1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-06-18 11:09:56 +00:00

Merge remote-tracking branch 'Arribas/next' into multisource

Conflicts:
	src/algorithms/signal_source/adapters/uhd_signal_source.cc
	src/core/receiver/gnss_flowgraph.cc
This commit is contained in:
Carles Fernandez 2015-03-01 22:23:17 +01:00
commit 7c7f0ecbd2
4 changed files with 221 additions and 165 deletions

View File

@ -29,7 +29,7 @@ GNSS-SDR.SUPL_CI=0x31b0
SignalSource.implementation=UHD_Signal_Source
;#When left empty, the device discovery routines will search all vailable transports on the system (ethernet, usb...)
SignalSource.device_address=192.168.40.2
SignalSource.device_address=192.168.50.2
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
@ -76,121 +76,200 @@ SignalSource.dump1=false
SignalSource.dump_filename1=../data/signal_source1.dat
;######### SIGNAL_CONDITIONER CONFIG ############
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;SignalConditioner.implementation=Signal_Conditioner
SignalConditioner.implementation=Pass_Through
SignalConditioner0.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data. Please disable it in this version.
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Pass_Through
DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER CONFIG ############
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
;InputFilter.implementation=Fir_Filter
;InputFilter.implementation=Freq_Xlating_Fir_Filter
InputFilter.implementation=Pass_Through
InputFilter0.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse
;#reponse given a set of band edges, the desired reponse on those bands,
;#and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter.input_item_type=gr_complex
InputFilter0.input_item_type=float
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter.output_item_type=gr_complex
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
InputFilter0.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter0.sampling_frequency=20480000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=4000000
InputFilter.IF=0
InputFilter0.IF=5499998.47412109
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=8
;######### RESAMPLER CONFIG ############
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
Resampler0.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner1.implementation=Pass_Through
;######### INPUT_FILTER 1 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
InputFilter1.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump: Dump the resampled data to a file.
Resampler.dump=false
;#dump_filename: Log path and filename.
Resampler.dump_filename=../data/resampler.dat
InputFilter1.dump_filename=../data/input_filter.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Resampler.item_type=gr_complex
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse
;#reponse given a set of band edges, the desired reponse on those bands,
;#and the weight given to the error in those bands.
;#sample_freq_in: the sample frequency of the input signal
Resampler.sample_freq_in=4000000
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter1.input_item_type=float
;#sample_freq_out: the desired sample frequency of the output signal
Resampler.sample_freq_out=4000000
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter1.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter1.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter1.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter1.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter1.band1_begin=0.0
InputFilter1.band1_end=0.45
InputFilter1.band2_begin=0.55
InputFilter1.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter1.ampl1_begin=1.0
InputFilter1.ampl1_end=1.0
InputFilter1.ampl2_begin=0.0
InputFilter1.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter1.band1_error=1.0
InputFilter1.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter1.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter1.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter1.sampling_frequency=20480000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter1.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter1.IF=5499998.47412109
;# Decimation factor after the frequency tranaslating block
InputFilter1.decimation_factor=8
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler1.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_GPS.count=8
Channels_GPS.count=2
;#count: Number of available Galileo satellite channels.
Channels_Galileo.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
@ -199,82 +278,17 @@ Channels.in_acquisition=1
;#if the option is disabled by default is assigned GPS
Channel.system=GPS
;# CHANNEL CONNECTION
Channel0.RF_channel_ID=0
Channel1.RF_channel_ID=1
;#signal:
;# "1C" GPS L1 C/A
;# "1P" GPS L1 P
;# "1W" GPS L1 Z-tracking and similar (AS on)
;# "1Y" GPS L1 Y
;# "1M" GPS L1 M
;# "1N" GPS L1 codeless
;# "2C" GPS L2 C/A
;# "2D" GPS L2 L1(C/A)+(P2-P1) semi-codeless
;# "2S" GPS L2 L2C (M)
;# "2L" GPS L2 L2C (L)
;# "2X" GPS L2 L2C (M+L)
;# "2P" GPS L2 P
;# "2W" GPS L2 Z-tracking and similar (AS on)
;# "2Y" GPS L2 Y
;# "2M" GPS GPS L2 M
;# "2N" GPS L2 codeless
;# "5I" GPS L5 I
;# "5Q" GPS L5 Q
;# "5X" GPS L5 I+Q
;# "1C" GLONASS G1 C/A
;# "1P" GLONASS G1 P
;# "2C" GLONASS G2 C/A (Glonass M)
;# "2P" GLONASS G2 P
;# "1A" GALILEO E1 A (PRS)
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
;# "1C" GALILEO E1 C (no data)
;# "1X" GALILEO E1 B+C
;# "1Z" GALILEO E1 A+B+C
;# "5I" GALILEO E5a I (F/NAV OS)
;# "5Q" GALILEO E5a Q (no data)
;# "5X" GALILEO E5a I+Q
;# "7I" GALILEO E5b I
;# "7Q" GALILEO E5b Q
;# "7X" GALILEO E5b I+Q
;# "8I" GALILEO E5 I
;# "8Q" GALILEO E5 Q
;# "8X" GALILEO E5 I+Q
;# "6A" GALILEO E6 A
;# "6B" GALILEO E6 B
;# "6C" GALILEO E6 C
;# "6X" GALILEO E6 B+C
;# "6Z" GALILEO E6 A+B+C
;# "1C" SBAS L1 C/A
;# "5I" SBAS L5 I
;# "5Q" SBAS L5 Q
;# "5X" SBAS L5 I+Q
;# "2I" COMPASS E2 I
;# "2Q" COMPASS E2 Q
;# "2X" COMPASS E2 IQ
;# "7I" COMPASS E5b I
;# "7Q" COMPASS E5b Q
;# "7X" COMPASS E5b IQ
;# "6I" COMPASS E6 I
;# "6Q" COMPASS E6 Q
;# "6X" COMPASS E6 IQ
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel.signal=1C
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### CHANNEL 0 CONFIG ############
Channel0.system=GPS
Channel0.signal=1C
;#satellite: Satellite PRN ID for this channel. Disable this option to random search
Channel0.satellite=11
;######### CHANNEL 1 CONFIG ############
Channel1.system=GPS
Channel1.signal=1C
Channel1.satellite=18
;######### ACQUISITION GLOBAL CONFIG ############
@ -299,7 +313,8 @@ Acquisition_GPS.doppler_max=8000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_GPS.doppler_step=500
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition] (should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
;#maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition]
;#(should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_GPS.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_GPS.max_dwells=1

