Jun 19, 2014 | ||||
|  *      Author: marc | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2014  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
|  * | ||||
|  * This file is part of GNSS-SDR. | ||||
|  * | ||||
|  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
|  * it under the terms of the GNU General Public License as published by | ||||
|  * the Free Software Foundation, either version 3 of the License, or | ||||
|  * at your option) any later version. | ||||
|  * | ||||
|  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  * GNU General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU General Public License | ||||
|  * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>. | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #ifndef GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_CC_H_ | ||||
| @@ -82,7 +106,7 @@ private: | ||||
|             float early_late_space_chips); | ||||
|     void update_local_code(); | ||||
|     void update_local_carrier(); | ||||
|  | ||||
|     void acquire_secondary(); | ||||
|     // tracking configuration vars | ||||
|     boost::shared_ptr<gr::msg_queue> d_queue; | ||||
|     concurrent_queue<int> *d_channel_internal_queue; | ||||
| @@ -148,6 +172,10 @@ private: | ||||
|     bool d_enable_tracking; | ||||
|     bool d_pull_in; | ||||
|  | ||||
|     // Secondary code acquisition | ||||
|     bool d_secondary_lock; | ||||
|     int d_secondary_delay; | ||||
|  | ||||
|     // file dump | ||||
|     std::string d_dump_filename; | ||||
|     std::ofstream d_dump_file; | ||||
|   | ||||
| @@ -68,6 +68,7 @@ | ||||
| #include "galileo_e5a_pcps_acquisition.h" // | ||||
| #include "galileo_e5a_pilot_3ms_acquisition.h" | ||||
| #include "galileo_e5ax_2ms_pcps_acquisition.h" | ||||
| #include "galileo_e5a_3ms_noncoherent_iq_acquisition.h" | ||||
| #include "gps_l1_ca_dll_pll_tracking.h" | ||||
| #include "gps_l1_ca_dll_pll_optim_tracking.h" | ||||
| #include "gps_l1_ca_dll_fll_pll_tracking.h" | ||||
| @@ -477,6 +478,12 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetBlock( | ||||
|                     out_streams, queue)); | ||||
|             block = std::move(block_); | ||||
|         } | ||||
|     else if (implementation.compare("Galileo_E5a_3ms_Noncoherent_IQ_Acquisition") == 0) | ||||
|         { | ||||
|             std::unique_ptr<GNSSBlockInterface> block_(new GalileoE5a3msNoncoherentIQAcquisition(configuration.get(), role, in_streams, | ||||
|                     out_streams, queue)); | ||||
|             block = std::move(block_); | ||||
|         } | ||||
|  | ||||
|  | ||||
|     // TRACKING BLOCKS ------------------------------------------------------------- | ||||
| @@ -703,6 +710,12 @@ std::unique_ptr<AcquisitionInterface> GNSSBlockFactory::GetAcqBlock( | ||||
|                     out_streams, queue)); | ||||
|             block = std::move(block_); | ||||
|         } | ||||
|     else if (implementation.compare("Galileo_E5a_3ms_Noncoherent_IQ_Acquisition") == 0) | ||||
|         { | ||||
|             std::unique_ptr<AcquisitionInterface> block_(new GalileoE5a3msNoncoherentIQAcquisition(configuration.get(), role, in_streams, | ||||
|                     out_streams, queue)); | ||||
|             block = std::move(block_); | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             // Log fatal. This causes execution to stop. | ||||
|   | ||||
| @@ -1,8 +1,32 @@ | ||||
| /* | ||||
|  * galileo_e5a_pcps_acquisition_gsoc2014_test.cc | ||||
| /*! | ||||
|  * \file galileo_e5a_pcps_acquisition_gsoc2014_gensource_test.cc | ||||
|  * \brief  This class implements an acquisition test for | ||||
