mirror of
				https://github.com/gnss-sdr/gnss-sdr
				synced 2025-10-29 22:42:59 +00:00 
			
		
		
		
	Add cubature filter library to tracking and associated unit test to tests
This commit is contained in:
		| @@ -6,7 +6,8 @@ | ||||
|  * Filter, which uses multidimensional cubature rules to estimate the | ||||
|  * time evolution of a nonlinear system. | ||||
|  * | ||||
|  * [1] TODO: Refs | ||||
|  * [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE  | ||||
|  * Transactions on Automatic Control, 54(6):1254–1269,2009. | ||||
|  * | ||||
|  * \authors <ul> | ||||
|  *          <li> Gerald LaMountain, 2019. gerald(at)ece.neu.edu | ||||
| @@ -14,7 +15,7 @@ | ||||
|  *          </ul> | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2018  (see AUTHORS file for a list of contributors) | ||||
|  * Copyright (C) 2010-2019  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
| @@ -70,7 +71,7 @@ Cubature_filter::Cubature_filter(const arma::vec& x_pred_0, const arma::mat& P_x | ||||
|  | ||||
| Cubature_filter::~Cubature_filter() = default; | ||||
|  | ||||
| void Cubature_filter::init(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0) | ||||
| void Cubature_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0) | ||||
| { | ||||
|     x_pred_out = x_pred_0; | ||||
|     P_x_pred_out = P_x_pred_0; | ||||
| @@ -83,29 +84,33 @@ void Cubature_filter::init(const arma::mat& x_pred_0, const arma::mat& P_x_pred_ | ||||
| /* | ||||
|  * Perform the prediction step of the cubature Kalman filter | ||||
|  */ | ||||
| void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, arma::vec (*transition_fcn)(const arma::mat&), const arma::mat& noise_covariance) | ||||
| void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance) | ||||
| { | ||||
|     // Compute number of cubature points | ||||
|     int nx = x_post.n_elem; | ||||
|     int np = 2 * nx; | ||||
|  | ||||
|     // Generator Matrix | ||||
|     arma::mat gen_one = arma::join_horiz(arma::eye(nx,nx),-1.0*arma::eye(nx,nx)); | ||||
|  | ||||
|     // Initialize predicted mean and covariance | ||||
|     arma::vec x_pred = arma::zeros(nx,1); | ||||
|     arma::mat P_x_pred = arma::zeros(nx,nx); | ||||
|  | ||||
|     // Factorize posterior covariance | ||||
|     arma::mat Sm_post = arma::chol(P_x_post); | ||||
|     arma::mat Sm_post = arma::chol(P_x_post, "lower"); | ||||
|      | ||||
|     // Propagate and evaluate cubature points | ||||
|     arma::vec Xi_post; | ||||
|     arma::vec Xi_pred; | ||||
|     for (int32_t i = 0; i < np; i++) | ||||
|  | ||||
|     for (uint8_t i = 0; i < np; i++) | ||||
|     { | ||||
|         Xi_post = Sm_post*std::sqrt(((float) np) / 2.0)*arma::ones(nx,1) + x_post; | ||||
|         Xi_post = Sm_post * (std::sqrt(((float) np) / 2.0) * gen_one.col(i)) + x_post; | ||||
|         Xi_pred = (*transition_fcn)(Xi_post); | ||||
|          | ||||
|         x_pred = x_post + Xi_pred; | ||||
|         P_x_pred = P_x_post + Xi_pred*Xi_pred.t(); | ||||
|         | ||||
|         x_pred = x_pred + Xi_pred; | ||||
|         P_x_pred = P_x_pred + Xi_pred*Xi_pred.t(); | ||||
|     } | ||||
|      | ||||
|     // Estimate predicted state and error covariance | ||||
| @@ -120,34 +125,37 @@ void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::ma | ||||
| /* | ||||
|  * Perform the update step of the cubature Kalman filter | ||||
|  */ | ||||
| void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, arma::vec (*measurement_fcn)(const arma::mat&), const arma::mat& noise_covariance) | ||||
| void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance) | ||||
| { | ||||
|     // Compute number of cubature points | ||||
|     int nx = x_pred.n_elem; | ||||
|     int nz = z_upd.n_elem; | ||||
|     int np = 2 * nx; | ||||
|  | ||||
|     // Generator Matrix | ||||
|     arma::mat gen_one = arma::join_horiz(arma::eye(nx,nx),-1.0*arma::eye(nx,nx)); | ||||
|  | ||||