View File

@ -287,24 +287,24 @@ Channels.in_acquisition=1
;#if the option is disabled by default is assigned GPS
Channel.system=GPS, Galileo
;# CHANNEL CONNECTION
Channel0.SignalSource_ID=0
Channel1.SignalSource_ID=0
Channel2.SignalSource_ID=0
Channel3.SignalSource_ID=0
Channel4.SignalSource_ID=0
Channel5.SignalSource_ID=0
Channel6.SignalSource_ID=0
Channel7.SignalSource_ID=0
;# SOURCE CONNECTION
Channel0.RF_channel_ID=0
Channel1.RF_channel_ID=0
Channel2.RF_channel_ID=0
Channel3.RF_channel_ID=0
Channel4.RF_channel_ID=0
Channel5.RF_channel_ID=0
Channel6.RF_channel_ID=0
Channel7.RF_channel_ID=0
Channel8.SignalSource_ID=1
Channel9.SignalSource_ID=1
Channel10.SignalSource_ID=1
Channel11.SignalSource_ID=1
Channel12.SignalSource_ID=1
Channel13.SignalSource_ID=1
Channel14.SignalSource_ID=1
Channel15.SignalSource_ID=1
Channel8.RF_channel_ID=1
Channel9.RF_channel_ID=1
Channel10.RF_channel_ID=1
Channel11.RF_channel_ID=1
Channel12.RF_channel_ID=1
Channel13.RF_channel_ID=1
Channel14.RF_channel_ID=1
Channel15.RF_channel_ID=1
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A