|  * GalileoE5a3msNoncoherentIQAcquisition class. | ||||
|  * \author Marc Sales, 2014. marcsales92(at)gmail.com | ||||
|  * | ||||
|  *  Created on: Jun 6, 2014 | ||||
|  *      Author: marc | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2014  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
|  * | ||||
|  * This file is part of GNSS-SDR. | ||||
|  * | ||||
|  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
|  * it under the terms of the GNU General Public License as published by | ||||
|  * the Free Software Foundation, either version 3 of the License, or | ||||
|  * at your option) any later version. | ||||
|  * | ||||
|  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  * GNU General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU General Public License | ||||
|  * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>. | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #include <ctime> | ||||
| @@ -13,6 +37,7 @@ | ||||
| #include <gnuradio/analog/sig_source_c.h> | ||||
| #include <gnuradio/msg_queue.h> | ||||
| #include <gnuradio/blocks/null_sink.h> | ||||
| #include "gnss_block_factory.h" | ||||
| #include "gnss_block_interface.h" | ||||
| #include "in_memory_configuration.h" | ||||
| #include "configuration_interface.h" | ||||
| @@ -20,6 +45,7 @@ | ||||
| #include "galileo_e5a_pcps_acquisition.h" | ||||
| #include "galileo_e5a_pilot_3ms_acquisition.h" | ||||
| #include "galileo_e5ax_2ms_pcps_acquisition.h" | ||||
| #include "galileo_e5a_3ms_noncoherent_iq_acquisition.h" | ||||
| #include "signal_generator.h" | ||||
| #include "signal_generator_c.h" | ||||
| #include "fir_filter.h" | ||||
| @@ -38,6 +64,7 @@ protected: | ||||
|     { | ||||
|         queue = gr::msg_queue::make(0); | ||||
|         top_block = gr::make_top_block("Acquisition test"); | ||||
|  | ||||
|         item_size = sizeof(gr_complex); | ||||
|         stop = false; | ||||
|         message = 0; | ||||
| @@ -58,9 +85,11 @@ protected: | ||||
|  | ||||
|     gr::msg_queue::sptr queue; | ||||
|     gr::top_block_sptr top_block; | ||||
|     //GalileoE5aPcpsAcquisition *acquisition; | ||||
|     GalileoE5aPilot_3msAcquisition *acquisition; | ||||
|     //std::shared_ptr<GNSSBlockFactory> factory = std::make_shared<GNSSBlockFactory>(); | ||||
| //    GalileoE5aPcpsAcquisition *acquisition; | ||||
|     //GalileoE5aPilot_3msAcquisition *acquisition; | ||||
|     //GalileoE5ax2msPcpsAcquisition *acquisition; | ||||
|     GalileoE5a3msNoncoherentIQAcquisition *acquisition; | ||||
|     std::shared_ptr<InMemoryConfiguration> config; | ||||
|     Gnss_Synchro gnss_synchro; | ||||
|     size_t item_size; | ||||
| @@ -123,21 +152,25 @@ void GalileoE5aPcpsAcquisitionGSoC2014GensourceTest::config_1() | ||||
| { | ||||
|     gnss_synchro.Channel_ID = 0; | ||||
|     gnss_synchro.System = 'E'; | ||||
|     std::string signal = "5I"; | ||||
|     //std::string signal = "5Q"; | ||||
|     std::string signal = "5X"; | ||||
|     //std::string signal = "5X"; | ||||
|     signal.copy(gnss_synchro.Signal,2,0); | ||||
|  | ||||
|  | ||||
|     integration_time_ms = 1; | ||||
|     integration_time_ms = 3; | ||||
|     //fs_in = 10.24e6; | ||||
|     //fs_in = 12e6; | ||||
|     fs_in = 12e6; | ||||
|     //fs_in = 18e6; | ||||
|     fs_in = 32e6; | ||||
|  | ||||
|     //expected_delay_chips = 600; | ||||
|     //expected_doppler_hz = 750; | ||||
| //    unsigned int delay_samples = (delay_chips_[sat] % codelen) | ||||
| //                	      * samples_per_code_[sat] / codelen; | ||||
|     expected_delay_chips = round(14000*((double)10230000/(double)fs_in)); | ||||
|     expected_doppler_hz = 2800; | ||||