|     // Evaluate predicted measurement and covariances | ||||
|     arma::mat z_pred = arma::zeros(nx,1); | ||||
|     arma::mat z_pred = arma::zeros(nz,1); | ||||
|     arma::mat P_zz_pred = arma::zeros(nz,nz); | ||||
|     arma::mat P_xz_pred = arma::zeros(nx,nz); | ||||
|  | ||||
|     // Factorize predicted covariance | ||||
|     arma::mat Sm_pred = arma::chol(P_x_pred); | ||||
|     arma::mat Sm_pred = arma::chol(P_x_pred, "lower"); | ||||
|  | ||||
|     // Propagate and evaluate cubature points | ||||
|     arma::vec Xi_pred; | ||||
|     arma::vec Zi_pred; | ||||
|     for (int32_t i = 0; i < np; i++) | ||||
|     for (uint8_t i = 0; i < np; i++) | ||||
|     { | ||||
|         Xi_pred = Sm_pred*std::sqrt(((float) np) / 2.0)*arma::ones(nx,1) + x_pred; | ||||
|         Xi_pred = Sm_pred * (std::sqrt(((float) np) / 2.0) * gen_one.col(i)) + x_pred; | ||||
|         Zi_pred = (*measurement_fcn)(Xi_pred); | ||||
|          | ||||
|         z_pred = z_pred + Zi_pred; | ||||
|         P_zz_pred = P_zz_pred + Zi_pred*Zi_pred.t(); | ||||
|         P_xz_pred = P_xz_pred + Xi_pred*Zi_pred.t(); | ||||
|     } | ||||
|      | ||||
|  | ||||
|     // Estimate measurement covariance and cross covariances | ||||
|     z_pred = z_pred / ((float) np); | ||||
|     P_zz_pred = P_zz_pred / ((float) np) - z_pred*z_pred.t() + noise_covariance; | ||||
| @@ -180,3 +188,8 @@ arma::mat Cubature_filter::get_P_x_est() const | ||||
| { | ||||
|     return P_x_est; | ||||
| } | ||||
|  | ||||
| double Cubature_filter::func_number(double number, TestModel* func) | ||||
| { | ||||
|     return (*func)(number); | ||||
| } | ||||
|   | ||||
| @@ -6,7 +6,8 @@ | ||||
|  * Filter, which uses multidimensional cubature rules to estimate the | ||||
|  * time evolution of a nonlinear system. | ||||
|  * | ||||
|  * [1] TODO: Refs | ||||
|  * [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE  | ||||
|  * Transactions on Automatic Control, 54(6):1254–1269,2009. | ||||
|  * | ||||
|  * \authors <ul> | ||||
|  *          <li> Gerald LaMountain, 2019. gerald(at)ece.neu.edu | ||||
| @@ -14,7 +15,7 @@ | ||||
|  *          </ul> | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2018  (see AUTHORS file for a list of contributors) | ||||
|  * Copyright (C) 2010-2019  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
| @@ -43,6 +44,22 @@ | ||||
| #include <armadillo> | ||||
| #include <gnuradio/gr_complex.h> | ||||
|  | ||||
| // Abstract model function | ||||
| class ModelFunction{ | ||||
|     public: | ||||
|         ModelFunction() {}; | ||||
|         virtual arma::vec operator() (arma::vec input) = 0; | ||||
|         virtual ~ModelFunction() = default; | ||||
| }; | ||||
|  | ||||
| class TestModel{ | ||||
|     public: | ||||
|         TestModel() {}; | ||||
|         //virtual arma::vec operator() (arma::vec input) = 0; | ||||
|         virtual double operator() (double input) = 0; | ||||
|         virtual ~TestModel() = default; | ||||
| }; | ||||
|  | ||||
| class Cubature_filter | ||||
| { | ||||
| public: | ||||
| @@ -53,17 +70,21 @@ public: | ||||
|     ~Cubature_filter(); | ||||
|  | ||||
|     // Reinitialization function | ||||
|     void init(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0); | ||||
|     void initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0); | ||||
|  | ||||
|     // Prediction and estimation | ||||
|     void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, arma::vec (*transition_fcn)(const arma::mat&), const arma::mat& noise_covariance); | ||||
|     void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, arma::vec (*measurement_fcn)(const arma::mat&), const arma::mat& noise_covariance); | ||||
|     void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance); | ||||
|     void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance); | ||||
|  | ||||
|     // Getters | ||||
|     arma::mat get_x_pred() const; | ||||
|     arma::mat get_P_x_pred() const; | ||||
