1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-15 22:34:58 +00:00

MOD: matlab vtl with 2 order clk model

This commit is contained in:
miguekf 2022-12-21 22:32:02 +01:00
parent 24c23f6c17
commit 6039d2471b

View File

@ -126,17 +126,17 @@ for t=2:length(navSolution.RX_time)
rhoDot_pri(chan,t)=(sat_velX(chan,t)-xDot_u)*a_x(chan,t)...
+(sat_velY(chan,t)-yDot_u)*a_y(chan,t)...
+(sat_velZ(chan,t)-zDot_u)*a_z(chan,t);
+(sat_velZ(chan,t)-zDot_u)*a_z(chan,t)+cdeltatDot_u(t);
end
for chan=1:5 % Measurement matrix H assembling
% It has st_nmbr columns (st_nmbr states) and 2*NSat rows (NSat psudorange error;NSat pseudo range rate error)
kf_H(chan, 1) = a_x(chan,t); kf_H(chan, 2) = a_y(chan,t); kf_H(chan, 3) = a_z(chan,t); kf_H(chan, 7) = 1.0;
kf_H(chan+sat_number, 4) = a_x(chan,t); kf_H(chan+sat_number, 5) = a_y(chan,t); kf_H(chan+sat_number, 6) = a_z(chan,t); kf_H(chan+sat_number, 8) = 1.0;
kf_H(chan+sat_number, 9) = kf_dt;
kf_H(chan+sat_number, 9) = 0.0;
end
% unobsv(t) = length(kf_F) - rank(obsv(kf_F,kf_H));
unobsv(t) = st_nmbr - rank(obsv(kf_F,kf_H));
% !!!! Limitaciones
% obsv no se recomienda para el diseño de control, ya que calcular el rango de la matriz de observabilidad
% no se recomienda para las pruebas de observabilidad. Ob será numéricamente singular para la mayoría de los
@ -145,7 +145,7 @@ for t=2:length(navSolution.RX_time)
% Kalman estimation (measurement update)
for chan=1:5 % Measurement matrix H assembling
kf_yerr(chan,t)=c_pr_m(chan,t)-sat_prg_m(chan,t);
kf_yerr(chan+sat_number,t)=(sat_dopp_hz(chan,t)*Lambda_GPS_L1+cdeltatDot_u(t)+kf_dt*d_cdeltatDot_u(t))-rhoDot_pri(chan,t);
kf_yerr(chan+sat_number,t)=(sat_dopp_hz(chan,t)*Lambda_GPS_L1+cdeltatDot_u(t)+d_cdeltatDot_u(t-1)+d_cdeltatDot_u(t)*kf_dt)-rhoDot_pri(chan,t);
end
% DOUBLES DIFFERENCES
@ -184,23 +184,6 @@ for t=2:length(navSolution.RX_time)
cdeltatDot_u_g=corr_kf_state(8,t);
d_cdeltatDot_u_g=corr_kf_state(9,t);
% for chan=1:5 %neccesary quantities
% d(chan)=(sat_posX_m(chan,t)-x_u)^2;
% d(chan)=d(chan)+(sat_posY_m(chan,t)-y_u)^2;
% d(chan)=d(chan)+(sat_posZ_m(chan,t)-z_u)^2;
% d(chan)=sqrt(d(chan));
%
% c_pr_m(chan,t)=d(chan)+cdeltat_u_g;
%
% a_x(chan,t)=-(sat_posX_m(chan,t)-x_u)/d(chan);
% a_y(chan,t)=-(sat_posY_m(chan,t)-y_u)/d(chan);
% a_z(chan,t)=-(sat_posZ_m(chan,t)-z_u)/d(chan);
%
% rhoDot_pri(chan,t)=(sat_velX(chan,t)-xDot_u)*a_x(chan,t)...
% +(sat_velY(chan,t)-yDot_u)*a_y(chan,t)...
% +(sat_velZ(chan,t)-zDot_u)*a_z(chan,t);
% end
kf_H = zeros(2*sat_number,st_nmbr);
for chan=1:5 % Measurement matrix H assembling
@ -215,20 +198,17 @@ for t=2:length(navSolution.RX_time)
% Filtered pseudorange error measurement (in m) AND Filtered Doppler shift measurements (in Hz):
for chan=1:5 % Measurement vector
pr_m_filt(chan,t)=sat_prg_m(chan,t)+kf_yerr_g(chan,t);% now filtered
rhoDot_pri_filt(chan,t)=(sat_dopp_hz(chan,t)*Lambda_GPS_L1+corr_kf_state(8,t)+kf_dt*corr_kf_state(9,t))-kf_yerr_g(chan+sat_number,t);
rhoDot_pri_filt(chan,t)=(sat_dopp_hz(chan,t)*Lambda_GPS_L1+corr_kf_state(8,t))-kf_yerr_g(chan+sat_number,t);
%convert rhoDot_pri to doppler shift!
% d_dt_clk_drift=(corr_kf_state(8,t)-corr_kf_state(8,t-1));
% d_dt_clk_drift=(corr_kf_state(8,t)-corr_kf_state(8,t-1));
if (t<3)
sat_dopp_hz_filt(chan,t)=(rhoDot_pri_filt(chan,t)-corr_kf_state(8,t)-corr_kf_state(9,t)*kf_dt)/Lambda_GPS_L1;
else
sat_dopp_hz_filt(chan,t)=(rhoDot_pri_filt(chan,t)-corr_kf_state(8,t)-corr_kf_state(9,t)*kf_dt)/Lambda_GPS_L1;
end
% carrier_phase_rads = 0;
sat_dopp_hz_filt(chan,t)=(rhoDot_pri_filt(chan,t)-corr_kf_state(8,t)+corr_kf_state(9,t-1)+corr_kf_state(9,t)*kf_dt)/Lambda_GPS_L1;
% carrier_phase_rads = 0;
carrier_freq_hz =GPS_L1_freq_hz+sat_dopp_hz_filt(chan,t);
% carrier_freq_rate_hz_s = 0;
% code_phase_chips = 0;
% carrier_freq_rate_hz_s = 0;
% code_phase_chips = 0;
end
% carrier_phase_rads = 0;