|     expected_delay_sec = 94; | ||||
|  | ||||
|     expected_delay_chips = 1000; | ||||
|     expected_doppler_hz = 250; | ||||
|     //expected_delay_chips = 1000; | ||||
|     //expected_doppler_hz = 250; | ||||
|     max_doppler_error_hz = 2/(3*integration_time_ms*1e-3); | ||||
|     max_delay_error_chips = 0.50; | ||||
|  | ||||
| @@ -159,9 +192,10 @@ void GalileoE5aPcpsAcquisitionGSoC2014GensourceTest::config_1() | ||||
|     config->set_property("SignalSource.system_0", "E"); | ||||
|     config->set_property("SignalSource.signal_0", "5X"); | ||||
|     config->set_property("SignalSource.PRN_0", "11"); | ||||
|     config->set_property("SignalSource.CN0_dB_0", "44"); | ||||
|     config->set_property("SignalSource.CN0_dB_0", "50"); | ||||
|     config->set_property("SignalSource.doppler_Hz_0", std::to_string(expected_doppler_hz)); | ||||
|     config->set_property("SignalSource.delay_chips_0", std::to_string(expected_delay_chips)); | ||||
|     config->set_property("SignalSource.delay_sec_0", std::to_string(expected_delay_sec)); | ||||
|  | ||||
|     config->set_property("SignalSource.noise_flag", "false"); | ||||
|     config->set_property("SignalSource.data_flag", "false"); | ||||
| @@ -194,15 +228,18 @@ void GalileoE5aPcpsAcquisitionGSoC2014GensourceTest::config_1() | ||||
|     config->set_property("Acquisition.coherent_integration_time_ms", | ||||
|                          std::to_string(integration_time_ms)); | ||||
|     config->set_property("Acquisition.max_dwells", "1"); | ||||
|     config->set_property("Acquisition.implementation", "Galileo_E5a_PCPS_Acquisition"); | ||||
| //    config->set_property("Acquisition.implementation", "Galileo_E5a_PCPS_Acquisition"); | ||||
|     //config->set_property("Acquisition.implementation", "Galileo_E5a_Pilot_3ms_Acquisition"); | ||||
|  | ||||
|     config->set_property("Acquisition.implementation", "Galileo_E5a_3ms_Noncoherent_IQ_Acquisition"); | ||||
|     config->set_property("Acquisition.threshold", "0.1"); | ||||
|     config->set_property("Acquisition.doppler_max", "10000"); | ||||
|     config->set_property("Acquisition.doppler_step", "250"); | ||||
|     config->set_property("Acquisition.bit_transition_flag", "true"); | ||||
|     config->set_property("Acquisition.bit_transition_flag", "false"); | ||||
|     config->set_property("Acquisition.dump", "true"); | ||||
|     config->set_property("SignalSource.dump_filename", "../data/acquisition.dat"); | ||||
|  | ||||
| } | ||||
|  | ||||
| void GalileoE5aPcpsAcquisitionGSoC2014GensourceTest::config_2() | ||||
| { | ||||
|     gnss_synchro.Channel_ID = 0; | ||||
| @@ -477,23 +514,26 @@ void GalileoE5aPcpsAcquisitionGSoC2014GensourceTest::stop_queue() | ||||
| /* | ||||
| TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, Instantiate) | ||||
| { | ||||
|     config_2(); | ||||
|     config_1(); | ||||
| //    acquisition = new GalileoE5aPilot_3msAcquisition(config.get(), "Acquisition", 1, 1, queue); | ||||
|     acquisition = new GalileoE5ax2msPcpsAcquisition(config.get(), "Acquisition", 1, 1, queue); | ||||
|     acquisition = new GalileoE5a3msNoncoherentIQAcquisition(config.get(), "Acquisition", 1, 1, queue); | ||||
|  | ||||
|     delete acquisition; | ||||
|  | ||||
| } | ||||
|  | ||||
|  | ||||
| */ | ||||
| /* | ||||
| TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, ConnectAndRun) | ||||
| { | ||||
|     int nsamples = floor(fs_in*integration_time_ms*1e-3); | ||||
|     config_1(); | ||||
|     //int nsamples = floor(5*fs_in*integration_time_ms*1e-3); | ||||
|     int nsamples = 21000*3; | ||||
|     struct timeval tv; | ||||
|     long long int begin = 0; | ||||
|     long long int end = 0; | ||||