|     arma::mat get_x_est() const; | ||||
|     arma::mat get_P_x_est() const; | ||||
|  | ||||
|     //Test-dev | ||||
|     double func_number(double number, TestModel* func); | ||||
|  | ||||
| private: | ||||
|     arma::vec x_pred_out; | ||||
|     arma::mat P_x_pred_out; | ||||
|   | ||||
| @@ -755,6 +755,7 @@ if(NOT ENABLE_PACKAGING AND NOT ENABLE_FPGA) | ||||
|         ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/tracking_loop_filter_test.cc | ||||
|         ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_real_codes_test.cc | ||||
|         ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/bayesian_estimation_test.cc | ||||
|         ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/cubature_filter_test.cc | ||||
|     ) | ||||
|  | ||||
|     target_link_libraries(trk_test | ||||
|   | ||||
| @@ -99,6 +99,7 @@ DECLARE_string(log_dir); | ||||
| #endif | ||||
|  | ||||
| #include "unit-tests/signal-processing-blocks/tracking/bayesian_estimation_test.cc" | ||||
| #include "unit-tests/signal-processing-blocks/tracking/cubature_filter_test.cc" | ||||
| #include "unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_real_codes_test.cc" | ||||
| #include "unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_test.cc" | ||||
| #include "unit-tests/signal-processing-blocks/tracking/galileo_e1_dll_pll_veml_tracking_test.cc" | ||||
|   | ||||
| @@ -1,7 +1,7 @@ | ||||
| /*! | ||||
|  * \file bayesian_estimation_positivity_test.cc | ||||
|  * \brief  This file implements timing tests for the Bayesian covariance estimator | ||||
|  * \author Gerald LaMountain, 20168. gerald(at)ece.neu.edu | ||||
|  * \file bayesian_estimation_test.cc | ||||
|  * \brief  This file implements feasability test for the BCE library. | ||||
|  * \author Gerald LaMountain, 2018. gerald(at)ece.neu.edu | ||||
|  * | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|   | ||||
| @@ -0,0 +1,156 @@ | ||||
| /*! | ||||
|  * \file cubature_filter_test.cc | ||||
|  * \brief  This file implements numerical accuracy test for the CKF library. | ||||
|  * \author Gerald LaMountain, 2019. gerald(at)ece.neu.edu | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2019  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
|  * | ||||
|  * This file is part of GNSS-SDR. | ||||
|  * | ||||
|  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
|  * it under the terms of the GNU General Public License as published by | ||||
|  * the Free Software Foundation, either version 3 of the License, or | ||||
|  * (at your option) any later version. | ||||
|  * | ||||
|  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  * GNU General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU General Public License | ||||
|  * along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>. | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #include "cubature_filter.h" | ||||
| #include <armadillo> | ||||
| #include <gtest/gtest.h> | ||||
| #include <random> | ||||
|  | ||||
| #define CUBATURE_TEST_N_TRIALS 1000 | ||||
|  | ||||
| class TransitionModel : public ModelFunction { | ||||
|     public: | ||||
|         TransitionModel(arma::mat kf_F) {coeff_mat = kf_F;}; | ||||
|         virtual arma::vec operator() (arma::vec input) {return coeff_mat*input;}; | ||||
|     private: | ||||
|         arma::mat coeff_mat; | ||||
| }; | ||||
|  | ||||
| class MeasurementModel : public ModelFunction { | ||||
|     public: | ||||
|         MeasurementModel(arma::mat kf_H) {coeff_mat = kf_H;}; | ||||
|         virtual arma::vec operator() (arma::vec input) {return coeff_mat*input;}; | ||||
|     private: | ||||
|         arma::mat coeff_mat; | ||||
| }; | ||||
|  | ||||
| TEST(CubatureFilterComputationTest, CubatureFilterTest) | ||||
| { | ||||
|     Cubature_filter kf_cubature; | ||||
|  | ||||
|     arma::vec kf_x; | ||||
|     arma::mat kf_P_x; | ||||
|  | ||||
|     arma::vec kf_x_pre; | ||||