View File

@ -130,7 +130,7 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
}
// select the number of channels and the subdevice specifications
for (int i = 0; i< RF_channels_; i++)
for (int i = 0; i < RF_channels_; i++)
{
uhd_stream_args_.channels.push_back(i);
}
@ -165,9 +165,10 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
for (int i = 0; i < RF_channels_; i++)
{
std::cout << "UHD RF CHANNEL #" << i << " SETTINGS" << std::endl;
// 3. Tune the usrp device to the desired center frequency
uhd_source_->set_center_freq(freq_.at(i),i);
std::cout << boost::format("Actual USRP center freq.: %f [Hz]...") % (uhd_source_->get_center_freq(i)) << std::endl << std::endl;
uhd_source_->set_center_freq(freq_.at(i), i);
std::cout << boost::format("Actual USRP center freq.: %f [Hz]...") % (uhd_source_->get_center_freq(i)) << std::endl;
LOG(INFO) << boost::format("Actual USRP center freq. set to: %f [Hz]...") % (uhd_source_->get_center_freq(i));
// TODO: Assign the remnant IF from the PLL tune error
@ -175,13 +176,13 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
LOG(INFO) << boost::format("PLL Frequency tune error %f [Hz]...") % (uhd_source_->get_center_freq(i) - freq_.at(i));
// 4. set the gain for the daughterboard
uhd_source_->set_gain(gain_.at(i),i);
uhd_source_->set_gain(gain_.at(i), i);
std::cout << boost::format("Actual daughterboard gain set to: %f dB...") % uhd_source_->get_gain(i) << std::endl;
LOG(INFO) << boost::format("Actual daughterboard gain set to: %f dB...") % uhd_source_->get_gain(i);
//5. Set the bandpass filter on the RF frontend
std::cout << boost::format("Setting RF bandpass filter bandwidth to: %f [Hz]...") % IF_bandwidth_hz_.at(i) << std::endl;
uhd_source_->set_bandwidth(IF_bandwidth_hz_.at(i),i);
uhd_source_->set_bandwidth(IF_bandwidth_hz_.at(i), i);
//set the antenna (optional)
//uhd_source_->set_antenna(ant);
@ -201,7 +202,7 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
}
else
{
std::cout << "UNLOCKED!" <<std::endl;
std::cout << "UNLOCKED!" << std::endl;
}
//UHD_ASSERT_THROW(lo_locked.to_bool());
}
@ -212,14 +213,14 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
{
if (samples_.at(i) != 0)
{
LOG(INFO) << "RF_channel "<<i<<" Send STOP signal after " << samples_.at(i) << " samples";
LOG(INFO) << "RF_channel "<< i << " Send STOP signal after " << samples_.at(i) << " samples";
valve_.push_back(gnss_sdr_make_valve(item_size_, samples_.at(i), queue_));
DLOG(INFO) << "valve(" << valve_.at(i)->unique_id() << ")";
}
if (dump_.at(i))
{
LOG(INFO) << "RF_channel "<<i<< "Dumping output into file " << dump_filename_.at(i);
LOG(INFO) << "RF_channel "<< i << "Dumping output into file " << dump_filename_.at(i);
file_sink_.push_back(gr::blocks::file_sink::make(item_size_, dump_filename_.at(i).c_str()));
DLOG(INFO) << "file_sink(" << file_sink_.at(i)->unique_id() << ")";
}
@ -239,11 +240,11 @@ void UhdSignalSource::connect(gr::top_block_sptr top_block)
if (samples_.at(i) != 0)
{
top_block->connect(uhd_source_, i, valve_.at(i), 0);
DLOG(INFO) << "connected usrp source to valve RF Channel "<< i;
DLOG(INFO) << "connected usrp source to valve RF Channel " << i;
if (dump_.at(i))
{
top_block->connect(valve_.at(i), 0, file_sink_.at(i), 0);
DLOG(INFO) << "connected valve to file sink RF Channel "<< i;
DLOG(INFO) << "connected valve to file sink RF Channel " << i;
}
}
else
@ -251,7 +252,7 @@ void UhdSignalSource::connect(gr::top_block_sptr top_block)
if (dump_.at(i))
{
top_block->connect(uhd_source_, i, file_sink_.at(i), 0);
DLOG(INFO) << "connected usrp source to file sink RF Channel "<< i;
DLOG(INFO) << "connected usrp source to file sink RF Channel " << i;
}
}
}
@ -300,6 +301,7 @@ gr::basic_block_sptr UhdSignalSource::get_right_block()
gr::basic_block_sptr UhdSignalSource::get_right_block(int RF_channel)
{
//TODO: There is a incoherence here: Multichannel UHD is a single block with multiple outputs, but if the sample limit is enabled, the output is a multiple block!
if (samples_.at(RF_channel) != 0)
{
return valve_.at(RF_channel);