|  | ||||
|     config_1(); | ||||
|     //acquisition = new GalileoE5aPcpsAcquisition(config.get(), "Acquisition", 1, 1, queue); | ||||
|     //acquisition = new GalileoE5aPilot_3msAcquisition(config.get(), "Acquisition", 1, 1, queue); | ||||
|     acquisition = new GalileoE5ax2msPcpsAcquisition(config.get(), "Acquisition", 1, 1, queue); | ||||
|     acquisition = new GalileoE5a3msNoncoherentIQAcquisition(config.get(), "Acquisition", 1, 1, queue); | ||||
|  | ||||
|  | ||||
|     ASSERT_NO_THROW( { | ||||
| @@ -556,13 +596,15 @@ TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, SOURCEValidationTOFILE) | ||||
|     }) << "Failure generating signal" << std::endl; | ||||
| } | ||||
| */ | ||||
| /* | ||||
|  | ||||
| TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, ValidationOfSIM) | ||||
| { | ||||
|     config_1(); | ||||
|  | ||||
|     int nsamples = floor(fs_in*integration_time_ms*1e-3); | ||||
|     acquisition = new GalileoE5aPcpsAcquisition(config.get(), "Acquisition", 1, 1, queue); | ||||
|     //int nsamples = floor(fs_in*integration_time_ms*1e-3); | ||||
| //    acquisition = new GalileoE5aPcpsAcquisition(config.get(), "Acquisition", 1, 1, queue); | ||||
|     acquisition = new GalileoE5a3msNoncoherentIQAcquisition(config.get(), "Acquisition", 1, 1, queue); | ||||
|     unsigned int skiphead_sps = 0; // 32 Msps | ||||
|  | ||||
|     ASSERT_NO_THROW( { | ||||
|         acquisition->set_channel(1); | ||||
| @@ -593,10 +635,10 @@ TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, ValidationOfSIM) | ||||
|     }) << "Failure connecting acquisition to the top_block."<< std::endl; | ||||
|  | ||||
|     acquisition->init(); | ||||
|  | ||||
| /* | ||||
|     ASSERT_NO_THROW( { | ||||
| 	std::string filename_ = "../data/Tiered_sink.dat"; | ||||
| 	boost::shared_ptr<gr::blocks::file_sink> file_sink_; | ||||
| 	//std::string filename_ = "../data/Tiered_sink.dat"; | ||||
| 	//boost::shared_ptr<gr::blocks::file_sink> file_sink_; | ||||
|  | ||||
|         boost::shared_ptr<GenSignalSource> signal_source; | ||||
|         SignalGenerator* signal_generator = new SignalGenerator(config.get(), "SignalSource", 0, 1, queue); | ||||
| @@ -605,37 +647,78 @@ TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, ValidationOfSIM) | ||||
|         signal_source.reset(new GenSignalSource(config.get(), signal_generator, filter, "SignalSource", queue)); | ||||
|         signal_source->connect(top_block); | ||||
|         // | ||||
|         file_sink_=gr::blocks::file_sink::make(sizeof(gr_complex), filename_.c_str()); | ||||
|         //signal_generator->connect(top_block); | ||||
|         // | ||||
|         //file_sink_=gr::blocks::file_sink::make(sizeof(gr_complex), filename_.c_str()); | ||||
|  | ||||
|         top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0); | ||||
|         top_block->connect(signal_source->get_right_block(), 0, file_sink_, 0); | ||||
|         //top_block->connect(signal_source->get_right_block(), 0, file_sink_, 0); | ||||
|         // | ||||
|         //top_block->connect(signal_generator->get_right_block(), 0, acquisition->get_left_block(), 0); | ||||
|         //top_block->connect(signal_generator->get_right_block(), 0, file_sink_, 0); | ||||
|         // | ||||
|  | ||||
|     }) << "Failure connecting the blocks of acquisition test." << std::endl; | ||||
| */ | ||||
|  | ||||
|     ASSERT_NO_THROW( { | ||||
| 	//std::string path = std::string(TEST_PATH); | ||||
| 	//std::string file =  "/home/marc/E5a_acquisitions/signal_source_21MPrimary.dat"; | ||||
| 	//noiseless | ||||
| 	std::string file =  "/home/marc/E5a_acquisitions/sim_32M_sec94_PRN11.dat"; | ||||