|     arma::mat kf_P_x_pre; | ||||
|  | ||||
|     arma::vec ckf_x_pre; | ||||
|     arma::mat ckf_P_x_pre; | ||||
|  | ||||
|     arma::vec kf_x_post; | ||||
|     arma::mat kf_P_x_post; | ||||
|  | ||||
|     arma::vec ckf_x_post; | ||||
|     arma::mat ckf_P_x_post; | ||||
|  | ||||
|     arma::mat kf_F; | ||||
|     arma::mat kf_H; | ||||
|  | ||||
|     arma::mat kf_Q; | ||||
|     arma::mat kf_R; | ||||
|  | ||||
|     arma::vec eta; | ||||
|     arma::vec nu; | ||||
|  | ||||
|     arma::vec kf_y; | ||||
|     arma::mat kf_P_y; | ||||
|     arma::mat kf_K; | ||||
|  | ||||
|     ModelFunction* transition_function; | ||||
|     ModelFunction* measurement_function; | ||||
|  | ||||
|     //--- Perform initializations ------------------------------ | ||||
|  | ||||
|     std::random_device r; | ||||
|     std::default_random_engine e1(r()); | ||||
|     std::normal_distribution<float> normal_dist(0, 5); | ||||
|     std::uniform_real_distribution<float> uniform_dist(0.1, 5.0); | ||||
|  | ||||
|     uint8_t nx = 0; | ||||
|     uint8_t ny = 0; | ||||
|  | ||||
|     for (uint16_t k = 0; k < CUBATURE_TEST_N_TRIALS; k++) | ||||
|         { | ||||
|             nx = std::rand() % 5 + 1; | ||||
|             ny = std::rand() % 5 + 1; | ||||
|  | ||||
|             kf_x = arma::randn<arma::vec>(nx,1); | ||||
|  | ||||
|             kf_P_x_post = 5.0 * arma::diagmat(arma::randu<arma::vec>(nx,1)); | ||||
|             kf_x_post = arma::mvnrnd(kf_x, kf_P_x_post); | ||||
|  | ||||
|             kf_cubature.initialize(kf_x_post, kf_P_x_post); | ||||
|  | ||||
|             // Prediction Step | ||||
|             kf_F = arma::randu<arma::mat>(nx,nx); | ||||
|             kf_Q = arma::diagmat(arma::randu<arma::vec>(nx,1)); | ||||
|  | ||||
|             transition_function = new TransitionModel(kf_F); | ||||
|             arma::mat ttx = (*transition_function)(kf_x_post); | ||||
|  | ||||
|             kf_cubature.predict_sequential(kf_x_post,kf_P_x_post,transition_function,kf_Q); | ||||
|  | ||||
|             ckf_x_pre = kf_cubature.get_x_pred(); | ||||
|             ckf_P_x_pre = kf_cubature.get_P_x_pred(); | ||||
|  | ||||
|             kf_x_pre = kf_F * kf_x_post; | ||||
|             kf_P_x_pre = kf_F * kf_P_x_post * kf_F.t() + kf_Q; | ||||
|  | ||||
|             EXPECT_TRUE(arma::approx_equal(ckf_x_pre, kf_x_pre, "absdiff", 0.01)); | ||||
|             EXPECT_TRUE(arma::approx_equal(ckf_P_x_pre, kf_P_x_pre, "absdiff", 0.01)); | ||||
|  | ||||
|             // Update Step | ||||
|             kf_H = arma::randu<arma::mat>(ny,nx); | ||||
|             kf_R = arma::diagmat(arma::randu<arma::vec>(ny,1)); | ||||
|  | ||||
|             eta = arma::mvnrnd(arma::zeros<arma::vec>(nx,1),kf_Q); | ||||
|             nu = arma::mvnrnd(arma::zeros<arma::vec>(ny,1),kf_R); | ||||
|  | ||||
|             kf_y = kf_H*(kf_F*kf_x + eta) + nu; | ||||
|  | ||||
|             measurement_function = new MeasurementModel(kf_H); | ||||
|             kf_cubature.update_sequential(kf_y,kf_x_pre,kf_P_x_pre,measurement_function,kf_R); | ||||
|  | ||||
|             ckf_x_post = kf_cubature.get_x_est(); | ||||
|             ckf_P_x_post = kf_cubature.get_P_x_est(); | ||||
|  | ||||
|             kf_P_y = kf_H * kf_P_x_pre * kf_H.t() + kf_R; | ||||
|             kf_K = (kf_P_x_pre * kf_H.t()) * arma::inv(kf_P_y); | ||||
|  | ||||
|             kf_x_post = kf_x_pre + kf_K * (kf_y - kf_H * kf_x_pre); | ||||
|             kf_P_x_post = (arma::eye(nx,nx) - kf_K * kf_H) * kf_P_x_pre; | ||||
|  | ||||
|             EXPECT_TRUE(arma::approx_equal(ckf_x_post, kf_x_post, "absdiff", 0.01)); | ||||
|             EXPECT_TRUE(arma::approx_equal(ckf_P_x_post, kf_P_x_post, "absdiff", 0.01)); | ||||
|  | ||||
|             delete transition_function; | ||||
|             delete measurement_function; | ||||
|         } | ||||
| } | ||||
		Reference in New Issue
	
	Block a user
	 Gerald LaMountain
					Gerald LaMountain