1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-10-27 13:37:38 +00:00

Add cubature filter library to tracking and associated unit test to tests

This commit is contained in:
Gerald LaMountain
2019-06-12 14:51:19 -04:00
parent 8cc141341b
commit 6f5bca8188
6 changed files with 216 additions and 24 deletions

View File

@@ -6,7 +6,8 @@
* Filter, which uses multidimensional cubature rules to estimate the
* time evolution of a nonlinear system.
*
* [1] TODO: Refs
* [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE
* Transactions on Automatic Control, 54(6):12541269,2009.
*
* \authors <ul>
* <li> Gerald LaMountain, 2019. gerald(at)ece.neu.edu
@@ -14,7 +15,7 @@
* </ul>
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@@ -70,7 +71,7 @@ Cubature_filter::Cubature_filter(const arma::vec& x_pred_0, const arma::mat& P_x
Cubature_filter::~Cubature_filter() = default;
void Cubature_filter::init(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
void Cubature_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
{
x_pred_out = x_pred_0;
P_x_pred_out = P_x_pred_0;
@@ -83,29 +84,33 @@ void Cubature_filter::init(const arma::mat& x_pred_0, const arma::mat& P_x_pred_
/*
* Perform the prediction step of the cubature Kalman filter
*/
void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, arma::vec (*transition_fcn)(const arma::mat&), const arma::mat& noise_covariance)
void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance)
{
// Compute number of cubature points
int nx = x_post.n_elem;
int np = 2 * nx;
// Generator Matrix
arma::mat gen_one = arma::join_horiz(arma::eye(nx,nx),-1.0*arma::eye(nx,nx));
// Initialize predicted mean and covariance
arma::vec x_pred = arma::zeros(nx,1);
arma::mat P_x_pred = arma::zeros(nx,nx);
// Factorize posterior covariance
arma::mat Sm_post = arma::chol(P_x_post);
arma::mat Sm_post = arma::chol(P_x_post, "lower");
// Propagate and evaluate cubature points
arma::vec Xi_post;
arma::vec Xi_pred;
for (int32_t i = 0; i < np; i++)
for (uint8_t i = 0; i < np; i++)
{
Xi_post = Sm_post*std::sqrt(((float) np) / 2.0)*arma::ones(nx,1) + x_post;
Xi_post = Sm_post * (std::sqrt(((float) np) / 2.0) * gen_one.col(i)) + x_post;
Xi_pred = (*transition_fcn)(Xi_post);
x_pred = x_post + Xi_pred;
P_x_pred = P_x_post + Xi_pred*Xi_pred.t();
x_pred = x_pred + Xi_pred;
P_x_pred = P_x_pred + Xi_pred*Xi_pred.t();
}
// Estimate predicted state and error covariance
@@ -120,34 +125,37 @@ void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::ma
/*
* Perform the update step of the cubature Kalman filter
*/
void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, arma::vec (*measurement_fcn)(const arma::mat&), const arma::mat& noise_covariance)
void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance)
{
// Compute number of cubature points
int nx = x_pred.n_elem;
int nz = z_upd.n_elem;
int np = 2 * nx;
// Generator Matrix
arma::mat gen_one = arma::join_horiz(arma::eye(nx,nx),-1.0*arma::eye(nx,nx));
// Evaluate predicted measurement and covariances
arma::mat z_pred = arma::zeros(nx,1);
arma::mat z_pred = arma::zeros(nz,1);
arma::mat P_zz_pred = arma::zeros(nz,nz);
arma::mat P_xz_pred = arma::zeros(nx,nz);
// Factorize predicted covariance
arma::mat Sm_pred = arma::chol(P_x_pred);
arma::mat Sm_pred = arma::chol(P_x_pred, "lower");
// Propagate and evaluate cubature points
arma::vec Xi_pred;
arma::vec Zi_pred;
for (int32_t i = 0; i < np; i++)
for (uint8_t i = 0; i < np; i++)
{
Xi_pred = Sm_pred*std::sqrt(((float) np) / 2.0)*arma::ones(nx,1) + x_pred;
Xi_pred = Sm_pred * (std::sqrt(((float) np) / 2.0) * gen_one.col(i)) + x_pred;
Zi_pred = (*measurement_fcn)(Xi_pred);
z_pred = z_pred + Zi_pred;
P_zz_pred = P_zz_pred + Zi_pred*Zi_pred.t();
P_xz_pred = P_xz_pred + Xi_pred*Zi_pred.t();
}
// Estimate measurement covariance and cross covariances
z_pred = z_pred / ((float) np);
P_zz_pred = P_zz_pred / ((float) np) - z_pred*z_pred.t() + noise_covariance;
@@ -180,3 +188,8 @@ arma::mat Cubature_filter::get_P_x_est() const
{
return P_x_est;
}
double Cubature_filter::func_number(double number, TestModel* func)
{
return (*func)(number);
}

View File

@@ -6,7 +6,8 @@
* Filter, which uses multidimensional cubature rules to estimate the
* time evolution of a nonlinear system.
*
* [1] TODO: Refs
* [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE
* Transactions on Automatic Control, 54(6):12541269,2009.
*
* \authors <ul>
* <li> Gerald LaMountain, 2019. gerald(at)ece.neu.edu
@@ -14,7 +15,7 @@
* </ul>
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@@ -43,6 +44,22 @@
#include <armadillo>
#include <gnuradio/gr_complex.h>
// Abstract model function
class ModelFunction{
public:
ModelFunction() {};
virtual arma::vec operator() (arma::vec input) = 0;
virtual ~ModelFunction() = default;
};
class TestModel{
public:
TestModel() {};
//virtual arma::vec operator() (arma::vec input) = 0;
virtual double operator() (double input) = 0;
virtual ~TestModel() = default;
};
class Cubature_filter
{
public:
@@ -53,17 +70,21 @@ public:
~Cubature_filter();
// Reinitialization function
void init(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0);
void initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0);
// Prediction and estimation
void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, arma::vec (*transition_fcn)(const arma::mat&), const arma::mat& noise_covariance);
void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, arma::vec (*measurement_fcn)(const arma::mat&), const arma::mat& noise_covariance);
void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance);
void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance);
// Getters
arma::mat get_x_pred() const;
arma::mat get_P_x_pred() const;
arma::mat get_x_est() const;
arma::mat get_P_x_est() const;
//Test-dev
double func_number(double number, TestModel* func);
private:
arma::vec x_pred_out;
arma::mat P_x_pred_out;