| 	//std::string file =  "/home/marc/E5a_acquisitions/signal_source_21MSecondary.dat"; | ||||
| 	//std::string file =  "/home/marc/E5a_acquisitions/32MS_complex.dat"; | ||||
| 	//std::string file =  "/home/marc/E5a_acquisitions/galileo_E5_8M_r2_upsampled_12.dat"; | ||||
| 	//CN040 | ||||
|  | ||||
| //    ASSERT_NO_THROW( { | ||||
| //	//std::string path = std::string(TEST_PATH); | ||||
| //	//std::string file =  "/home/marc/E5a_acquisitions/signal_source_5X_primary.dat"; | ||||
| //	std::string file =  "/home/marc/E5a_acquisitions/galileo_E5_8M_r2_upsampled_12.dat"; | ||||
| //	const char * file_name = file.c_str(); | ||||
| //	gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(gr_complex), file_name, false); | ||||
| //	top_block->connect(file_source, 0, acquisition->get_left_block(), 0); | ||||
| //    }) << "Failure connecting the blocks of acquisition test." << std::endl; | ||||
| 	const char * file_name = file.c_str(); | ||||
| 	gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(gr_complex), file_name, false); | ||||
|  | ||||
| //	gr::blocks::skiphead::sptr skip_head = gr::blocks::skiphead::make(sizeof(gr_complex), skiphead_sps); | ||||
| //	top_block->connect(file_source, 0, skip_head, 0); | ||||
| //	top_block->connect(skip_head, 0, acquisition->get_left_block(), 0); | ||||
|  | ||||
| 	top_block->connect(file_source, 0, acquisition->get_left_block(), 0); | ||||
|     }) << "Failure connecting the blocks of acquisition test." << std::endl; | ||||
|  | ||||
|     // i = 0 --> satellite in acquisition is visible | ||||
|     // i = 1 --> satellite in acquisition is not visible | ||||
|     for (unsigned int i = 0; i < 2; i++) | ||||
|     for (unsigned int i = 0; i < 1; i++) | ||||
|         { | ||||
|             init(); | ||||
|  | ||||
|             if (i == 0) | ||||
|                 { | ||||
|                     gnss_synchro.PRN = 11; // This satellite is visible | ||||
|                 } | ||||
|             else if (i == 1) | ||||
|                 { | ||||
|                     gnss_synchro.PRN = 20; // This satellite is not visible | ||||
|                 } | ||||
|             switch (i) | ||||
|             { | ||||
|         	case 0: | ||||
|         	    { | ||||
|         		//gnss_synchro.PRN = 19; //real | ||||
|         		gnss_synchro.PRN = 11; //sim | ||||
|         		break; | ||||
|         	    } | ||||
| //        	case 1: | ||||
| //        	    { | ||||
| //        		gnss_synchro.PRN = 11; | ||||
| //        		break; | ||||
| //        	    } | ||||
| //        	case 2: | ||||
| //        	    { | ||||
| //        		gnss_synchro.PRN = 12; | ||||
| //        		break; | ||||
| //        	    } | ||||
| //        	case 3: | ||||
| //        	    { | ||||
| //        		gnss_synchro.PRN = 20; | ||||
| //        		break; | ||||
| //        	    } | ||||
|             } | ||||
| //            if (i == 0) | ||||
| //                { | ||||
| //                    gnss_synchro.PRN = 11;// This satellite is visible | ||||
| //                } | ||||
| //            else if (i == 1) | ||||
| //                { | ||||
| //                    gnss_synchro.PRN = 19; // This satellite is not visible | ||||
| //                } | ||||
|  | ||||
|             acquisition->set_local_code(); | ||||
|  | ||||
| @@ -645,37 +728,40 @@ TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, ValidationOfSIM) | ||||
|                 top_block->run(); // Start threads and wait | ||||
|             }) << "Failure running he top_block."<< std::endl; | ||||
|  | ||||
|             if (i == 0) | ||||
|             { | ||||