View File

@ -127,7 +127,7 @@ void GNSSFlowgraph::connect()
}
// Signal Source > Signal conditioner >
for (int i = 0; i < sources_count_; i++)
for (unsigned int i = 0; i < sig_conditioner_.size(); i++)
{
try
{
@ -198,6 +198,9 @@ void GNSSFlowgraph::connect()
DLOG(INFO) << "blocks connected internally";
// Signal Source (i) > Signal conditioner (i) >
int RF_Channels = 0;
int signal_conditioner_ID = 0;
for (int i = 0; i < sources_count_; i++)
{
try
@ -210,16 +213,24 @@ void GNSSFlowgraph::connect()
std::cout << "ARRAY MODE" << std::endl;
for (int j = 0; j < GNSS_SDR_ARRAY_SIGNAL_CONDITIONER_CHANNELS; j++)
{
std::cout << "connecting ch "<< j << std::endl;
std::cout << "connecting ch " << j << std::endl;
top_block_->connect(sig_source_.at(i)->get_right_block(), j, sig_conditioner_.at(i)->get_left_block(), j);
}
}
else
{
//single channel
top_block_->connect(sig_source_.at(i)->get_right_block(), 0, sig_conditioner_.at(i)->get_left_block(), 0);
}
//TODO: Create a class interface for SignalSources, derived from GNSSBlockInterface.
//Include GetRFChannels in the interface to avoid read config parameters here
//read the number of RF channels for each front-end
RF_Channels = configuration_->property(sig_source_.at(i)->role() + ".RF_channels", 1);
for (int j = 0; j < RF_Channels; j++)
{
//Connect the multichannel signal source to multiple signal conditioners
top_block_->connect(sig_source_.at(i)->get_right_block(), j, sig_conditioner_.at(signal_conditioner_ID)->get_left_block(), 0);
signal_conditioner_ID++;
}
}
}
catch (std::exception& e)
{
@ -229,28 +240,28 @@ void GNSSFlowgraph::connect()
return;
}
}
DLOG(INFO) << "Signal source connected to signal conditioner";
// Signal conditioner (selected_signal_source) >> channels (i) (dependent of their associated SignalSource_ID)
int selected_signal_source;
int selected_signal_conditioner_ID;
for (unsigned int i = 0; i < channels_count_; i++)
{
selected_signal_source = configuration_->property("Channel" + boost::lexical_cast<std::string>(i) + ".SignalSource_ID", 0);
selected_signal_conditioner_ID = configuration_->property("Channel" + boost::lexical_cast<std::string>(i) + ".RF_channel_ID", 0);
try
{
top_block_->connect(sig_conditioner_.at(selected_signal_source)->get_right_block(), 0,
top_block_->connect(sig_conditioner_.at(selected_signal_conditioner_ID)->get_right_block(), 0,
channels_.at(i)->get_left_block(), 0);
}
catch (std::exception& e)
{
LOG(WARNING) << "Can't connect signal conditioner " << selected_signal_source << " to channel " << i;
LOG(WARNING) << "Can't connect signal conditioner " << selected_signal_conditioner_ID << " to channel " << i;
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
DLOG(INFO) << "signal conditioner " << selected_signal_source << " connected to channel " << i;
DLOG(INFO) << "signal conditioner " << selected_signal_conditioner_ID << " connected to channel " << i;
// Signal Source > Signal conditioner >> Channels >> Observables
try
@ -282,12 +293,12 @@ void GNSSFlowgraph::connect()
{
channels_.at(i)->start_acquisition();
LOG(INFO) << "Channel " << i
<< " connected to observables and ready for acquisition";
<< " connected to observables and ready for acquisition";
}
else
{
LOG(INFO) << "Channel " << i
<< " connected to observables in standby mode";
<< " connected to observables in standby mode";
}
}
@ -450,20 +461,48 @@ void GNSSFlowgraph::init()
// 1. read the number of RF front-ends available (one file_source per RF front-end)
sources_count_ = configuration_->property("Receiver.sources_count", 1);
int RF_Channels = 0;
int signal_conditioner_ID = 0;
if (sources_count_ > 1)
{
for (int i = 0; i < sources_count_; i++)
{
std::cout << "Creating signal source " << i << std::endl;
std::cout << "Creating source " << i << std::endl;
sig_source_.push_back(block_factory_->GetSignalSource(configuration_, queue_, i));
sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, queue_, i));
//TODO: Create a class interface for SignalSources, derived from GNSSBlockInterface.
//Include GetRFChannels in the interface to avoid read config parameters here
//read the number of RF channels for each front-end
RF_Channels = configuration_->property(sig_source_.at(i)->role() + ".RF_channels", 1);
std::cout << "RF Channels " << RF_Channels << std::endl;
for (int j = 0; j < RF_Channels; j++)
{
sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, queue_, signal_conditioner_ID));
signal_conditioner_ID++;
}
}
}
else
{
//backwards compatibility for old config files
sig_source_.push_back(block_factory_->GetSignalSource(configuration_, queue_, -1));
sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, queue_, -1));
//TODO: Create a class interface for SignalSources, derived from GNSSBlockInterface.
//Include GetRFChannels in the interface to avoid read config parameters here
//read the number of RF channels for each front-end
RF_Channels = configuration_->property(sig_source_.at(0)->role() + ".RF_channels", 0);
if (RF_Channels != 0)
{
for (int j = 0; j < RF_Channels; j++)
{
sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, queue_, signal_conditioner_ID));
signal_conditioner_ID++;
}
}
else
{
//old config file, single signal source and single channel, not specified
sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, queue_, -1));
}
}
observables_ = block_factory_->GetObservables(configuration_, queue_);