|                 EXPECT_EQ(1, message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS."; | ||||
|                 if (message == 1) | ||||
|                     { | ||||
|                 	std::cout << gnss_synchro.Acq_delay_samples << "acq delay" <<std::endl; | ||||
|                         EXPECT_EQ((unsigned int) 1, correct_estimation_counter) << "Acquisition failure. Incorrect parameters estimation."; | ||||
|                     } | ||||
|  | ||||
|             } | ||||
|             else if (i == 1) | ||||
|             { | ||||
|                 EXPECT_EQ(2, message) << "Acquisition failure. Expected message: 2=ACQ FAIL."; | ||||
|             } | ||||
|             std::cout << gnss_synchro.Acq_delay_samples << "acq delay" <<std::endl; | ||||
|             std::cout << gnss_synchro.Acq_doppler_hz << "acq doppler" <<std::endl; | ||||
|             std::cout << gnss_synchro.Acq_samplestamp_samples << "acq samples" <<std::endl; | ||||
| //            if (i == 0) | ||||
| //            { | ||||
| //                EXPECT_EQ(1, message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS."; | ||||
| //                if (message == 1) | ||||
| //                    { | ||||
| //                	std::cout << gnss_synchro.Acq_delay_samples << "acq delay" <<std::endl; | ||||
| //                        EXPECT_EQ((unsigned int) 1, correct_estimation_counter) << "Acquisition failure. Incorrect parameters estimation."; | ||||
| //                    } | ||||
| // | ||||
| //            } | ||||
| //            else if (i == 1) | ||||
| //            { | ||||
| //                EXPECT_EQ(2, message) << "Acquisition failure. Expected message: 2=ACQ FAIL."; | ||||
| //            } | ||||
|         } | ||||
|  | ||||
| //    free(acquisition); | ||||
|     delete acquisition; | ||||
| } | ||||
| */ | ||||
|  | ||||
| /* | ||||
| TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, ValidationOfResults) | ||||
| { | ||||
|     config_2(); | ||||
|     config_1(); | ||||
|  | ||||
|     int nsamples = floor(fs_in*integration_time_ms*1e-3); | ||||
|     //acquisition = new GalileoE5aPcpsAcquisition(config.get(), "Acquisition", 1, 1, queue); | ||||
|     acquisition = new GalileoE5aPilot_3msAcquisition(config.get(), "Acquisition", 1, 1, queue); | ||||
|     //acquisition = new GalileoE5ax2msPcpsAcquisition(config.get(), "Acquisition", 1, 1, queue); | ||||
|     //unsigned int skiphead_sps = 12000000*4; // 12 Msps | ||||
|     unsigned int skiphead_sps = 37500000*4; // 12 Msps | ||||
|     unsigned int skiphead_sps = 37500000; // 12 Msps | ||||
|     //unsigned int skiphead_sps = 10; // 12 Msps | ||||
|  | ||||
|     ASSERT_NO_THROW( { | ||||
| @@ -715,8 +801,8 @@ TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, ValidationOfResults) | ||||
| 	//std::string file =  "/home/marc/E5a_acquisitions/Tiered_4sat_down_upsampled12M_stup2.dat"; | ||||
| 	//std::string file =  "/home/marc/E5a_acquisitions/Tiered_stup4_down-upsampl12.dat"; | ||||
| 	//std::string file =  "/home/marc/E5a_acquisitions/Tiered_sim_4sat_stup4_2s_up.dat"; | ||||
| 	std::string file =  "/home/marc/E5a_acquisitions/Tiered_sink_4sat_setup5_down-upsampled12M.dat"; | ||||
|  | ||||
| //	std::string file =  "/home/marc/E5a_acquisitions/Tiered_sink_4sat_setup5_down-upsampled12M.dat"; | ||||
| 	std::string file =  "/home/marc/E5a_acquisitions/32Ms_complex.dat"; | ||||
| 	//std::string file =  "/home/marc/E5a_acquisitions/galileo_E5_8M_r2_upsampled_12.dat"; | ||||
|  | ||||
| 	const char * file_name = file.c_str(); | ||||
| @@ -734,19 +820,19 @@ TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, ValidationOfResults) | ||||
|             switch (i) | ||||
|             { | ||||
|             case 0: | ||||
|         	gnss_synchro.PRN = 12; | ||||
|         	gnss_synchro.PRN = 10; | ||||
|         	break; | ||||
|             case 1: | ||||
|         	gnss_synchro.PRN = 11; | ||||
|         	gnss_synchro.PRN = 19; | ||||
|         	break; | ||||
|             case 2: | ||||
|         	gnss_synchro.PRN = 19; | ||||
|         	gnss_synchro.PRN = 12; | ||||
|         	break; | ||||
|             case 3: | ||||
|         	gnss_synchro.PRN = 20; | ||||
|         	break; | ||||
|             case 4: | ||||
|         	gnss_synchro.PRN = 1; | ||||
|         	gnss_synchro.PRN = 11; | ||||
|         	break; | ||||
|             } | ||||
|  | ||||
| @@ -762,7 +848,7 @@ TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, ValidationOfResults) | ||||
|  | ||||
|     delete acquisition; | ||||
| } | ||||
|  | ||||
| */ | ||||
| /* | ||||
| TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, FourSatsGen) | ||||
| { | ||||
|   | ||||
| @@ -1,8 +1,33 @@ | ||||
| /* | ||||
|  * galileo_e5a_tracking_test.cc | ||||
| /*! | ||||
|  * \file galileo_e1_dll_pll_veml_tracking_test.cc | ||||
|  * \brief  This class implements a tracking test for Galileo_E5a_DLL_PLL_Tracking | ||||
|  *  implementation based on some input parameters. | ||||
|  * \author Marc Sales, 2014. marcsales92(at)gmail.com | ||||
|  * | ||||
|  *  Created on: Jun 19, 2014 | ||||
|  *      Author: marc | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2012-2014  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
|  * | ||||
|  * This file is part of GNSS-SDR. | ||||
|  * | ||||
|  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
|  * it under the terms of the GNU General Public License as published by | ||||
|  * the Free Software Foundation, either version 3 of the License, or | ||||
|  * at your option) any later version. | ||||
|  * | ||||
|  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  * GNU General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU General Public License | ||||
|  * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>. | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
|  | ||||
| @@ -61,20 +86,23 @@ void GalileoE5aTrackingTest::init() | ||||
|     gnss_synchro.System = 'E'; | ||||
|     std::string signal = "5X"; | ||||
|     signal.copy(gnss_synchro.Signal, 2, 0); | ||||
|     gnss_synchro.PRN = 11; | ||||
|     //gnss_synchro.PRN = 19;//real | ||||
|     gnss_synchro.PRN = 11;//sim | ||||
|  | ||||
|     config->set_property("GNSS-SDR.internal_fs_hz", "12000000"); | ||||
|     config->set_property("GNSS-SDR.internal_fs_hz", "32000000"); | ||||
|     config->set_property("Tracking.item_type", "gr_complex"); | ||||
|     config->set_property("Tracking.dump", "true"); | ||||
|     config->set_property("Tracking.dump_filename", "../data/e5a_tracking_ch_"); | ||||
|     config->set_property("Tracking.implementation", "Galileo_E5a_DLL_PLL_Tracking"); | ||||
|     config->set_property("Tracking.early_late_space_chips", "0.5"); | ||||
|     config->set_property("Tracking.pll_bw_hz", "50.0"); | ||||
|     config->set_property("Tracking.pll_bw_hz", "5.0"); | ||||
|     config->set_property("Tracking.dll_bw_hz", "2.0"); | ||||
|     config->set_property("Tracking.fll_bw_hz", "10.0"); | ||||
|     //config->set_property("Tracking.fll_bw_hz", "10.0"); | ||||
| //    config->set_property("Tracking.pll_bw_hz", "20.0"); | ||||
| //    config->set_property("Tracking.dll_bw_hz", "1.0"); | ||||
|  | ||||
| } | ||||
|  | ||||
| /* | ||||
| TEST_F(GalileoE5aTrackingTest, InstantiateTrack) | ||||
| { | ||||
|  | ||||
| @@ -84,12 +112,12 @@ TEST_F(GalileoE5aTrackingTest, InstantiateTrack) | ||||
| //    auto tracking = factory->GetBlock(config, "Tracking", "Galileo_E1_DLL_PLL_VEML_Tracking", 1, 1, queue); | ||||
| //    EXPECT_STREQ("Galileo_E1_DLL_PLL_VEML_Tracking", tracking->implementation().c_str()); | ||||
|  | ||||
| } | ||||
|  | ||||
| }*/ | ||||
| /* | ||||
| TEST_F(GalileoE5aTrackingTest, ConnectAndRun) | ||||
| { | ||||
|     int fs_in = 16000000; | ||||
|     int nsamples = 160000000; | ||||
|     int fs_in = 21000000; | ||||
|     int nsamples = 21000000; | ||||
|     struct timeval tv; | ||||
|     long long int begin; | ||||
|     long long int end; | ||||
| @@ -135,28 +163,33 @@ TEST_F(GalileoE5aTrackingTest, ConnectAndRun) | ||||
|  | ||||
|     std::cout <<  "Processed " << nsamples << " samples in " << (end - begin) << " microseconds" << std::endl; | ||||
| } | ||||
|  | ||||
| */ | ||||
| TEST_F(GalileoE5aTrackingTest, ValidationOfResults) | ||||
| { | ||||
|     struct timeval tv; | ||||
|     long long int begin = 0; | ||||
|     long long int end = 0; | ||||
|     // int num_samples = 40000000; // 4 Msps | ||||
|     // unsigned int skiphead_sps = 24000000; // 4 Msps | ||||
|     int num_samples = 120000000; // 12 Msps | ||||
|     unsigned int skiphead_sps = 1000000; // 1 Msample | ||||
|     int num_samples = 3200000000; // 32 Msps | ||||
|     //unsigned int skiphead_sps = 98000; // 1 Msample | ||||
|     unsigned int skiphead_sps = 0; // 1 Msample | ||||
|     init(); | ||||
|  | ||||
|     // Example using smart pointers and the block factory | ||||
|     std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config, "Tracking", "Galileo_E5a_DLL_PLL_Tracking", 1, 1, queue); | ||||
|     std::shared_ptr<TrackingInterface> tracking = std::dynamic_pointer_cast<TrackingInterface>(trk_); | ||||
|  | ||||
|     // gnss_synchro.Acq_delay_samples = 1753; // 4 Msps | ||||
|     // gnss_synchro.Acq_doppler_hz = -9500; // 4 Msps | ||||
|     gnss_synchro.Acq_delay_samples = 17256; // 8 Msps | ||||
|     gnss_synchro.Acq_doppler_hz = -8750; // 8 Msps | ||||
| //REAL | ||||
| //    gnss_synchro.Acq_delay_samples = 15579; // 32 Msps | ||||
| //    gnss_synchro.Acq_doppler_hz = 3500; // 32 Msps | ||||
| ////    gnss_synchro.Acq_samplestamp_samples = 98000; | ||||
| //    gnss_synchro.Acq_samplestamp_samples = 0; | ||||
| //SIM | ||||
|     gnss_synchro.Acq_delay_samples = 14001; // 32 Msps | ||||
|     gnss_synchro.Acq_doppler_hz = 2750; // 32 Msps (real 2800) | ||||
| //    gnss_synchro.Acq_samplestamp_samples = 98000; | ||||
|     gnss_synchro.Acq_samplestamp_samples = 0; | ||||
|  | ||||
|  | ||||
|     ASSERT_NO_THROW( { | ||||
|         tracking->set_channel(gnss_synchro.Channel_ID); | ||||
|     }) << "Failure setting channel." << std::endl; | ||||
| @@ -174,7 +207,10 @@ TEST_F(GalileoE5aTrackingTest, ValidationOfResults) | ||||
|     }) << "Failure connecting tracking to the top_block." << std::endl; | ||||
|  | ||||
|     ASSERT_NO_THROW( { | ||||
|         std::string file = "/home/marc/E5a_acquisitions/Tiered_sink_4sat.dat"; | ||||
|         //std::string file = "/home/marc/E5a_acquisitions/Tiered_sink_4sat.dat"; | ||||
|         //std::string file =  "/home/marc/E5a_acquisitions/32MS_complex.dat"; | ||||
|         std::string file =  "/home/marc/E5a_acquisitions/sim_32M_sec94_PRN11.dat"; | ||||
|  | ||||
|         const char * file_name = file.c_str(); | ||||
|         gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(gr_complex),file_name,false); | ||||
|         gr::blocks::skiphead::sptr skip_head = gr::blocks::skiphead::make(sizeof(gr_complex), skiphead_sps); | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 marc-sales
					marc-sales